1
|
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007; 447:1116-20. [PMID: 17515919 PMCID: PMC2587297 DOI: 10.1038/nature05894] [Citation(s) in RCA: 1697] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/01/2007] [Indexed: 11/09/2022]
Abstract
Obesity and insulin resistance, the cardinal features of metabolic syndrome, are closely associated with a state of low-grade inflammation. In adipose tissue chronic overnutrition leads to macrophage infiltration, resulting in local inflammation that potentiates insulin resistance. For instance, transgenic expression of Mcp1 (also known as chemokine ligand 2, Ccl2) in adipose tissue increases macrophage infiltration, inflammation and insulin resistance. Conversely, disruption of Mcp1 or its receptor Ccr2 impairs migration of macrophages into adipose tissue, thereby lowering adipose tissue inflammation and improving insulin sensitivity. These findings together suggest a correlation between macrophage content in adipose tissue and insulin resistance. However, resident macrophages in tissues display tremendous heterogeneity in their activities and functions, primarily reflecting their local metabolic and immune microenvironment. While Mcp1 directs recruitment of pro-inflammatory classically activated macrophages to sites of tissue damage, resident macrophages, such as those present in the adipose tissue of lean mice, display the alternatively activated phenotype. Despite their higher capacity to repair tissue, the precise role of alternatively activated macrophages in obesity-induced insulin resistance remains unknown. Using mice with macrophage-specific deletion of the peroxisome proliferator activated receptor-gamma (PPARgamma), we show here that PPARgamma is required for maturation of alternatively activated macrophages. Disruption of PPARgamma in myeloid cells impairs alternative macrophage activation, and predisposes these animals to development of diet-induced obesity, insulin resistance, and glucose intolerance. Furthermore, gene expression profiling revealed that downregulation of oxidative phosphorylation gene expression in skeletal muscle and liver leads to decreased insulin sensitivity in these tissues. Together, our findings suggest that resident alternatively activated macrophages have a beneficial role in regulating nutrient homeostasis and suggest that macrophage polarization towards the alternative state might be a useful strategy for treating type 2 diabetes.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
1697 |
2
|
Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Greaves DR, Murray PJ, Chawla A. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 2006; 4:13-24. [PMID: 16814729 PMCID: PMC1904486 DOI: 10.1016/j.cmet.2006.05.011] [Citation(s) in RCA: 1097] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 04/24/2006] [Accepted: 05/12/2006] [Indexed: 12/13/2022]
Abstract
Complex interplay between T helper (Th) cells and macrophages contributes to the formation and progression of atherosclerotic plaques. While Th1 cytokines promote inflammatory activation of lesion macrophages, Th2 cytokines attenuate macrophage-mediated inflammation and enhance their repair functions. In spite of its biologic importance, the biochemical and molecular basis of how Th2 cytokines promote maturation of anti-inflammatory macrophages is not understood. We show here that in response to interleukin-4 (IL-4), signal transducer and activator of transcription 6 (STAT6) and PPARgamma-coactivator-1beta (PGC-1beta) induce macrophage programs for fatty acid oxidation and mitochondrial biogenesis. Transgenic expression of PGC-1beta primes macrophages for alternative activation and strongly inhibits proinflammatory cytokine production, whereas inhibition of oxidative metabolism or RNAi-mediated knockdown of PGC-1beta attenuates this immune response. These data elucidate a molecular pathway that directly links mitochondrial oxidative metabolism to the anti-inflammatory program of macrophage activation, suggesting a potential role for metabolic therapies in treating atherogenic inflammation.
