1
|
Rubió L, Motilva MJ, Romero MP. Recent advances in biologically active compounds in herbs and spices: a review of the most effective antioxidant and anti-inflammatory active principles. Crit Rev Food Sci Nutr 2014; 53:943-53. [PMID: 23768186 DOI: 10.1080/10408398.2011.574802] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spices, like vegetables, fruit, and medicinal herbs, are known to possess a variety of antioxidant effects and other biological activities. Phenolic compounds in these plant materials are closely associated with their antioxidant activity, which is mainly due to their redox properties and their capacity to block the production of reactive oxygen species. More recently, their ability to interfere with signal transduction pathways involving various transcription factors, protein kinases, phosphatases, and other metabolic enzymes has also been demonstrated. Many of the spice-derived compounds which are potent antioxidants are of great interest to biologists and clinicians because they may help protect the human body against oxidative stress and inflammatory processes. It is important to study the bioactive compounds that can modulate target functions related to defence against oxidative stress, and that might be used to achieve health benefits individually. In the present review, an attempt has been made to summarize the most current scientific evidence about the in vitro and in vivo effects of the bioactive compounds derived from herbs and spices, focused on anti-inflammatory and antioxidant effects, in order to provide science-based evidence for the traditional uses and develop either functional foods or nutraceuticals.
Collapse
|
Review |
11 |
157 |
2
|
Serra A, Rubió L, Borràs X, Macià A, Romero MP, Motilva MJ. Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake. Mol Nutr Food Res 2011; 56:486-96. [PMID: 22183818 DOI: 10.1002/mnfr.201100436] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/20/2011] [Accepted: 10/25/2011] [Indexed: 01/11/2023]
Abstract
SCOPE The distribution and accumulation of olive oil phenolic compounds in the body are topics lacked of information. The aim of this study was to evaluate the bioavailability, metabolism and distribution of phenolic compounds from olive cake. METHODS AND RESULTS The metabolism and distribution of phenolic compounds were examined by UPLC-MS/MS after an acute intake of a phenolic extract from olive cake, analyzing plasma and tissues (heart, brain, liver, kidney, spleen, testicle and thymus) 1, 2 and 4 h after ingestion using Wistar rats as the in vivo model. The results showed a wide distribution of phenolic compounds and their metabolites in the tissues, with a main detoxification route through the kidneys. Highlighting the quantification of the free forms of some phenolic compounds, such as oleuropein derivative in plasma (Cmax 4 h: 24 nmol/L) and brain (Cmax 2 h: 2.8 nmol/g), luteolin in kidney (Cmax 1 h: 0.04 nmol/g), testicle (Cmax 2 h: 0.07 nmol/g) and heart (Cmax 1 h: 0.47 nmol/g); and hydroxytyrosol in plasma (Cmax 2 h: 5.2 nmol/L), kidney (Cmax 4 h: 3.8 nmol/g) and testicle (Cmax 2 h: 2.7 nmol/g). CONCLUSION After a single ingestion of olive oil phenolic compounds, these were absorbed, metabolized and distributed through the blood stream to practically all parts of the body, even across the blood-brain barrier.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
121 |
3
|
Granado-Serrano AB, Martín-Garí M, Sánchez V, Riart Solans M, Berdún R, Ludwig IA, Rubió L, Vilaprinyó E, Portero-Otín M, Serrano JCE. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci Rep 2019; 9:1772. [PMID: 30742005 PMCID: PMC6370822 DOI: 10.1038/s41598-019-38874-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota has been suggested to affect lipid metabolism. The objective of this study was to characterize the faecal microbiota signature and both short chain fatty acids (SCFAs) and bile acids (BA) profile of hypercholesterolemic subjects. Microbiota composition, SCFAs, BA and blood lipid profile from male volunteers with hypercholesterolemia (HC) and normocholesterolemia (NC) were determined by 16S rDNA sequencing, HPLC, GC and NMR, respectively. HC subjects were characterized by having lower relative abundance of Anaeroplasma (0.002% vs 0.219%, p-value = 0.026) and Haemophilus (0.041% vs 0.078%, p-value = 0.049), and higher of Odoribacter (0.51% vs 0.16%; p-value = 0.044). Correlation analysis revealed that Anaeroplasma and Haemophilus were associated to an unfavourable lipid profile: they correlated negatively to cholesterol and triglycerides related biomarkers and the ratio total to high density lipoprotein (HDL) cholesterol, and positively to HDL size. Odoribacter displayed an opposite behaviour. Faecal SCFAs profile revealed higher abundance of isobutyric (2.76% vs 0.82%, p-value = 0.049) and isovaleric acid (1.32% vs 0.06%, p-value = 0.016) in HC. Isobutyric acid correlated positively with Odoribacter and lipid parameters indicative of an unfavourable profile. BA profile did not show differences between groups. It was concluded that HC subjects showed a particular faecal bacterial signature and SCFAs profile associated with their lipid profile.
