1
|
Belotindos L, Villanueva M, Miguel J, Bwalya P, Harada T, Kawahara R, Nakajima C, Mingala C, Suzuki Y. Prevalence and Characterization of Quinolone-Resistance Determinants in Escherichia coli Isolated from Food-Producing Animals and Animal-Derived Food in the Philippines. Antibiotics (Basel) 2021; 10:antibiotics10040413. [PMID: 33918946 PMCID: PMC8068814 DOI: 10.3390/antibiotics10040413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance to quinolones, which constitutes a threat to public health, has been increasing worldwide. In this study, we investigated the prevalence of quinolone-resistant determinants in Escherichia coli not susceptible to quinolones and isolated from food-producing animals and food derived from them, in the Philippines. A total of 791 E. coli strains were isolated in 56.4% of 601 beef, chicken, pork, egg, and milk samples, as well as environmental, cloacal, and rectal swab-collected samples from supermarkets, open markets, abattoirs, and poultry, swine, and buffalo farms. Using the disc diffusion method, it was determined that 78.6% and 55.4% of the isolates were resistant to at least one antimicrobial and multiple drugs, respectively. In 141 isolates not susceptible to quinolones, 115 (81.6%) harbored quinolone-resistant determinants and had mutations predominantly in the quinolone-resistance determining regions (QRDRs) of gyrA and parC. Plasmid-mediated, quinolone resistance (PMQR) and Qnr family (qnrA1, qnrB4, and qnrS1) genes were detected in all isolates. Forty-eight sequence types were identified in isolates harboring mutations in QRDR and/or PMQR genes by multilocus sequence typing analysis. Moreover, 26 isolates harboring mutations in QRDR and/or PMQR genes belonged mostly to phylogroup B1 and Enteroaggregative E. coli. In conclusion, a high prevalence of E. coli was found in food-producing animals and products derived from them, which could potentially spread high-risk clones harboring quinolone-resistance determinants.
Collapse
|
Journal Article |
4 |
4 |
2
|
Garcia GG, Aquino MAD, Balbin MM, Belotindos LP, Supnet JG, Mingala CN. Characterisation of porcine epidemic diarrhea virus isolates during the 2014-2015 outbreak in the Philippines. Virusdisease 2018; 29:342-348. [PMID: 30159369 PMCID: PMC6111962 DOI: 10.1007/s13337-018-0470-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/08/2018] [Indexed: 11/24/2022] Open
Abstract
The viral agent of the porcine epidemic diarrhea (PED) was investigated during the reported 2014-2015 outbreaks in commercial farms in Central Luzon, Philippines. The study covered detection of PED virus (PEDV) in fecal and intestinal samples through reverse transcription PCR and sequence analysis of the nucleocapsid (N) gene. Results showed that 10 out of 34 fecal and intestinal samples examined were positive for PEDV. The partial nucleotide sequence of the N gene of the field samples showed 98-99% homologous to PEDV sequences registered in the GenBank. It was also noted that N gene sequences between field samples were 98% homologous. Interestingly, the partial sequences of the N genes of the field samples were genetically similar to the PEDV isolates from USA, China, Mexico, Canada and Japan. The phylogenetic tree analysis revealed that the Philippine samples clustered in group 2-1 of the PEDV, wherein the isolates of this group were responsible for the outbreaks in Asia and the USA. Analysis of the partial nucleotide and amino acid sequences revealed polymorphisms, deletions and insertions in the N-gene of the PEDV. Amino acid sequence alignment also showed deletions and insertion in the PEDV detected in the Philippines.