Collapse
|
Comparative Study |
19 |
1097 |
3
|
Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, Subramanian V, Mukundan L, Ferrante AW, Chawla A. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 2008; 7:496-507. [PMID: 18522831 PMCID: PMC2587370 DOI: 10.1016/j.cmet.2008.04.003] [Citation(s) in RCA: 699] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 02/28/2008] [Accepted: 04/01/2008] [Indexed: 12/30/2022]
Abstract
Macrophage infiltration and activation in metabolic tissues underlie obesity-induced insulin resistance and type 2 diabetes. While inflammatory activation of resident hepatic macrophages potentiates insulin resistance, the functions of alternatively activated Kupffer cells in metabolic disease remain unknown. Here we show that in response to the Th2 cytokine interleukin-4 (IL-4), peroxisome proliferator-activated receptor delta (PPARdelta) directs expression of the alternative phenotype in Kupffer cells and adipose tissue macrophages of lean mice. However, adoptive transfer of PPARdelta(-/-) (Ppard(-/-)) bone marrow into wild-type mice diminishes alternative activation of hepatic macrophages, causing hepatic dysfunction and systemic insulin resistance. Suppression of hepatic oxidative metabolism is recapitulated by treatment of primary hepatocytes with conditioned medium from PPARdelta(-/-) macrophages, indicating direct involvement of Kupffer cells in liver lipid metabolism. Taken together, these data suggest an unexpected beneficial role for alternatively activated Kupffer cells in metabolic syndrome and type 2 diabetes.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
699 |
4
|
Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, Rando TA, Chawla A. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 2013; 153:376-88. [PMID: 23582327 DOI: 10.1016/j.cell.2013.02.053] [Citation(s) in RCA: 589] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/18/2013] [Accepted: 02/21/2013] [Indexed: 01/11/2023]
Abstract
In vertebrates, activation of innate immunity is an early response to injury, implicating it in the regenerative process. However, the mechanisms by which innate signals might regulate stem cell functionality are unknown. Here, we demonstrate that type 2 innate immunity is required for regeneration of skeletal muscle after injury. Muscle damage results in rapid recruitment of eosinophils, which secrete IL-4 to activate the regenerative actions of muscle resident fibro/adipocyte progenitors (FAPs). In FAPs, IL-4/IL-13 signaling serves as a key switch to control their fate and functions. Activation of IL-4/IL-13 signaling promotes proliferation of FAPs to support myogenesis while inhibiting their differentiation into adipocytes. Surprisingly, type 2 cytokine signaling is also required in FAPs, but not in myeloid cells, for rapid clearance of necrotic debris, a process that is necessary for timely and complete regeneration of tissues.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
589 |
5
|
Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM, Chawla A. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 2014; 160:74-87. [PMID: 25543153 DOI: 10.1016/j.cell.2014.12.011] [Citation(s) in RCA: 542] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 12/13/2022]
Abstract
Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2- and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα(+) APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PAPERCLIP:
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
542 |
6
|
Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, Wood BL, Kelloff GJ, Jessup JM, Radich JP. Association of Minimal Residual Disease With Clinical Outcome in Pediatric and Adult Acute Lymphoblastic Leukemia: A Meta-analysis. JAMA Oncol 2017; 3:e170580. [PMID: 28494052 DOI: 10.1001/jamaoncol.2017.0580] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Minimal residual disease (MRD) refers to the presence of disease in cases deemed to be in complete remission by conventional pathologic analysis. Assessing the association of MRD status following induction therapy in patients with acute lymphoblastic leukemia (ALL) with relapse and mortality may improve the efficiency of clinical trials and accelerate drug development. Objective To quantify the relationships between event-free survival (EFS) and overall survival (OS) with MRD status in pediatric and adult ALL using publications of clinical trials and other databases. Data Sources Clinical studies in ALL identified via searches of PubMed, MEDLINE, and clinicaltrials.gov. Study Selection Our search and study screening process adhered to the PRISMA Guidelines. Studies that addressed EFS or OS by MRD status in patients with ALL were included; reviews, abstracts, and studies with fewer than 30 patients or insufficient MRD description were excluded. Data Extraction and Synthesis Study sample size, patient age, follow-up time, timing of MRD assessment (postinduction or consolidation), MRD detection method, phenotype/genotype (B cell, T cell, Philadelphia chromosome), and EFS and OS. Searches of PubMed and MEDLINE identified 566 articles. A parallel search on clinicaltrials.gov found 67 closed trials and 62 open trials as of 2014. Merging results of 2 independent searches and applying exclusions gave 39 publications in 3 arms of patient populations (adult, pediatric, and mixed). We performed separate meta-analyses for each of these 3 subpopulations. Results The 39 publications comprised 13 637 patients: 16 adult studies (2076 patients), 20 pediatric (11 249 patients), and 3 mixed (312 patients). The EFS hazard ratio (HR) for achieving MRD negativity is 0.23 (95% Bayesian credible interval [BCI] 0.18-0.28) for pediatric patients and 0.28 (95% BCI, 0.24-0.33) for adults. The respective HRs in OS are 0.28 (95% BCI, 0.19-0.41) and 0.28 (95% BCI, 0.20-0.39). The effect was similar across all subgroups and covariates. Conclusions and Relevance The value of having achieved MRD negativity is substantial in both pediatric and adult patients with ALL. These results are consistent across therapies, methods of and times of MRD assessment, cutoff levels, and disease subtypes. Minimal residual disease status warrants consideration as an early measure of disease response for evaluating new therapies, improving the efficiency of clinical trials, accelerating drug development, and for regulatory approval. A caveat is that an accelerated approval of a particular new drug using an intermediate end point, such as MRD, would require confirmation using traditional efficacy end points.