Collapse
|
research-article |
6 |
120 |
4
|
Calderón-Pérez L, Gosalbes MJ, Yuste S, Valls RM, Pedret A, Llauradó E, Jimenez-Hernandez N, Artacho A, Pla-Pagà L, Companys J, Ludwig I, Romero MP, Rubió L, Solà R. Gut metagenomic and short chain fatty acids signature in hypertension: a cross-sectional study. Sci Rep 2020; 10:6436. [PMID: 32296109 PMCID: PMC7160119 DOI: 10.1038/s41598-020-63475-w] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Hypertension is an independent and preventable risk factor for the development of cardiovascular diseases, however, little is known about the impact of gut microbiota composition in its development. We carried out comprehensive gut microbiota analysis and targeted metabolomics in a cross-sectional study of 29 non-treated hypertensive (HT) and 32 normotensive (NT) subjects. We determined fecal microbiota composition by 16S rRNA gene sequencing and bacterial functions by metagenomic analysis. The microbial metabolites analysed were short chain fatty acids (SCFA) both in plasma and feces, and trimethylamine N-oxide (TMAO) in plasma. The overall bacterial composition and diversity of bacterial community in the two groups were not significantly different. However, Ruminococcaceae NK4A214, Ruminococcaceae_UCG-010, Christensenellaceae_R-7, Faecalibacterium prausnitzii and Roseburia hominis were found to be significantly enriched in NT group, whereas, Bacteroides coprocola, Bacteroides plebeius and genera of Lachnospiraceae were increased in HT patients. We found a positive correlation between the HT-associated species and systolic and diastolic blood pressure after adjusted for measured confounders. SCFA showed antagonistic results in plasma and feces, detecting in HT subjects significant higher levels in feces and lower levels in plasma, which could indicate a less efficient SCFA absorption. Overall, our results present a disease classifier based on microbiota and bacterial metabolites to discriminate HT individuals from NT controls in a first disease grade prior to drug treatment.
Collapse
|
Observational Study |
5 |
115 |
5
|
Mosele JI, Macià A, Romero MP, Motilva MJ, Rubió L. Application of in vitro gastrointestinal digestion and colonic fermentation models to pomegranate products (juice, pulp and peel extract) to study the stability and catabolism of phenolic compounds. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
|
10 |
113 |
6
|
Rubió L, Valls RM, Macià A, Pedret A, Giralt M, Romero MP, de la Torre R, Covas MI, Solà R, Motilva MJ. Impact of olive oil phenolic concentration on human plasmatic phenolic metabolites. Food Chem 2012; 135:2922-9. [DOI: 10.1016/j.foodchem.2012.07.085] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022]
|
|
13 |
61 |
7
|
Mosele JI, Gosalbes MJ, Macià A, Rubió L, Vázquez-Castellanos JF, Jiménez Hernández N, Moya A, Latorre A, Motilva MJ. Effect of daily intake of pomegranate juice on fecal microbiota and feces metabolites from healthy volunteers. Mol Nutr Food Res 2015; 59:1942-53. [PMID: 26228065 DOI: 10.1002/mnfr.201500227] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 02/05/2023]
Abstract
SCOPE The purpose of the study was to evaluate the effect, regarding the metabolic and microbial profile of feces, of diet supplementation of healthy adults with pomegranate juice (PJ). METHODS AND RESULTS Twelve healthy adults were recruited to the study, which consisted of the intake of 200 mL/day of PJ during 4 weeks. Feces were collected before and after the supplementation with PJ. Metabolites (phenolic catabolites, short-chain fatty acids, and fecal steroids) and microbial profile were analyzed at baseline and at 4 weeks. Fecal phenolic metabolites, 3-phenylpropionic acid, catechol, hydroxytyrosol, and urolithin A, showed a significant increase in their concentration after supplementation with PJ. Among fecal steroids, parallel to the significant increase of cholesterol concentration, a significant decrease of coprostanol was observed. Although no significant changes in the microbiota profile were observed, different relationships between initial microbiota and the metabolites produced were found. Catechol showed positive and negative correlation with Oscillospora and Paraprevotella genera, respectively, and 3-phenylpropionic acid was positively correlated with Odoribacter genus. CONCLUSION Inclusion of PJ in the diet did not significantly alter the gut microbiota composition in healthy adults, but the individual bacterial composition could contribute to the generation of potential health-promoting phenolic metabolites.