Collapse
|
Journal Article |
7 |
4 |
3
|
Suwanthada P, Kongsoi S, Miura N, Belotindos LP, Piantham C, Toyting J, Akapelwa ML, Pachanon R, Koide K, Kim H, Thapa J, Nakajima C, Suzuki Y. The Impact of Substitutions at Positions 1 and 8 of Fluoroquinolones on the Activity Against Mutant DNA Gyrases of Salmonella Typhimurium. Microb Drug Resist 2023; 29:552-560. [PMID: 37792363 DOI: 10.1089/mdr.2023.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Although many drug-resistant nontyphoidal Salmonella (NTS) infections are reported globally, their treatment is challenging owing to the ineffectiveness of the currently available antimicrobial drugs against resistant bacteria. It is therefore essential to discover novel antimicrobial drugs for the management of these infections. In this study, we report high inhibitory activities of the novel fluoroquinolones (FQs; WQ-3810 and WQ-3334) with substitutions at positions R-1 by 6-amino-3,5-difluoropyridine-2-yl and R-8 by methyl group or bromine, respectively, against wild-type and mutant DNA gyrases of Salmonella Typhimurium. The inhibitory activities of these FQs were assessed against seven amino acid substitutions in DNA gyrases conferring FQ resistance to S. Typhimurium, including high-level resistant mutants, Ser83Ile and Ser83Phe-Asp87Asn by in vitro DNA supercoiling assay. Drug concentrations of WQ compounds with 6-amino-3,5-difluoropyridine-2-yl that suppressed DNA supercoiling by 50% (IC50) were found to be ∼150-fold lower than ciprofloxacin against DNA gyrase with double amino acid substitutions. Our findings highlight the importance of the chemical structure of an FQ drug on its antimicrobial activity. Particularly, the presence of 6-amino-3,5-difluoropyridine-2-yl at R-1 and either methyl group or bromine at R-8 of WQ-3810 and WQ-3334, respectively, was associated with improved antimicrobial activity. Therefore, WQ-3810 and WQ-3334 are promising candidates for use in the treatment of patients infected by FQ-resistant Salmonella spp.
Collapse
|
|
2 |
3 |
4
|
Kapalamula TF, Chizimu J, Belotindos L, Akapelwa M, Shrestha D, Nyenje ME, Munyeme M, Hang'ombe BM, Mkakosya RS, Gordon SV, Nakajima C, Suzuki Y. Molecular epidemiology of Mycobacterium bovis in central parts of Malawi. Transbound Emerg Dis 2021; 69:1577-1588. [PMID: 33900039 DOI: 10.1111/tbed.14127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022]
Abstract
Bovine tuberculosis (bTB) is a neglected disease that affects cattle and humans. The burden of bTB is higher in developing countries as compared to industrialized countries. The reasons behind this discrepancy include the fact that bTB control measures, such as testing and slaughter of infected cattle and pasteurization of milk, are not usually practised in developing countries largely because of their high cost. To improve our understanding of bTB in developing countries, molecular typing studies are essential, in particular in terms of transmission dynamics, infection sources and knowledge of circulating strains of the principal causative agent, Mycobacterium bovis. In this study, we applied a suite of molecular typing techniques encompassing deletion analysis, spoligotyping and MIRU-VNTR to isolates recovered from samples collected during the routine post-mortem of cattle at the cold storage abattoir in Lilongwe, Malawi. Out of 63 isolates, 51 (81%) belonged to the European 1. M. bovis clonal complex. Spoligotyping identified 8 profiles, with SB0131 being the predominant type (56% of isolates). Spoligotypes SB0273 and SB0425 were identified in 14% and 13%, respectively, of the isolates. MIRU-VNTR showed a high discriminatory power of 0.959 and differentiated the 8 spoligotypes to 31 genotypes. The high diversity of M. bovis within the study area suggests the infection has been circulating in the area for a considerable period of time, likely facilitated by the lack of effective control measures. We also observed genetic similarities between isolates from Malawi (this study) to isolates described in previous studies in Zambia and Mozambique, suggesting transmission links in this region. The information provided by this study provides much needed evidence for the formulation of improved bTB control strategies.
Collapse
|
Journal Article |
4 |
3 |
5
|
Toyting J, Miura N, Utrarachkij F, Tanomsridachchai W, Belotindos LP, Suwanthada P, Kapalamula TF, Kongsoi S, Koide K, Kim H, Thapa J, Nakajima C, Suzuki Y. Exploration of the novel fluoroquinolones with high inhibitory effect against quinolone-resistant DNA gyrase of Salmonella Typhimurium. Microbiol Spectr 2023; 11:e0133023. [PMID: 37795999 PMCID: PMC10715191 DOI: 10.1128/spectrum.01330-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Quinolone-resistant nontyphoidal Salmonella is a pressing public health concern, demanding the exploration of novel treatments. In this study, we focused on two innovative synthetic fluoroquinolones, WQ-3034 and WQ-3154. Our findings revealed that these new compounds demonstrate potent inhibitory effects, even against mutant strains that cause resistance to existing quinolones. Hence, WQ-3034 and WQ-3154 could potentially be effective therapeutic agents against quinolone-resistant Salmonella Typhimurium. Furthermore, the data obtained in this study will be baseline information for antimicrobial drug development.