Collapse
|
Meta-Analysis |
8 |
364 |
7
|
Mukundan L, Odegaard JI, Morel CR, Heredia JE, Mwangi JW, Ricardo-Gonzalez RR, Goh YPS, Eagle AR, Dunn SE, Awakuni JUH, Nguyen KD, Steinman L, Michie SA, Chawla A. PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med 2009; 15:1266-72. [PMID: 19838202 PMCID: PMC2783696 DOI: 10.1038/nm.2048] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 09/02/2009] [Indexed: 12/14/2022]
Abstract
Macrophages rapidly engulf apoptotic cells to limit the release of noxious cellular contents and to restrict autoimmune responses against self antigens. Although factors participating in recognition and engulfment of apoptotic cells have been identified, the transcriptional basis for the sensing and silently disposing of apoptotic cells is unknown. Here we show that peroxisome proliferator activated receptor-δ (PPAR-δ) is induced when macrophages engulf apoptotic cells and functions as a transcriptional sensor of dying cells. Genetic deletion of PPAR-δ decreases expression of opsonins, such as C1qb, resulting in impairment of apoptotic cell clearance and reduction in anti-inflammatory cytokine production. This increases autoantibody production and predisposes global and macrophage-specific PPARd−/− mice to autoimmune kidney disease, a phenotype resembling the human disease systemic lupus erythematosus. Thus, PPAR-δ plays a pivotal role in orchestrating the timely disposal of apoptotic cells by macrophages, ensuring that tolerance to self is maintained.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
291 |
8
|
Eisele NA, Ruby T, Jacobson A, Manzanillo PS, Cox JS, Lam L, Mukundan L, Chawla A, Monack DM. Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe 2014; 14:171-182. [PMID: 23954156 DOI: 10.1016/j.chom.2013.07.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/10/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Host-adapted Salmonella strains are responsible for a number of disease manifestations in mammals, including an asymptomatic chronic infection in which bacteria survive within macrophages located in systemic sites. However, the host cell physiology and metabolic requirements supporting bacterial persistence are poorly understood. In a mouse model of long-term infection, we found that S. typhimurium preferentially associates with anti-inflammatory/M2 macrophages at later stages of infection. Further, PPARδ, a eukaryotic transcription factor involved in sustaining fatty acid metabolism, is upregulated in Salmonella-infected macrophages. PPARδ deficiency dramatically inhibits Salmonella replication, which is linked to the metabolic state of macrophages and the level of intracellular glucose available to bacteria. Pharmacological activation of PPARδ increases glucose availability and enhances bacterial replication in macrophages and mice, while Salmonella fail to persist in Pparδ null mice. These data suggest that M2 macrophages represent a unique niche for long-term intracellular bacterial survival and link the PPARδ-regulated metabolic state of the host cell to persistent bacterial infection.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
166 |
9
|
Mukundan L, Bishop GA, Head KZ, Zhang L, Wahl LM, Suttles J. TNF receptor-associated factor 6 is an essential mediator of CD40-activated proinflammatory pathways in monocytes and macrophages. THE JOURNAL OF IMMUNOLOGY 2005; 174:1081-90. [PMID: 15634933 DOI: 10.4049/jimmunol.174.2.1081] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The interaction between CD40 and its ligand, CD154, has been shown to play a role in the onset and maintenance of inflammatory disease. Contributing to this process is the ability of CD40 to signal monocyte and macrophage inflammatory cytokine production. We have shown that this event is dependent on Src family tyrosine kinase activity and the subsequent activation of ERK1/2. To address the role of TNFR-associated factor (TRAF) family members in facilitating this signaling pathway, we transfected a CD40-deficient macrophage cell line with wild-type human CD40, or with CD40 containing disrupted TRAF binding sites. Ligation of either wild-type CD40, or a CD40 mutant unable to bind TRAF2/3/5, resulted in the stimulation of inflammatory cytokine production. However, ligation of a CD40 mutant lacking a functional TRAF6 binding site did not initiate inflammatory cytokine production, and this mutant was found to be defective in CD40-mediated activation of ERK1/2, as well as IkappaB kinase (IKK) and NF-kappaB. Likewise, introduction of a dominant-negative TRAF6 into a wild-type (CD40(+)) macrophage cell line resulted in abrogation of CD40-mediated induction of inflammatory cytokine synthesis. Finally, treatment of monocytes with a cell-permeable peptide corresponding to the TRAF6-binding motif of CD40 inhibited CD40 activation of ERK1/2, IKK, and inflammatory cytokine production. These data demonstrate that TRAF6 acts as a critical adapter of both the Src/ERK1/2 and IKK/NF-kappaB proinflammatory signaling pathways in monocytes and macrophages.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