Collapse
|
|
10 |
59 |
8
|
Rubió L, Macià A, Castell-Auví A, Pinent M, Blay MT, Ardévol A, Romero MP, Motilva MJ. Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccesibility and bioavailability assessed by in vitro digestion and cell models. Food Chem 2014; 149:277-84. [DOI: 10.1016/j.foodchem.2013.10.075] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/04/2013] [Accepted: 10/17/2013] [Indexed: 01/11/2023]
|
|
11 |
58 |
9
|
Catalán Ú, López de las Hazas MC, Rubió L, Fernández-Castillejo S, Pedret A, de la Torre R, Motilva MJ, Solà R. Protective effect of hydroxytyrosol and its predominant plasmatic human metabolites against endothelial dysfunction in human aortic endothelial cells. Mol Nutr Food Res 2015; 59:2523-36. [DOI: 10.1002/mnfr.201500361] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/03/2015] [Accepted: 09/10/2015] [Indexed: 12/15/2022]
|
|
10 |
53 |
10
|
Motilva MJ, Macià A, Romero MP, Rubió L, Mercader M, González-Ferrero C. Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
|
9 |
46 |
11
|
Serra A, Macià A, Rubió L, Anglès N, Ortega N, Morelló JR, Romero MP, Motilva MJ. Distribution of procyanidins and their metabolites in rat plasma and tissues in relation to ingestion of procyanidin-enriched or procyanidin-rich cocoa creams. Eur J Nutr 2012; 52:1029-38. [PMID: 22782693 DOI: 10.1007/s00394-012-0409-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/21/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Procyanidins are extensively metabolized via phase-II and microbial enzymes. However, their distribution in the body is not well characterized. AIM This study investigates the distribution of procyanidins (monomers and dimers) and their phase-II metabolites in plasma and tissues (thymus, heart, liver, testicle, lung, kidney, spleen and brain). METHODS Wistar rats were fed with 1 g of cocoa cream (CC), 50 mg of procyanidin hazelnut skin extract (PE) and 50 mg PE in 1 g CC (PECC). The rats were killed at 0, 1, 1.5, 2, 3, 4 and 18 h after gavage, and the plasma and tissues were analyzed by UPLC-MS/MS. RESULTS Epicatechin-glucuronide was the main metabolite in the plasma after the CC intake, with C(max) at 423 nM and t(max) at 2 h, and methyl catechin-glucuronide (301 nM, 2 h) was the main metabolite in the plasma after the PE intake. As a result of the PECC enrichment, epicatechin-glucuronide (452 nM, 1.5 h) and catechin-glucuronide (297 nM, 2 h) were the main metabolites in the plasma. Methyl catechin-glucuronide was found in the liver after PE (8 nmol/g tissue, 4 h) and PECC (8 nmol/g, 1.5 h). The kidney was found to contain a high concentration of phase-II metabolites of procyanidins and is therefore thought to be the main site of metabolism of the compounds. Methyl catechin-sulfate (6.4 nmol/g, 4 h) was only quantified in the brain and after PE intake. Catechin metabolites were not found in the spleen or heart. Phenolic acids were detected in all tissues. CONCLUSIONS The formulation of a product enriched or fortified with procyanidins is a way to increase their bioavailability, with clear effects on the plasmatic pharmacokinetics, and a greater accumulation of phenolic metabolites in such tissues as the liver, kidney, lung and brain.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
44 |
12
|
Valls RM, Pedret A, Calderón-Pérez L, Llauradó E, Pla-Pagà L, Companys J, Moragas A, Martín-Luján F, Ortega Y, Giralt M, Romeu M, Rubió L, Mayneris-Perxachs J, Canela N, Puiggrós F, Caimari A, Del Bas JM, Arola L, Solà R. Effects of hesperidin in orange juice on blood and pulse pressures in mildly hypertensive individuals: a randomized controlled trial (Citrus study). Eur J Nutr 2020; 60:1277-1288. [PMID: 32661681 PMCID: PMC7987641 DOI: 10.1007/s00394-020-02279-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/11/2020] [Indexed: 12/25/2022]