Collapse
|
research-article |
2 |
2 |
6
|
Belotindos LP, Tsunoda R, Villanueva MA, Nakajima C, Mingala CN, Suzuki Y. Characterisation of plasmids harbouring qnrA1, qnrS1, and qnrB4 in E. coli isolated in the Philippines from food-producing animals and their products. J Glob Antimicrob Resist 2022; 30:38-46. [PMID: 35447382 DOI: 10.1016/j.jgar.2022.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES Determinants showing plasmid-mediated quinolone resistance, which usually leads to antimicrobial ineffectiveness, have become an emerging clinical problem. In our previous study in the Philippines, a high prevalence of Qnr determinants was found in clinical samples and food-producing animals and their food products. However, no qnr-carrying plasmids have been investigated in animals or animal-derived foods. Hence, in the present, we aimed to characterise qnr-carrying plasmids in Escherichia coli isolated from the food supply chain. METHODS Plasmids from 44 qnr-positive isolates were assigned to incompatibility groups by PCR-based replicon typing, and the presence of β-lactamase-encoding genes were investigated by PCR. Localisation of qnr in plasmids was determined by S1-PFGE and Southern blot hybridisation. The transferability of qnr-carrying plasmids was examined by conjugation analysis. RESULTS Overall, 77.3% (95%CI = 62.2 - 88.5) of the isolates harbouring qnr determinants were positive for seven plasmid types, and 56.8% concurrently harboured blaTEM-1. Plasmid IncFrepB was prevalent (65.9%, 95%CI = 50.1 - 79.5) among qnr determinants. Localisation of qnr determinants in IncFrepB and transferability of plasmids was further confirmed. CONCLUSIONS The current study proved that qnr in E. coli isolated from food-producing animals and their food products could spread via plasmid IncFrepB upon selective pressure with quinolones or other antimicrobials. Therefore, to curb the emergence and spread of qnr-harbouring bacteria in the Philippines, prudent use of antimicrobials in animal production and stricter hygiene and food handling are recommended.
Collapse
|
|
3 |
1 |
7
|
Lapira JEE, Balbin MM, Belotindos LP, Viloria VV, Abes NS, Mingala CN. Molecular detection of ephemeral fever virus among large ruminants in the Philippines. Virusdisease 2018; 29:400-404. [PMID: 30159379 DOI: 10.1007/s13337-018-0468-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/06/2018] [Indexed: 11/28/2022] Open
Abstract
In the Philippines, bovine ephemeral fever (BEF) is currently undetected and considered as an exotic disease of both cattle and water buffaloes. The Philippines until now has no official data regarding the occurrence of BEF. There were no existing control programs or vaccine used for the prevention of the disease. However, there are claims of BEF existence in different water buffalo and cattle farms based on the clinical signs but never confirmed using laboratory test yet. Detection of BEF virus in cattle and water buffalo blood samples was conducted using reverse-transcription PCR targeting the glycoprotein (G) gene, a conserved region in the BEF virus genome. The samples were collected from 22 cattle and 50 water buffaloes with clinical signs suggesting of BEF infection. All water buffalo blood samples were negative while four cattle blood samples turned positive for BEF virus. The G gene partial sequence analysis from two BEF virus positive samples showed close relationship to Australian isolates.
Collapse
|
|
7 |
1 |
8
|
Koide K, Kim H, Whelan MVX, Belotindos LP, Tanomsridachchai W, Changkwanyeun R, Usui M, Ó Cróinín T, Thapa J, Nakajima C, Suzuki Y. WQ-3810, a fluoroquinolone with difluoropyridine derivative as the R1 group exerts high potency against quinolone-resistant Campylobacter jejuni. Microbiol Spectr 2024; 12:e0432223. [PMID: 39162520 PMCID: PMC11448395 DOI: 10.1128/spectrum.04322-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Quinolone-resistant Campylobacter jejuni have been increasing worldwide. Quinolones exert their antibacterial activity by inhibiting DNA gyrase, but most of the isolates acquire quinolone resistance via an amino acid substitution in the A subunit of DNA gyrase. WQ-3810 is a quinolone antibiotic that has been reported to have high potency even to DNA gyrase with amino acid substitutions in several bacterial species; however, there was no information on C. jejuni. Hence, this study aimed to evaluate the activity of WQ-3810 to inhibit wild-type/mutant DNA gyrases of C. jejuni and the bacterial growth for accessing the potency for the treatment of quinolone-resistant C. jejuni infection. The inhibitory activity of WQ-3810 was assessed and compared with ciprofloxacin and nalidixic acid by calculating the half maximal inhibitory concentration (IC50) against wild-type/mutant