94 |
10
|
Dunn SE, Bhat R, Straus DS, Sobel RA, Axtell R, Johnson A, Nguyen K, Mukundan L, Moshkova M, Dugas JC, Chawla A, Steinman L. Peroxisome proliferator-activated receptor delta limits the expansion of pathogenic Th cells during central nervous system autoimmunity. ACTA ACUST UNITED AC 2010; 207:1599-608. [PMID: 20624891 PMCID: PMC2916127 DOI: 10.1084/jem.20091663] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peroxisome proliferator–activated receptors (PPARs; PPAR-α, PPAR-δ, and PPAR-γ) comprise a family of nuclear receptors that sense fatty acid levels and translate this information into altered gene transcription. Previously, it was reported that treatment of mice with a synthetic ligand activator of PPAR-δ, GW0742, ameliorates experimental autoimmune encephalomyelitis (EAE), indicating a possible role for this nuclear receptor in the control of central nervous system (CNS) autoimmune inflammation. We show that mice deficient in PPAR-δ (PPAR-δ−/−) develop a severe inflammatory response during EAE characterized by a striking accumulation of IFN-γ+IL-17A− and IFN-γ+IL-17A+ CD4+ cells in the spinal cord. The preferential expansion of these T helper subsets in the CNS of PPAR-δ−/− mice occurred as a result of a constellation of immune system aberrations that included higher CD4+ cell proliferation, cytokine production, and T-bet expression and enhanced expression of IL-12 family cytokines by myeloid cells. We also show that the effect of PPAR-δ in inhibiting the production of IFN-γ and IL-12 family cytokines is ligand dependent and is observed in both mouse and human immune cells. Collectively, these findings suggest that PPAR-δ serves as an important molecular brake for the control of autoimmune inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
70 |
11
|
Anderson KC, Auclair D, Kelloff GJ, Sigman CC, Avet-Loiseau H, Farrell AT, Gormley NJ, Kumar SK, Landgren O, Munshi NC, Cavo M, Davies FE, Di Bacco A, Dickey JS, Gutman SI, Higley HR, Hussein MA, Jessup JM, Kirsch IR, Little RF, Loberg RD, Lohr JG, Mukundan L, Omel JL, Pugh TJ, Reaman GH, Robbins MD, Sasser AK, Valente N, Zamagni E. The Role of Minimal Residual Disease Testing in Myeloma Treatment Selection and Drug Development: Current Value and Future Applications. Clin Cancer Res 2017; 23:3980-3993. [PMID: 28428191 DOI: 10.1158/1078-0432.ccr-16-2895] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/10/2017] [Accepted: 04/13/2017] [Indexed: 01/22/2023]
Abstract
Treatment of myeloma has benefited from the introduction of more effective and better tolerated agents, improvements in supportive care, better understanding of disease biology, revision of diagnostic criteria, and new sensitive and specific tools for disease prognostication and management. Assessment of minimal residual disease (MRD) in response to therapy is one of these tools, as longer progression-free survival (PFS) is seen consistently among patients who have achieved MRD negativity. Current therapies lead to unprecedented frequency and depth of response, and next-generation flow and sequencing methods to measure MRD in bone marrow are in use and being developed with sensitivities in the range of 10-5 to 10-6 cells. These technologies may be combined with functional imaging to detect MRD outside of bone marrow. Moreover, immune profiling methods are being developed to better understand the immune environment in myeloma and response to immunomodulatory agents while methods for molecular profiling of myeloma cells and circulating DNA in blood are also emerging. With the continued development and standardization of these methodologies, MRD has high potential for use in gaining new drug approvals in myeloma. The FDA has outlined two pathways by which MRD could be qualified as a surrogate endpoint for clinical studies directed at obtaining accelerated approval for new myeloma drugs. Most importantly, better understanding of MRD should also contribute to better treatment monitoring. Potentially, MRD status could be used as a prognostic factor for making treatment decisions and for informing timing of therapeutic interventions. Clin Cancer Res; 23(15); 3980-93. ©2017 AACR.