Abstract
Purpose To assess the sustained and acute effects, as well as the influence of sustained consumption on the acute effects, of orange juice (OJ) with a natural hesperidin content and hesperidin-enriched OJ (EOJ) on blood (BP) and pulse (PP) pressures in pre- and stage-1 hypertensive individuals. Methods In a randomized, parallel, double-blind, placebo-controlled trial, participants (n = 159) received 500 mL/day of control drink, OJ, or EOJ for 12 weeks. Two dose–response studies were performed at baseline and after 12 weeks. Results A single EOJ dose (500 mL) reduced systolic BP (SBP) and PP, with greater changes after sustained treatment where a decrease in diastolic BP (DBP) also occurred (P < 0.05). SBP and PP decreased in a dose-dependent manner relative to the hesperidin content of the beverages throughout the 12 weeks (P < 0.05). OJ and EOJ decreased homocysteine levels at 12 weeks versus the control drink (P < 0.05). After 12 weeks of EOJ consumption, four genes related to hypertension (PTX3, NLRP3, NPSR1 and NAMPT) were differentially expressed in peripheral blood mononuclear cells (P < 0.05). Conclusion Hesperidin in OJ reduces SBP and PP after sustained consumption, and after a single dose, the chronic consumption of EOJ enhances its postprandial effect. Decreases in systemic and transcriptomic biomarkers were concomitant with BP and PP changes. EOJ could be a useful co-adjuvant tool for BP and PP management in pre- and stage-1 hypertensive individuals. Electronic supplementary material The online version of this article (10.1007/s00394-020-02279-0) contains supplementary material, which is available to authorized users.
Collapse
|
Randomized Controlled Trial |
5 |
43 |
13
|
López de las Hazas MC, Rubió L, Kotronoulas A, de la Torre R, Solà R, Motilva MJ. Dose effect on the uptake and accumulation of hydroxytyrosol and its metabolites in target tissues in rats. Mol Nutr Food Res 2015; 59:1395-9. [DOI: 10.1002/mnfr.201500048] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/06/2015] [Accepted: 03/17/2015] [Indexed: 01/16/2023]
|
|
10 |
41 |
14
|
Rubió L, Motilva MJ, Macià A, Ramo T, Romero MP. Development of a phenol-enriched olive oil with both its own phenolic compounds and complementary phenols from thyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3105-3112. [PMID: 22380740 DOI: 10.1021/jf204902w] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Besides affecting the oil's sensorial characteristics, the presence of herbs and spices has an impact on the nutritional value of the flavored oils. The aim of the study was to develop a new product based on the phenol-enrichment of a virgin olive oil with both its own phenolic compounds (secoiridoid derivatives) plus additional complementary phenols from thyme (flavonoids). We studied the effect of the addition of phenolic extracts (olive cake and thyme) on phenolic composition, oxidative stability, antioxidant activity, and bitter sensory attribute of olive oils. Results showed that flavonoids from thyme appeared to have higher transference ratios (average 89.7%) from the phenolic extract to oil, whereas secoiridoids from olive presented lower transference ratios (average 35.3%). The bitter sensory attribute of the phenol-enriched oils diminished with an increase of the concentration of phenols from thyme, which might denote an improvement in the consumer acceptance.
