1
|
Dudek KA, Dion-Albert L, Lebel M, LeClair K, Labrecque S, Tuck E, Ferrer Perez C, Golden SA, Tamminga C, Turecki G, Mechawar N, Russo SJ, Menard C. Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proc Natl Acad Sci U S A 2020; 117:3326-3336. [PMID: 31974313 PMCID: PMC7022213 DOI: 10.1073/pnas.1914655117] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Preclinical and clinical studies suggest that inflammation and vascular dysfunction contribute to the pathogenesis of major depressive disorder (MDD). Chronic social stress alters blood-brain barrier (BBB) integrity through loss of tight junction protein claudin-5 (cldn5) in male mice, promoting passage of circulating proinflammatory cytokines and depression-like behaviors. This effect is prominent within the nucleus accumbens, a brain region associated with mood regulation; however, the mechanisms involved are unclear. Moreover, compensatory responses leading to proper behavioral strategies and active resilience are unknown. Here we identify active molecular changes within the BBB associated with stress resilience that might serve a protective role for the neurovasculature. We also confirm the relevance of such changes to human depression and antidepressant treatment. We show that permissive epigenetic regulation of cldn5 expression and low endothelium expression of repressive cldn5-related transcription factor foxo1 are associated with stress resilience. Region- and endothelial cell-specific whole transcriptomic analyses revealed molecular signatures associated with stress vulnerability vs. resilience. We identified proinflammatory TNFα/NFκB signaling and hdac1 as mediators of stress susceptibility. Pharmacological inhibition of stress-induced increase in hdac1 activity rescued cldn5 expression in the NAc and promoted resilience. Importantly, we confirmed changes in HDAC1 expression in the NAc of depressed patients without antidepressant treatment in line with CLDN5 loss. Conversely, many of these deleterious CLDN5-related molecular changes were reduced in postmortem NAc from antidepressant-treated subjects. These findings reinforce the importance of considering stress-induced neurovascular pathology in depression and provide therapeutic targets to treat this mood disorder and promote resilience.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
208 |
2
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
|
Review |
3 |
28 |
3
|
Dion-Albert L, Dudek KA, Russo SJ, Campbell M, Menard C. Neurovascular adaptations modulating cognition, mood, and stress responses. Trends Neurosci 2023; 46:276-292. [PMID: 36805768 DOI: 10.1016/j.tins.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
The neurovascular unit (NVU) is a dynamic center for substance exchange between the blood and the brain, making it an essential gatekeeper for central nervous system (CNS) homeostasis. Recent evidence supports a role for the NVU in modulating brain function and cognition. In addition, alterations in NVU processes are observed in response to stress, although the mechanisms via which they can affect mood and cognitive functions remain elusive. Here, we summarize recent studies of neurovascular regulation of emotional processes and cognitive function, including under stressful conditions. We also highlight relevant RNA-sequencing (RNA-seq) databases aiming to profile the NVU along with innovative tools to study and manipulate NVU function that can be exploited in the context of cognition and stress research throughout development, aging, or brain disorders.
Collapse
|
Review |
2 |
12 |
4
|
Doney E, Dion-Albert L, Coulombe-Rozon F, Osborne N, Bernatchez R, Paton SE, Kaufmann FN, Agomma RO, Solano JL, Gaumond R, Dudek KA, Szyszkowicz JK, Lebel M, Doyen A, Durand A, Lavoie-Cardinal F, Audet MC, Menard C. Chronic Stress Exposure Alters the Gut Barrier: Sex-Specific Effects on Microbiota and Jejunum Tight Junctions. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:213-228. [PMID: 38306213 PMCID: PMC10829561 DOI: 10.1016/j.bpsgos.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 02/04/2024] Open
Abstract
Background Major depressive disorder (MDD) is the leading cause of disability worldwide. Of individuals with MDD, 30% to 50% are unresponsive to common antidepressants, highlighting untapped causal biological mechanisms. Dysfunction in the microbiota-gut-brain axis has been implicated in MDD pathogenesis. Exposure to chronic stress disrupts blood-brain barrier integrity; still, little is known about intestinal barrier function in these conditions, particularly for the small intestine, where absorption of most foods and drugs takes place. Methods We investigated how chronic social or variable stress, two mouse models of depression, impact the jejunum intestinal barrier in males and females. Mice were subjected to stress paradigms followed by analysis of gene expression profiles of intestinal barrier-related targets, fecal microbial composition, and blood-based markers. Results Altered microbial populations and changes in gene expression of jejunum tight junctions were observed depending on the type and duration of stress, with sex-specific effects. We used machine learning to characterize in detail morphological tight junction properties, identifying a cluster of ruffled junctions in stressed animals. Junctional ruffling is associated with inflammation, so we evaluated whether lipopolysaccharide injection recapitulates stress-induced changes in the jejunum and observed profound sex differences. Finally, lipopolysaccharide-binding protein, a marker of gut barrier leakiness, was associated with stress vulnerability in mice, and translational value was confirmed on blood samples from women with MDD. Conclusions Our results provide evidence that chronic stress disrupts intestinal barrier homeostasis in conjunction with the manifestation of depressive-like behaviors in a sex-specific manner in mice and, possibly, in human depression.