Collapse
|
Journal Article |
8 |
59 |
12
|
Anderson KC, Auclair D, Adam SJ, Agarwal A, Anderson M, Avet-Loiseau H, Bustoros M, Chapman J, Connors DE, Dash A, Di Bacco A, Du L, Facon T, Flores-Montero J, Gay F, Ghobrial IM, Gormley NJ, Gupta I, Higley H, Hillengass J, Kanapuru B, Kazandjian D, Kelloff GJ, Kirsch IR, Kremer B, Landgren O, Lightbody E, Lomas OC, Lonial S, Mateos MV, Montes de Oca R, Mukundan L, Munshi NC, O'Donnell EK, Orfao A, Paiva B, Patel R, Pugh TJ, Ramasamy K, Ray J, Roshal M, Ross JA, Sigman CC, Thoren KL, Trudel S, Ulaner G, Valente N, Weiss BM, Zamagni E, Kumar SK. Minimal Residual Disease in Myeloma: Application for Clinical Care and New Drug Registration. Clin Cancer Res 2021; 27:5195-5212. [PMID: 34321279 PMCID: PMC9662886 DOI: 10.1158/1078-0432.ccr-21-1059] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023]
Abstract
The development of novel agents has transformed the treatment paradigm for multiple myeloma, with minimal residual disease (MRD) negativity now achievable across the entire disease spectrum. Bone marrow-based technologies to assess MRD, including approaches using next-generation flow and next-generation sequencing, have provided real-time clinical tools for the sensitive detection and monitoring of MRD in patients with multiple myeloma. Complementary liquid biopsy-based assays are now quickly progressing with some, such as mass spectrometry methods, being very close to clinical use, while others utilizing nucleic acid-based technologies are still developing and will prove important to further our understanding of the biology of MRD. On the regulatory front, multiple retrospective individual patient and clinical trial level meta-analyses have already shown and will continue to assess the potential of MRD as a surrogate for patient outcome. Given all this progress, it is not surprising that a number of clinicians are now considering using MRD to inform real-world clinical care of patients across the spectrum from smoldering myeloma to relapsed refractory multiple myeloma, with each disease setting presenting key challenges and questions that will need to be addressed through clinical trials. The pace of advances in targeted and immune therapies in multiple myeloma is unprecedented, and novel MRD-driven biomarker strategies are essential to accelerate innovative clinical trials leading to regulatory approval of novel treatments and continued improvement in patient outcomes.
Collapse
|
other |
4 |
39 |
13
|
Mukundan L, Milhorn DM, Matta B, Suttles J. CD40-mediated activation of vascular smooth muscle cell chemokine production through a Src-initiated, MAPK-dependent pathway. Cell Signal 2004; 16:375-84. [PMID: 14687667 DOI: 10.1016/j.cellsig.2003.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction between CD40 ligand (CD154) expressed on activated T cells and its receptor, CD40, has been shown to play a role in the onset and maintenance of autoimmune inflammation. Recent studies suggest that CD154+T cells also contribute to the regulation of atherogenesis due to their capacity to activate CD40+cells of the vasculature, including vascular smooth muscle cells (VSMC). The present study evaluated the signalling events initiated through CD40 ligation which culminate in VSMC chemokine production. CD40 ligation resulted in the phosphorylation/activation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and p38, but not c-jun N-terminal kinase. Inhibition of both ERK1/2 and p38 activity abrogated CD40 stimulation of IL-8 and MCP-1 production. CD40-mediated induction of chemokines also showed dependence on the Src family kinase activity. The Src kinase inhibitor, PP2, was found to inhibit CD40-induced phosphorylation of ERK1/2 as well as activation of IkappaB kinase. An evaluation of Src kinases that may be important in CD40 signalling identified Lyn as a potential candidate. These data indicate that CD40 signalling in VSMC activates a Src family kinase-initiated pathway that results in the induction of MAPK activities required for successful induction of chemokine synthesis.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
32 |
14
|
Keeney M, Wood BL, Hedley BD, DiGiuseppe JA, Stetler-Stevenson M, Paietta E, Lozanski G, Seegmiller AC, Greig BW, Shaver AC, Mukundan L, Higley HR, Sigman CC, Kelloff G, Jessup JM, Borowitz MJ. A QA Program for MRD Testing Demonstrates That Systematic Education Can Reduce Discordance Among Experienced Interpreters. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2018; 94:239-249. [PMID: 28475275 PMCID: PMC8064036 DOI: 10.1002/cyto.b.21528] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Minimal residual disease (MRD) in B lymphoblastic leukemia (B-ALL) by flow cytometry is an established prognostic factor used to adjust treatment in most pediatric therapeutic protocols. MRD in B-ALL has been standardized by the Children's Oncology Group (COG) in North America, but not routine clinical labs. The Foundation for National Institutes of Health sought to harmonize MRD measurement among COG, oncology groups, academic, community and government, laboratories. METHODS Listmode data from post-induction marrows were distributed from a reference lab to seven different clinical FCM labs with variable experience in B-ALL MRD. Labs were provided with the COG protocol. Files from 15 cases were distributed to the seven labs. Educational sessions were implemented, and 10 more listmode file cases analyzed. RESULTS Among 105 initial challenges, the overall discordance rate was 26%. In the final round, performance improved considerably; out of 70 challenges, there were five false positives and one false negative (9% discordance), and no quantitative discordance. Four of six deviations occurred in a single lab. Three samples with hematogones were still misclassified as MRD. CONCLUSIONS Despite the provision of the COG standardized analysis protocol, even experienced laboratories require an educational component for B-ALL MRD analysis by FCM. Recognition of hematogones remains challenging for some labs when using the COG protocol. The results from this study suggest that dissemination of MRD testing to other North American laboratories as part of routine clinical management of B-ALL is possible but requires additional educational components to complement standardized methodology. © 2017 International Clinical Cytometry Society.
Collapse
|
research-article |
7 |
28 |
15
|
Kilinc MO, Mukundan L, Yolcu ES, Singh NP, Suttles J, Shirwan H. Generation of a multimeric form of CD40L with potent immunostimulatory activity using streptavidin as a chaperon. Exp Mol Pathol 2006; 80:252-61. [PMID: 16487512 DOI: 10.1016/j.yexmp.2005.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 12/22/2005] [Indexed: 11/18/2022]
Abstract
Effective aggregation of cell surface immune receptors with their ligands is critical in promoting humoral and cellular immune responses. Simulation of these interactions using soluble multimeric ligands having potent adjuvant effects may prove an effective alternative to agonistic antibodies as immunotherapeutics. Multimeric ligands may effectively engage their receptors, leading to aggregation and effective signal transduction. We exploited the structural characteristics of streptavidin (SA) for the generation of multimeric chimeric proteins. Streptavidin forms stable tetramers and oligomers under physiological conditions, and, as such, chimeric molecules with SA are expected to possess similar features. Two chimeric molecules consisting of the extracellular domains of human and mouse CD40L and a modified form of core streptavidin were generated. These proteins form stable oligomers that could only be dissociated into monomers by heating at 100 degrees C, but not 60 degrees C, under denaturing conditions. The chimeric proteins vigorously stimulated B cells, monocytes, and dendritic cells for the production of cytokines and chemokines and upregulation of immunostimulatory molecules. The use of SA as a chaperon presents a novel approach to generate multimeric immunological molecules with potent activities and their use as potential therapeutics for the treatment of cancer and other immune-based disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
14 |
16
|
Mukundan L, Lie OV, Leary LD, Papanastassiou AM, Morgan LC, Szabó CÁ. Subdural electrode recording of generalized photoepileptic responses. EPILEPSY & BEHAVIOR CASE REPORTS 2014; 3:4-7. [PMID: 25737962 PMCID: PMC4338858 DOI: 10.1016/j.ebcr.2014.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022]
Abstract
We evaluated the spatiotemporal distribution of photic driving (PDR), photoparoxysmal (PPR), and photoconvulsive (PCR) responses recorded by intracranial electrodes (ic-EEG) in a patient with generalized photosensitivity and right frontal lobe cortical dysplasia. Intermittent light stimulation (ILS) was performed thirteen times in nine days. Cortical responses to ILS recorded by ic-EEG were reviewed and classified as PDRs, PPRs, and PCRs. Photic driving responses were restricted to the occipital lobe at ILS frequencies below 9 Hz, spreading to the parietal and central regions at > 9 Hz. Photoparoxysmal responses commonly presented as focal, medial occipital, and parietal interictal epileptic discharges (IEDs), the latter propagating to the sensorimotor cortices. Generalized IEDs were also generated in the setting of PPRs. Photoconvulsive responses, characterized by repetitive bilateral upper extremity myoclonus sustained until the end of the stimulus, were associated with propagation of the medial parieto-occipital discharge to the primary sensorimotor and supplementary area cortices, while generalized myoclonic seizures were associated with a generalized spike-and-wave discharge with an interhemispheric posterior cingulate onset sparing the sensorimotor cortices. Both types of PCR could occur during the same stimulus. Regardless of the pathway, PCRs only occurred when PDRs involved the parietal cortices. While there may be more than one pathway underlying PCRs, parietal lobe association cortices appear to be critical to their generation.