Collapse
|
|
13 |
38 |
15
|
Fernández-Castillejo S, Valls RM, Castañer O, Rubió L, Catalán Ú, Pedret A, Macià A, Sampson ML, Covas MI, Fitó M, Motilva MJ, Remaley AT, Solà R. Polyphenol rich olive oils improve lipoprotein particle atherogenic ratios and subclasses profile: A randomized, crossover, controlled trial. Mol Nutr Food Res 2016; 60:1544-54. [PMID: 26992050 DOI: 10.1002/mnfr.201501068] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 12/25/2022]
Abstract
SCOPE Lipoprotein particle measures performed by nuclear magnetic resonance (NMR), and associated ratios, may be better markers for atherosclerosis risk than conventional lipid measures. The effect of two functional olive oils, one enriched with its polyphenols (FVOO, 500 ppm), and the other (FVOOT) with them (250 ppm) and those of thyme (250 ppm), versus a standard virgin olive oil (VOO), on lipoprotein particle atherogenic ratios and subclasses profiles was assessed. METHODS AND RESULTS In a randomized, double-blind, crossover, controlled trial, 33 hypercholesterolemic individuals received 25 mL/day of VOO, FVOO, and FVOOT. Intervention periods were of 3 weeks separated by 2-week washout periods. Lipoprotein particle counts and subclasses were measured by NMR. Polyphenols from olive oil and thyme modified the lipoprotein subclasses profile and decreased the total LDL particle/total HDL particle (HDL-P), small HDL/large HDL, and HDL-cholesterol/HDL-P ratios, and decreased the lipoprotein insulin resistance index (LP-IR) (p < 0.05). CONCLUSION Olive oil polyphenols, and those from thyme provided benefits on lipoprotein particle atherogenic ratios and subclasses profile distribution. Polyphenol-enriched olive oil is a way of increasing the olive oil healthy properties while consuming the same amount of fat, as well as a useful and complementary tool for the management of cardiovascular risk individuals.
Collapse
|
Research Support, N.I.H., Intramural |
9 |
37 |
16
|
Rubió L, Macià A, Valls RM, Pedret A, Romero MP, Solà R, Motilva MJ. A new hydroxytyrosol metabolite identified in human plasma: Hydroxytyrosol acetate sulphate. Food Chem 2012; 134:1132-6. [DOI: 10.1016/j.foodchem.2012.02.192] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/21/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
|
|
13 |
37 |
17
|
Rubió L, Macià A, Motilva MJ. Impact of various factors on pharmacokinetics of bioactive polyphenols: an overview. Curr Drug Metab 2014; 15:62-76. [PMID: 24328690 DOI: 10.2174/1389200214666131210144115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 11/22/2022]
Abstract
Several epidemiological studies throughout the years have suggested that polyphenols from fruits and vegetables promote health and reduce the risk of certain chronic and neurodegenerative diseases. Yet, it has been proved to be extremely difficult to quantitatively establish the benefit afforded by polyphenols, principally due to the limited understanding of the extent of its absorption and metabolic fate. Pharmacokinetics includes the study of the mechanisms of absorption and distribution of an ingested polyphenol, its chemical changes in the body (e.g. by metabolic enzymes), and the effects and routes of excretion of the metabolites. In recent years, there have been major advances in our knowledge of polyphenol absorption and metabolism, and it is apparent that most classes of polyphenols are sufficiently absorbed to have the potential to exert biological effects. The pharmacokinetics of polyphenols includes the same steps as those for orally ingested drugs (LADME) and faces some of the same challenges, including transporters and enzymes. However, unraveling the bioavailability of polyphenols is even more challenging than with drugs, since many other factors, such as the variety in the chemical structure, the food matrix and the gut microbiota, can affect bioavailability of polyphenols during digestion. This review focuses on the most relevant factors that influence polyphenol pharmacokinetics, and also on the most recent technological strategies developed to overcome the poor bioavailability of phenolic compounds and thus increase their potential for greater health benefits.