Collapse
|
research-article |
1 |
5 |
5
|
Cadoret A, Dion-Albert L, Amrani S, Caron L, Théberge M, Turmel A, Lebel M, Menard C. Environmental conditions of recognition memory testing induce neurovascular changes in the hippocampus in a sex-specific manner in mice. Behav Brain Res 2023; 448:114443. [PMID: 37088405 DOI: 10.1016/j.bbr.2023.114443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Experiences are linked to emotions impacting memory consolidation and associated brain neuronal circuits. Posttraumatic stress disorder is an example of strong negative emotions affecting memory processes by flashbacks of past traumas. Stress-related memory deficits are also observed in major depressive disorder (MDD). We recently highlighted that sex-specific blood-brain barrier (BBB) alterations underlie stress responses in mice and human depression. However, little is known about the relationship between emotional valence, memory encoding and BBB gene expression. Here, we investigated the effects of novel object recognition (NOR) test, an experience considered of neutral emotional valence, on BBB properties in dorsal vs ventral hippocampus (HIPP) in the context of various environmental conditions (arena size, handling, age). The HIPP is a brain area central for learning and memory processes with the dorsal and ventral subregions being associated with working memory vs reference memory retrieval, respectively. Expression of genes related to BBB integrity are altered in line with learning and memory processes in a region- and sex-specific manner. We observed correlations between poor learning, anxiety, stress-induced corticosterone release and changes in BBB-associated gene expression. Comparison of BBB transcriptomes between sexes also revealed profound differences at baseline in both ventral and dorsal HIPP. Finally, we identified circulating vascular biomarkers, such as sE-selectin and matrix metallopeptidase 9 (MMP-9), altered following NOR exposure supporting that recognition memory formation has an impact on the neurovasculature. Although deemed as a neutral valence test, NOR experimental conditions can shift it toward a negative valence, impacting performance and highlighting the need to minimize anxiety when performing this commonly used test in mice.
Collapse
|
|
2 |
1 |
6
|
Roy V, Bienjonetti I, Brodeur A, Dion-Albert L, Touzel-Deschênes L, Gould PV, Saikali S, Laforce RJ, Gros-Louis F. LMNB1-duplication mediated nuclear architecture alteration and demyelination of cerebral white matter in a patient with ADLD. Neuropathol Appl Neurobiol 2023:e12947. [PMID: 38102845 DOI: 10.1111/nan.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
|
|
2 |
|
7
|
Dudek KA, Paton SEJ, Binder LB, Collignon A, Dion-Albert L, Cadoret A, Lebel M, Lavoie O, Bouchard J, Kaufmann FN, Clavet-Fournier V, Manca C, Guzmán M, Campbell M, Turecki G, Mechawar N, Flamand N, Lavoie-Cardinal F, Silvestri C, Di Marzo V, Menard C. Astrocytic cannabinoid receptor 1 promotes resilience by dampening stress-induced blood-brain barrier alterations. Nat Neurosci 2025:10.1038/s41593-025-01891-9. [PMID: 40016352 DOI: 10.1038/s41593-025-01891-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
Blood-brain barrier (BBB) alterations contribute to stress vulnerability and the development of depressive behaviors. In contrast, neurovascular adaptations underlying stress resilience remain unclear. Here we report that high expression of astrocytic cannabinoid receptor 1 (CB1) in the nucleus accumbens (NAc) shell, particularly in the end-feet ensheathing blood vessels, is associated with resilience during chronic social stress in adult male mice. Viral-mediated overexpression of Cnr1 in astrocytes of the NAc shell results in baseline anxiolytic effects and dampens stress-induced anxiety- and depression-like behaviors in male mice. It promotes the expression of vascular-related genes and reduces astrocyte inflammatory response and morphological changes following an immune challenge with the cytokine interleukin-6, linked to stress susceptibility and mood disorders. Physical exercise and antidepressant treatment increase the expression of astrocytic Cnr1 in the perivascular region in male mice. In human tissue from male donors with major depressive disorder, we observe loss of CNR1 in the NAc astrocytes. Our findings suggest a role for the astrocytic endocannabinoid system in stress responses via modulation of the BBB.
