1
|
Ghahari L, Safari M, Rahimi Jaberi K, Jafari B, Safari K, Madadian M. Mesenchymal Stem Cells with Granulocyte Colony-Stimulating Factor Reduce Stress Oxidative Factors in Parkinson's Disease. IRANIAN BIOMEDICAL JOURNAL 2019. [PMID: 31677610 PMCID: PMC6984711 DOI: 10.29252/ibj.24.2.89] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Recent studies have shown that BMSCs have a putative ability to promote neurogenesis and produce behavioral and functional improvement. Our previous study demonstrated that co-treatment of G-CSF and BMSCs have beneficial effects on Parkinson's models. The main purpose of this research was to investigate the effects of these two factors on oxidative stress factors in the brain of Parkinson's rat. Methods: Adult male Wistar rats (weighing 200–250 g) were used and randomly divided into five groups of seven each. To create the Parkinson's model, 6-OHDA was injected into the left SNpc. The BMSCs (2 × 106) and G-CSF (75 µg/kg) were used for treatment after creating the PD model. After four weeks, the brains of rats were removed and processed for immunohistochemical studies, such as TH-positive neurons as well as analysis of oxidative stress factors. Results: The results showed that the injected BMSCs could cross the BBB. The injected cells are also able to settle in different areas of the brain. Analyses of the brain oxidative stress factors showed that G-CSF and BMSCs reduced the expression of MDA and induced the activity of SOD, GSH-Px, and FRAP. Conclusion: Co-administration of G-CSF and BMSCs reduced the expression of pro-inflammatory cytokines and induced the activity of antioxidant enzymes; however, neurogenesis increased in the brain.
Collapse
|
Journal Article |
6 |
14 |
2
|
Safari M, Sameni HR, Badban L, Bandegi AR, Vafaei AA, Pour AR, Ghahari L. Protective Effects of Water Extract of Propolis on Dopaminergic Neurons, Brain
Derived Neurotrophic Factor and Stress Oxidative Factors in the Rat Model of
Parkinson’s Disease. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.300.308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
10 |
9 |
3
|
Ghahari L, Safari M, Joghataei MT, Mehdizadeh M, Soleimani M. Effect of combination therapy using hypothermia and granulocyte colony-stimulating factor in a rat transient middle cerebral artery occlusion model. IRANIAN BIOMEDICAL JOURNAL 2015; 18:239-44. [PMID: 25326023 PMCID: PMC4225064 DOI: 10.6091/ibj.13852.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Stroke is the third leading cause of death. Hypothermia has been recognized as an effective method in reducing brain injury. In this study, we assessed the effects of granulocyte colony-stimulating factor (G-CSF) as a neuroprotective agent and mild hypothermia on mortality, behavioral function, infarct volume, and brain edema in Wistar rats. Methods: Forty male rats were used in five groups (eight rats in each group): control, hypothermy, G-CSF, combination hypothermy + CSF, and sham. Rats were anesthetized by injection of chloral hydrate (400 mg/kg) intraperitoneally. Transient cerebral ischemia was induced by 60-min intraluminal occlusion of left middle cerebral artery. Hypothermia, initiated at the time of reperfusion and G-CSF was started one hour after reperfusion at a dose of 15 mg/kg subcutaneously. The motor behavior was measured using Garcia’s index and animals were assigned for the assessments of infarction, brain swelling, and mortality rate. Results: The mortality was 38.46% (control group) and reduced in other groups. Neurological deficit score of control group (40.31 ± 1.56) was significantly lower than in treatment groups. The total cerebral infarct volume of treatment group was significantly lower than control group (43.96 ± 44.05 mm3). Treatment with hypothermy plus G-CSF (2.69 ± 0.24%) could significantly reduce brain swelling volume than other treatment groups. Conclusion: Our major finding is that mild hypothermic treatment plus G-CSF significantly reduced mortality rate and edema and improved neurological function. The results suggest that the combination of hypothermia and G-CSF is more effectively than other treatment groups being used alone.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
7 |
4
|
Safari M, Ghahari L, Zoroufchi MDBHZ. Effects of epidermal growth factor, platelet derived growth factor and growth hormone on cultured rat keratinocytes cells in vitro. Pak J Biol Sci 2015; 17:931-6. [PMID: 26035944 DOI: 10.3923/pjbs.2014.931.936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Some growth factors, such as Epidermal Growth Factor (EGF), Growth Hormone (GH) and Platelet Derived Growth Factor (PDGF) have beneficial effects on keratinocyte proliferation and wound healing. Although the mechanism of these factors is unclear. In response to injury, growth factors are secreted by kinds of cutaneous cells. The goal of this project is to investigate the factors that could cause proliferate of the keratinocyte cells in vitro. The keratinocytes were removed from rat pups (10 days). Cultured in media with different concentration of GH, PDGF and EGF separately. The proliferation of cells was evaluated by the method of MTT and 3H-thymidine incorporation. Proliferation of keratinocytes was significantly higher in experimental groups than in control group. EGF maximally stimulated at 10 and 25 ng mL(-1). PDGF-BB maximally stimulated at 50 ng mL(-1), respectively. And maximal stimulation of GH was 2.5 IU L(-1). GH, PDGF-BB and EGF stimulate keratinocyte cells proliferation in different concentration. These growth factors could play in healing of the skin.