Collapse
|
Journal Article |
11 |
5 |
17
|
Kuboki Y, Fakih M, Strickler J, Yaeger R, Masuishi T, Kim EJ, Bestvina CM, Kopetz S, Falchook GS, Langer C, Krauss J, Puri S, Cardona P, Chan E, Varrieur T, Mukundan L, Anderson A, Tran Q, Hong DS. Sotorasib with panitumumab in chemotherapy-refractory KRAS G12C-mutated colorectal cancer: a phase 1b trial. Nat Med 2024; 30:265-270. [PMID: 38177853 PMCID: PMC11135132 DOI: 10.1038/s41591-023-02717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
The current third-line (and beyond) treatment options for RAS-mutant metastatic colorectal cancer have yielded limited efficacy. At the time of study start, the combination of sotorasib, a KRAS (Kirsten rat sarcoma viral oncogene homolog)-G12C inhibitor, and panitumumab, an epidermal growth factor receptor (EGFR) inhibitor, was hypothesized to overcome treatment-induced resistance. This phase 1b substudy of the CodeBreaK 101 master protocol evaluated sotorasib plus panitumumab in patients with chemotherapy-refractory KRASG12C-mutated metastatic colorectal cancer. Here, we report the results in a dose-exploration cohort and a dose-expansion cohort. Patients received sotorasib (960 mg, once daily) plus panitumumab (6 mg kg-1, once every 2 weeks). The primary endpoints were safety and tolerability. Secondary endpoints included efficacy and pharmacokinetics. Exploratory biomarkers at baseline were assessed. Forty-eight patients (dose-exploration cohort, n = 8; dose-expansion cohort, n = 40) were treated. Treatment-related adverse events of any grade and grade ≥3 occurred in 45 (94%) and 13 (27%) patients, respectively. In the dose-expansion cohort, the confirmed objective response rate was 30.0% (95% confidence interval (CI) 16.6%, 46.5%). Median progression-free survival was 5.7 months (95% CI 4.2, 7.7 months). Median overall survival was 15.2 months (95% CI 12.5 months, not estimable). Prevalent genomic coalterations included APC (84%), TP53 (74%), SMAD4 (33%), PIK3CA (28%) and EGFR (26%). Sotorasib-panitumumab demonstrated acceptable safety with promising efficacy in chemotherapy-refractory KRASG12C-mutated metastatic colorectal cancer. ClinicalTrials.gov identifier: NCT04185883 .
Collapse
|
Clinical Trial, Phase I |
1 |
|
18
|
Odegaard J, Mukundan L, Ricardo-Gonzalez R, Morel C, Chawla A. Regulation of macrophage activation and function by PPARs. Cytokine 2009. [DOI: 10.1016/j.cyto.2009.07.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
16 |
|
19
|
Sweeney SM, Hamadeh HK, Abrams N, Adam SJ, Brenner S, Connors DE, Davis GJ, Fiore L, Gawel SH, Grossman RL, Hanlon SE, Hsu K, Kelloff GJ, Kirsch IR, Louv B, McGraw D, Meng F, Milgram D, Miller RS, Morgan E, Mukundan L, O'Brien T, Robbins P, Rubin EH, Rubinstein WS, Salmi L, Schaller T, Shi G, Sigman CC, Srivastava S. Challenges to Using Big Data in Cancer. Cancer Res 2023; 83:1175-1182. [PMID: 36625843 PMCID: PMC10102837 DOI: 10.1158/0008-5472.can-22-1274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/29/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Big data in healthcare can enable unprecedented understanding of diseases and their treatment, particularly in oncology. These data may include electronic health records, medical imaging, genomic sequencing, payor records, and data from pharmaceutical research, wearables, and medical devices. The ability to combine datasets and use data across many analyses is critical to the successful use of big data and is a concern for those who generate and use the data. Interoperability and data quality continue to be major challenges when working with different healthcare datasets. Mapping terminology across datasets, missing and incorrect data, and varying data structures make combining data an onerous and largely manual undertaking. Data privacy is another concern addressed by the Health Insurance Portability and Accountability Act, the Common Rule, and the General Data Protection Regulation. The use of big data is now included in the planning and activities of the FDA and the European Medicines Agency. The willingness of organizations to share data in a precompetitive fashion, agreements on data quality standards, and institution of universal and practical tenets on data privacy will be crucial to fully realizing the potential for big data in medicine.