Collapse
|
|
1 |
|
8
|
Doney E, Bernatchez R, Clavet-Fournier V, Dudek KA, Dion-Albert L, Lavoie-Cardinal F, Menard C. Characterizing the blood-brain barrier and gut barrier with super-resolution imaging: opportunities and challenges. NEUROPHOTONICS 2023; 10:044410. [PMID: 37799760 PMCID: PMC10548114 DOI: 10.1117/1.nph.10.4.044410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Brain and gut barriers have been receiving increasing attention in health and diseases including in psychiatry. Recent studies have highlighted changes in the blood-brain barrier and gut barrier structural properties, notably a loss of tight junctions, leading to hyperpermeability, passage of inflammatory mediators, stress vulnerability, and the development of depressive behaviors. To decipher the cellular processes actively contributing to brain and gut barrier function in health and disease, scientists can take advantage of neurophotonic tools and recent advances in super-resolution microscopy techniques to complement traditional imaging approaches like confocal and electron microscopy. Here, we summarize the challenges, pros, and cons of these innovative approaches, hoping that a growing number of scientists will integrate them in their study design exploring barrier-related properties and mechanisms.
Collapse
|
Review |
2 |
|
9
|
Collignon A, Dion-Albert L, Ménard C, Coelho-Santos V. Sex, hormones and cerebrovascular function: from development to disorder. Fluids Barriers CNS 2024; 21:2. [PMID: 38178239 PMCID: PMC10768274 DOI: 10.1186/s12987-023-00496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Proper cerebrovascular development and neurogliovascular unit assembly are essential for brain growth and function throughout life, ensuring the continuous supply of nutrients and oxygen. This involves crucial events during pre- and postnatal stages through key pathways, including vascular endothelial growth factor (VEGF) and Wnt signaling. These pathways are pivotal for brain vascular growth, expansion, and blood-brain barrier (BBB) maturation. Interestingly, during fetal and neonatal life, cerebrovascular formation coincides with the early peak activity of the hypothalamic-pituitary-gonadal axis, supporting the idea of sex hormonal influence on cerebrovascular development and barriergenesis.Sex hormonal dysregulation in early development has been implicated in neurodevelopmental disorders with highly sexually dimorphic features, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Both disorders show higher prevalence in men, with varying symptoms between sexes, with boys exhibiting more externalizing behaviors, such as aggressivity or hyperactivity, and girls displaying higher internalizing behaviors, including anxiety, depression, or attention disorders. Indeed, ASD and ADHD are linked to high prenatal testosterone exposure and reduced aromatase expression, potentially explaining sex differences in prevalence and symptomatology. In line with this, high estrogen levels seem to attenuate ADHD symptoms. At the cerebrovascular level, sex- and region-specific variations of cerebral blood flow perfusion have been reported in both conditions, indicating an impact of gonadal hormones on the brain vascular system, disrupting its ability to respond to neuronal demands.This review aims to provide an overview of the existing knowledge concerning the impact of sex hormones on cerebrovascular formation and maturation, as well as the onset of neurodevelopmental disorders. Here, we explore the concept of gonadal hormone interactions with brain vascular and BBB development to function, with a particular focus on the modulation of VEGF and Wnt signaling. We outline how these pathways may be involved in the underpinnings of ASD and ADHD. Outstanding questions and potential avenues for future research are highlighted, as uncovering sex-specific physiological and pathological aspects of brain vascular development might lead to innovative therapeutic approaches in the context of ASD, ADHD and beyond.
Collapse
|
Review |
1 |
|
10
|
Schuler H, Eid RS, Wu S, Tse YC, Cvetkovska V, Lopez J, Quinn R, Zhou D, Meccia J, Dion-Albert L, Bennett SN, Newman EL, Trainor BC, Peña CJ, Menard C, Bagot RC. Data-Driven Analysis Identifies Novel Modulation of Social Behavior in Female Mice Witnessing Chronic Social Defeat Stress. Biol Psychiatry 2024:S0006-3223(24)01786-4. [PMID: 39638223 DOI: 10.1016/j.biopsych.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Chronic social defeat stress is a widely used depression model in male mice. Several proposed adaptations extend this model to females with variable, often marginal effects. We examined if the widely used male-defined metrics of stress are suboptimal in females witnessing defeat. METHODS Using a data-driven method, we comprehensively classified social interaction behavior in 761 male and female mice after chronic social witness/defeat stress, examining social modulation of behavior and associations with conventional metrics (i.e., social interaction ratio). RESULTS Social stress induced distinct behavioral adaptation patterns in defeated males and witness females. Social interaction ratio led to underpowered analyses in witness females with limited utility to differentiate susceptibility/resilience. Data-driven analyses revealed changes in social adaptation in witness females that were captured in attenuated velocity change from no target to target trials. We explored the utility of this metric in 4 female social stress models and in male witnesses. Combining social interaction ratio and velocity change optimally differentiated susceptibility/resilience in witness females and revealed resilient-specific adaptation in a resilience-associated neural circuit in female mice. CONCLUSIONS Chronic witness stress induced behavioral changes in females that were qualitatively distinct from those observed in defeated males and not adequately sampled by standard male-defined metrics. Modulation of locomotion is a robust and easily implementable metric for rigorous research in witness female mice. Overall, our findings highlight the need to critically evaluate sex differences in behavior and implement sex-based considerations in preclinical model design.
Collapse
|
|
1 |
|