Collapse
|
|
10 |
4 |
5
|
Sadeghi A, Ghahari L, Yousefpour M, Khazaeel K, Zareian P. Inhalation exposure to crude oil vapor induces behavioural deficits by increasing oxidative stress and histopathological changes in rat hippocampus: Quercetin therapeutic approach. J Chem Neuroanat 2023; 131:102290. [PMID: 37225059 DOI: 10.1016/j.jchemneu.2023.102290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE Inhalation exposure to crude oil vapor (COV) and petroleum products is considered responsible for neurobehavioral toxicity in human and animal models. The antioxidant activity of quercetin (Que) and its derivatives are promising for protecting the hippocampus. This study aimed to evaluate the neuroprotective role of Que against COV-induced behavioral alterations and hippocampus damage. METHODS Eighteen adult male Wistar rats were randomly divided into the following three groups (n = 6): the control, the COV, and the COV + Que group. The inhalation method was used to expose the rats to crude oil vapors for 5 h daily, and Que (50 mg/kg) was administered orally. After 30 days of treatment, the spatial working memory and anxiety levels were evaluated using the cross-arm maze and elevated plus maze (EPM), respectively. TUNEL assay and hematoxylin-eosin (H&E) staining were used to identify the necrosis, normal and apoptotic cells in the hippocampus. Moreover, the levels of oxidative stress biomarkers including malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) were investigated in the hippocampus tissue. RESULTS The results indicated that exposure to COV was associated with a significant decrease in spatial working memory and activity of CAT, TAC, SOD, and GPx enzymes compared to the control (P < 0.05). Moreover, COV significantly increased the level of anxiety, MDA, and hippocampal apoptosis (P < 0.05). The simultaneous administration of quercetin along with exposure to COV improved the behavioral alterations, activity of antioxidant enzymes, and hippocampal apoptosis. CONCLUSIONS These findings suggest that quercetin prevents COV-induced hippocampal damage by enhancing the antioxidant system and preventing cell apoptosis.
Collapse
|
|
2 |
4 |
6
|
Rasouli B, Ghahari L, Safari M, Shahroozian E, Naeimi S. Combination therapy of the granulocyte colony stimulating factor and intravenous lipid emulsion protect the hippocampus after global ischemia in rat: focusing on CA1 region. Metab Brain Dis 2020; 35:991-997. [PMID: 32458336 DOI: 10.1007/s11011-020-00579-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Brain stroke is one of the causes of human death and disability worldwide. Global ischemia results in the accumulation of free radicals in the neurons. It leads to histologically brain damage. The CA1 region of the hippocampus is a sensitive area for free radicals. This study investigated the combined therapy of the Granulocyte colony stimulating factor (G-CSF) and the Intravenous lipid emulsion (ILE). These neuroprotective agents play a role in the regeneration of neurons. They improve the learning ability and memory in rats induced global ischemia. We divided 35 rats into five groups. The groups were sham group, ischemia group, G-CSF group, ILE group, and G-CSF plus ILE group. Ischemia was induced by occlusion of the bilateral common carotid about 10 min. The drugs applied on days 1, 3 and 7. The treated groups received subcutaneous injection of 20 μg/kg G-CSF and intravenous injection of 5 ml/kg ILE. After two weeks, the memory and learning ability of the rats was evaluated by the shuttle box. Hematoxylin and Eosin and Nissl and TUNEL stainings were used to determine the necrosis, normal and apoptotic cells. The combined therapy increased normal cells compared to the ischemia group. They decreased the number of necrotic and apoptosis cells in other groups. The combined group improved the passive avoidance test compared to the other groups. The combination therapy of G-CSF plus ILE is more effective than each alone.