Collapse
|
Review |
2 |
|
20
|
Ravandi F, Subklewe M, Walter RB, Vachhani P, Ossenkoppele G, Buecklein V, Döhner H, Jongen-Lavrencic M, Baldus CD, Fransecky L, Pardee TS, Kantarjian H, Yen PK, Mukundan L, Panwar B, Yago MR, Agarwal S, Khaldoyanidi SK, Stein A. Safety and tolerability of AMG 330 in adults with relapsed/refractory AML: a phase 1a dose-escalation study. Leuk Lymphoma 2024; 65:1281-1291. [PMID: 38712673 DOI: 10.1080/10428194.2024.2346755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
AMG 330, a bispecific T-cell engager (BiTE®) that binds CD33 and CD3 on T cells facilitates T-cell-mediated cytotoxicity against CD33+ cells. This first-in-human, open-label, dose-escalation study evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of AMG 330 in adults with relapsed/refractory acute myeloid leukemia (R/R AML). Amongst 77 patients treated with AMG 330 (0.5 µg/day-1.6 mg/day) on 14-day or 28-day cycles, maximum tolerated dose was not reached; median duration of treatment was 29 days. The most frequent treatment-related adverse events were cytokine release syndrome (CRS; 78%) and rash (30%); 10% of patients experienced grade 3/4 CRS. CRS was mitigated with stepwise dosing of AMG 330, prophylactic dexamethasone, and early treatment with tocilizumab. Among 60 evaluable patients, eight achieved complete remission or morphologic leukemia-free state; of the 52 non-responders, 37% had ≥50% reduction in AML bone marrow blasts. AMG 330 is a promising CD33-targeted therapeutic strategy for R/R AML.
Collapse
MESH Headings
- Humans
- Male
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Female
- Middle Aged
- Adult
- Aged
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- Antibodies, Bispecific/therapeutic use
- Treatment Outcome
- Young Adult
- Maximum Tolerated Dose
- Drug Resistance, Neoplasm/drug effects
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- Recurrence
- Aged, 80 and over
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Dose-Response Relationship, Drug
- Cytokine Release Syndrome/etiology
Collapse
|
Clinical Trial, Phase I |
1 |
|
21
|
Mukundan L, Jetter G, Moreno L, Rogers S, Gentry W, Carlson S, Cavazos J. Homocysteinemia Associated with Anti-Epileptic Medications - A Retrospective Study of Clinical Practice (P06.108). Neurology 2012. [DOI: 10.1212/wnl.78.1_meetingabstracts.p06.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
13 |
|
22
|
Sweeney SM, Hamadeh HK, Abrams N, Adam SJ, Brenner S, Connors DE, Davis GJ, Fiore LD, Gawel SH, Grossman RL, Hanlon SE, Hsu K, Kelloff GJ, Kirsch IR, Louv B, McGraw D, Meng F, Milgram D, Miller RS, Morgan E, Mukundan L, O'Brien T, Robbins P, Rubin EH, Salmi L, Schaller TH, Shi G, Sigman CC, Srivastava S. Case studies for overcoming challenges in using big data in cancer. Cancer Res 2023; 83:1183-1190. [PMID: 36625851 PMCID: PMC10102839 DOI: 10.1158/0008-5472.can-22-1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/29/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
The analysis of big healthcare data has enormous potential as a tool for advancing oncology drug development and patient treatment, particularly in the context of precision medicine. However, there are challenges in organizing, sharing, integrating, and making these data readily accessible to the research community. This review presents five case studies illustrating various successful approaches to addressing such challenges. These efforts are CancerLinQ, the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange, Project Data Sphere, the National Cancer Institute Genomic Data Commons, and the Veterans Health Administration Clinical Data Initiative. Critical factors in the development of these systems include attention to the use of robust pipelines for data aggregation, common data models, data de-identification to enable multiple uses, integration of data collection into physician workflows, terminology standardization and attention to interoperability, extensive quality assurance and quality control activity, incorporation of multiple data types, and understanding how data resources can be best applied. By describing some of the emerging resources, we hope to inspire consideration of the secondary use of such data at the earliest possible step to ensure the proper sharing of data in order to generate insights that advance the understanding and treatment of cancer.
Collapse
|
|
2 |
|