DNA gyrases. Next, the minimum inhibitory concentration (MIC) of WQ-3810 and five other quinolones was determined for C. jejuni including quinolone-resistant strains with amino acid substitutions in GyrA. Furthermore, the interaction between WQ-3810 and wild-type/mutant DNA gyrase was speculated using docking simulations. The IC50 of WQ-3810 against wild-type DNA gyrase was 1.03 µg/mL and not different from that of ciprofloxacin. However, those of WQ-3810 against mutant DNA gyrases were much lower than ciprofloxacin. The MICs of WQ-3810 ranged <0.016-0.031 µg/mL and were the lowest against both quinolone-susceptible and quinolone-resistant strains among the examined quinolones. The results obtained by the docking simulation agreed well with this observation. WQ-3810 seems to be a promising antimicrobial agent for the infections caused by quinolone-resistant C. jejuni. IMPORTANCE WQ-3810, a relatively new quinolone antibiotic, demonstrates exceptional antibacterial properties against certain pathogens in previous studies. However, its efficacy against quinolone-resistant Campylobacter jejuni was not previously reported. The prevalence of quinolone-resistant C. jejuni as a cause of foodborne illnesses is increasing, prompting this investigation into the effectiveness of WQ-3810 as a countermeasure. This study revealed high inhibitory activity of WQ-3810 against both wild-type and mutant DNA gyrases of C. jejuni. WQ-3810 was equally efficacious as ciprofloxacin against wild-type DNA gyrases but showed superior effectiveness against mutant DNA gyrases. WQ-3810 also demonstrated the lowest minimum inhibitory concentrations, highlighting its enhanced potency against both susceptible and resistant strains of C. jejuni. This observation was well supported by the results of the in silico analysis. Consequently, WQ-3810 exhibits a higher level of bactericidal activity compared to existing quinolones in combating both susceptible and resistant C. jejuni isolates.
Collapse
|
|
1 |
|
9
|
Dianso JA, Garcia GG, Belotindos LP, Mingala CN. Molecular identification of Buxtonella sulcata from associated-diarrhea in water buffaloes (Bubalus bubalis) in the Philippines. ANNALS OF PARASITOLOGY 2018; 64:93-100. [PMID: 29983020 DOI: 10.17420/ap6402.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sixty suspected protozoan oocysts were demonstrated from 260 fecal samples collected from water buffaloes aged one month to seven years old with clinical signs of diarrhea in four provinces in the Philippines after conventional methods of isolation, sporulation, morphological characteristics and Kinyoun Acid Fast Staining techniques. The recovered protozoan oocysts were subjected to molecular analysis. Amplification of DNA extracted
from recovered Eimeria oocysts using universal primers for the ITS-1 region of 18S rRNA revealed PCR products with 348 bp size demonstrated by samples collected from Benguet, La Union and Nueva Ecija provinces in the Philippines while DNA extracted from oocysts of suspected Cryptosporidium spp. samples that applied primers for the SSU of 18S rRNA registered PCR products but no genes were amplified from diarrheic water buffaloes from these provinces. Alignment of the DNA sequences of the suspected Eimeria and Cryptosporidium species revealed sequences for three
isolates of Buxtonella sulcata with product lengths that varied from 235 to 252 bp. This is an initial observation on the involvement of B. sulcata in diarrhea condition of water buffaloes in the Philippines. Phylogenetic analysis of the three local isolates of B. sulcata revealed no similarity with other protozoan constructed according to Neighbor-Joining method.
Collapse
|
|
7 |
|
10
|
Tubalinal GASP, Belotindos LP, Mingala CN. High positivity rate of caprine arthritis encephalitis virus in Luzon, the Philippines revealed by nested-polymerase chain reaction assay. Virusdisease 2024; 35:11-16. [PMID: 38817406 PMCID: PMC11133247 DOI: 10.1007/s13337-023-00856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 06/01/2024] Open
Abstract
Caprine arthritis encephalitis (CAE) is a worldwide economically important disease of small ruminants particularly goats. CAE has been considered to be an emerging/re-emerging disease of goats and a notifiable disease in the Philippines. In this study, a nested-PCR method to detect CAE virus (CAEv) infection was conducted between January 2021 to December 2022. A total of 1334 goat blood samples were collected from 24 goat farms throughout Luzon, the Philippines. The over-all prevalence rate was 31.41% (419/1334) in goats and 91.67% (22/24) of goat farms. These results showed high positivity rate of CAEv and the disease may be widespread in Luzon, the Philippines.
Collapse
|
research-article |
1 |
|