Collapse
|
Review |
11 |
37 |
18
|
Sandoval-Ramírez BA, Catalán Ú, Fernández-Castillejo S, Rubió L, Macià A, Solà R. Anthocyanin Tissue Bioavailability in Animals: Possible Implications for Human Health. A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11531-11543. [PMID: 30345762 DOI: 10.1021/acs.jafc.8b04014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anthocyanins (ACNs) are promising health-enhancing phenolic compounds. We focus on ACN animal tissue bioavailability to provide an evidentiary link between tissue ACNs and their associated health properties. We performed a systematic review of electronic libraries; 279 results were retrieved, and 13 publications met inclusion criteria. Extracted information included animal model employed, administration route, doses, analysis method, and ACN concentration values in tissues. Total ACN concentrations were detected in mice kidney (2.17 × 105 pmol/g), liver (1.73 × 105 pmol/g), heart (3.6 × 103 pmol/g), and lung (1.16 × 105 pmol/g); and in pig brain (6.08 × 103 pmol/g). ACNs showed a predominance of parent ACNs in long-term experiments versus an ACN metabolite predominance in short-term experiments. ACNs detected in animal tissues, such as cyanidin-3-glucoside, suggest it may have an important role in human health. This information could be useful to determine proper ACN-intake biomarkers in biological samples in futures studies.
Collapse
|
Review |
7 |
37 |
19
|
Farràs M, Castañer O, Martín-Peláez S, Hernáez Á, Schröder H, Subirana I, Muñoz-Aguayo D, Gaixas S, Torre RDL, Farré M, Rubió L, Díaz Ó, Fernández-Castillejo S, Solà R, Motilva MJ, Fitó M. Complementary phenol-enriched olive oil improves HDL characteristics in hypercholesterolemic subjects. A randomized, double-blind, crossover, controlled trial. The VOHF study. Mol Nutr Food Res 2015; 59:1758-70. [DOI: 10.1002/mnfr.201500030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/31/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022]
|
|
10 |
36 |
20
|
Rubió L, Serra A, Macià A, Borràs X, Romero MP, Motilva MJ. Validation of determination of plasma metabolites derived from thyme bioactive compounds by improved liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 905:75-84. [PMID: 22939267 DOI: 10.1016/j.jchromb.2012.07.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 10/28/2022]
Abstract
In the present study, a selective and sensitive method, based on microelution solid-phase extraction (μSPE) plate and ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was validated and applied to determine the plasma metabolites of the bioactive compounds of thyme. For validation process, standards of the more representative components of the phenolic and monoterpene fractions of thyme were spiked in plasma samples and then the quality parameters of the method were studied. Extraction recoveries (%R) of the studied compounds were higher than 75%, and the matrix effect (%ME) was lower than 18%. The LODs ranged from 1 to 65 μg/L, except for the thymol sulfate metabolite, which was 240 μg/L. This method was then applied for the analysis of rat plasma obtained at different times, from 0 to 6h, after an acute intake of thyme extract (5 g/kg body weight). Different thyme metabolites were identified and were mainly derived from rosmarinic acid (coumaric acid sulfate, caffeic acid sulfate, ferulic acid sulfate, hydroxyphenylpropionic acid sulfate, dihydroxyphenylpropionic acid sulfate and hydroxybenzoic acid) and thymol (thymol sulfate and thymol glucuronide). The most abundant thyme metabolites generated were hydroxyphenylpropionic acid sulfate and thymol sulfate, their respective concentrations in plasma being 446 and 8464 μM 1h after the intake of the thyme extract.
Collapse
|
|
13 |
32 |
21
|
Rubió L, Farràs M, de La Torre R, Macià A, Romero MP, Valls RM, Solà R, Farré M, Fitó M, Motilva MJ. Metabolite profiling of olive oil and thyme phenols after a sustained intake of two phenol-enriched olive oils by humans: Identification of compliance markers. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
11 |
29 |
22
|
Pedret A, Fernández-Castillejo S, Valls RM, Catalán Ú, Rubió L, Romeu M, Macià A, López de Las Hazas MC, Farràs M, Giralt M, Mosele JI, Martín-Peláez S, Remaley AT, Covas MI, Fitó M, Motilva MJ, Solà R. Cardiovascular Benefits of Phenol-Enriched Virgin Olive Oils: New Insights from the Virgin Olive Oil and HDL Functionality (VOHF) Study. Mol Nutr Food Res 2018; 62:e1800456. [PMID: 29956886 PMCID: PMC8456742 DOI: 10.1002/mnfr.201800456] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 01/09/2023]
Abstract
SCOPE The main findings of the "Virgin Olive Oil and HDL Functionality" (VOHF) study and other related studies on the effect of phenol-enriched virgin olive oil (VOO) supplementation on cardiovascular disease are integrated in the present work. METHODS AND RESULTS VOHF assessed whether VOOs, enriched with their own phenolic compounds (FVOO) or with those from thyme (FVOOT), improve quantity and functionality of HDL. In this randomized, double-blind, crossover, and controlled trial, 33 hypercholesterolemic subjects received a control VOO (80 mg kg-1 ), FVOO (500 mg kg-1 ), and FVOOT (500 mg kg-1 ; 1:1) for 3 weeks. Both functional VOOs promoted cardioprotective changes, modulating HDL proteome, increasing fat-soluble antioxidants, improving HDL subclasses distribution, reducing the lipoprotein insulin resistance index, increasing endogenous antioxidant enzymes, protecting DNA from oxidation, ameliorating endothelial function, and increasing fecal microbial metabolic activity. Additional cardioprotective benefits were observed according to phenol source and content in the phenol-enriched VOOs. These insights support the beneficial effects of OO and PC from different sources. CONCLUSION Novel therapeutic strategies should increase HDL-cholesterol levels and enhance HDL functionality. The tailoring of phenol-enriched VOOs is an interesting and useful strategy for enhancing the functional quality of HDL, and thus, it can be used as a complementary tool for the management of hypercholesterolemic individuals.
Collapse
|
Randomized Controlled Trial |
7 |
26 |
23
|
Beekmann K, Rubió L, de Haan LHJ, Actis-Goretta L, van der Burg B, van Bladeren PJ, Rietjens IMCM. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-γ). Food Funct 2015; 6:1098-107. [DOI: 10.1039/c5fo00076a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Quercetin and kaempferol increase PPAR-γ mediated gene expression without acting as agonistic ligands; glucuronidation reduces their activity in cell-based assays.
Collapse
|
|
10 |
25 |
24
|
Rubió L, Serra A, Chen CYO, Macià A, Romero MP, Covas MI, Solà R, Motilva MJ. Effect of the co-occurring components from olive oil and thyme extracts on the antioxidant status and its bioavailability in an acute ingestion in rats. Food Funct 2014; 5:740-7. [DOI: 10.1039/c3fo60446b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
|
11 |
24 |
25
|
Daimiel L, Micó V, Valls RM, Pedret A, Motilva MJ, Rubió L, Fitó M, Farrás M, Covas MI, Solá R, Ordovás JM. Impact of Phenol-Enriched Virgin Olive Oils on the Postprandial Levels of Circulating microRNAs Related to Cardiovascular Disease. Mol Nutr Food Res 2020; 64:e2000049. [PMID: 32562310 PMCID: PMC7507201 DOI: 10.1002/mnfr.202000049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/06/2020] [Indexed: 12/19/2022]
Abstract
SCOPE We investigate the postprandial modulation of cardiovascular-related microRNAs elicited by extra virgin olive oil (EVOOs) containing different levels of their own polyphenols. METHODS AND RESULTS It is randomized, postprandial, parallel, double-blind study. Twelve healthy participants consumed 30 mL of EVOO containing low (L-EVOO; 250 mg total phenols kg-1 of oil), medium (M-EVOO; 500 mg total phenols kg-1 of oil), and high (H-EVOO; 750 mg total phenols kg-1 of oil) enriched EVOOs. Postprandial plasma microRNAs levels are analyzed by real-time quantitative PCR. The results show that L-EVOO intake is associated with decreased let-7e-5p and miR-328a-3p levels and increased miR-17-5p and miR-20a-5p, concentrations. M-EVOO decreases plasma let-7e-5p and increases miR-17-5p, miR-20a-5p, and miR-192-5p levels. Finally, H-EVOO decreases let-7e-5p, miR-10a-5p, miR-21-5p, and miR-26b-5p levels. CONCLUSION During the postprandial state, the levels of let-7e-5p decrease with EVOO regardless of polyphenol content suggesting a general response to the fatty acid composition of EVOO or/and the presence of at least 250 mg polyphenol kg-1 olive oil. Moreover, the miR-17-92 cluster increases by low and medium polyphenol content suggesting a role in fatty acid metabolism and nutrient sensing. Thus, postprandial modulation of circulating microRNAs levels could be a potential mechanism for the cardiovascular benefits associated with EVOO intake.
Collapse
|
Randomized Controlled Trial |
5 |
21 |