Collapse
|
|
5 |
3 |
7
|
Safari M, Ghahari L. Alterations of inducible and constitutive nitric oxide synthase after hippocampal injury in rats. Pak J Biol Sci 2009; 12:1156-1159. [PMID: 19899328 DOI: 10.3923/pjbs.2009.1156.1159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of this study was to study the changes of inducible and constitutive Nitric Oxide Synthase (NOS) after brain injury. In order to brain injury 42 wistar rats were submitted and divided in 7 groups. Nitric oxide synthase activities were assayed at different times after injury. Present results showed that a significant increase of iNOS and cNOS activity 8 h after lesion. In conclusion, both isoformes of NOS increase at different time after brain injury.
Collapse
|
|
16 |
2 |
8
|
Safari M, Ghahari L, Safari K, Madadian M, Aldaghi MR, Zarbakhsh S. Therapeutic Effects of CD133+ in the Carbon Tetrachloride (CCl4) Induced Chronic Liver Dysfunction in Rat Model. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.359.365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
10 |
|
9
|
Mehdiani A, Böttger C, Saeed D, Albert A, Ghahari L, Westenfeld R, Akhyari P, Lichtenberg A, Boeken U. Single-Center Experience with Frequent Use of Organs after Rescue Allocation for Heart Transplantation: Can We Still Achieve Reasonable Results? Thorac Cardiovasc Surg 2018. [DOI: 10.1055/s-0038-1628102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
|
7 |
|
10
|
Tayebi MM, Yousefpour M, Ghahari L. Effects of creatine hydrochloride supplementation on physical performance and hormonal changes in soldiers. PHYSICAL ACTIVITY REVIEW 2021. [DOI: 10.16926/par.2021.09.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose: The aim of this study was to examine the effects of 2 weeks of creatine hydrochloride (CrHCl) supplementation on physical performance and hormonal changes in army soldiers. Materials: Eighteen male army soldiers were randomly assigned in a double-blind fashion to either a CrHCl (n=9) or placebo (Pl) (n=9) groups. CrHCl group costumed 3g of creatine per day, whereas Pl group was given dextrose. Before and after supplementation period, the subjects performed a battery of performance tests including one repletion maximum (1RM) of bench press and back squat, vertical jump (VJ) and Wingate anaerobic test. In addition, blood samples were obtained to determine changes in testosterone and cortisol concentrations per and post supplementation. Results: There were significant increases in VJ, peak and mean power, and 1RM back squat test following the 2 weeks of CrHCl supplementation (p < 0.05) without any significant change for the Pl group. In addition significant changes were observed in testosterone and cortisol concentrations from before to after supplementation in CrHCl group (p < 0.05) and compared with Pl group (p=0.001). Conclusions: In conclusion, the present study indicates that CrHCl supplementation can improve VJ, power performance, 1RM back squat and hormonal changes in army soldiers.
Collapse
|
|
4 |
|
11
|
Rahimi Jaberi K, Safari M, Semnani V, Sameni HR, Zarbakhsh S, Ghahari L. Caffeic Acid Phenethyl Ester With Mesenchymal Stem Cells Improves Behavioral and Histopathological Changes in the Rat Model of Parkinson Disease. Basic Clin Neurosci 2022; 13:637-646. [PMID: 37313025 PMCID: PMC10258596 DOI: 10.32598/bcn.2021.1398.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/11/2020] [Accepted: 11/21/2020] [Indexed: 11/02/2023] Open
Abstract
Introduction Parkinson disease (PD) results from the destruction of dopaminergic neurons in the brain. This study aimed to investigate the protective effects of natural antioxidants such as caffeic acid phenethyl ester (CAPE) to maintain these neurons. Methods CAPE is one of the main ingredients of propolis. Intranasal administration of 1-methyl-4-phenyl-2;3;4;6-tetrahydropyridine (MPTP) was used to generate a PD model in rats. A total of 2×bone marrow stem cells (BMSCs) were injected from the tail vein. Behavioral tests, immunohistochemistry, DiI, cresyl fast violet, and TUNEL staining were used to evaluate the rats 2 weeks after treatment. Results In all treatment groups with stem cells, the DiI staining method revealed that the cells migrated to the substantia nigra pars compacta after injection. Treatment with CAPE significantly protects dopaminergic neurons from MPTP. The highest number of tyrosine hydroxylase (TH) positive neurons was seen in the pre-CAPE+PD+stem cell (administration of CAPE, then the creation of PD, finally injection of stem cells) group. The number of TH+cells in all groups that received CAPE was significant compared to groups that received the stem cells only (P<0.001). Intranasal administration of MPTP significantly increases the number of apoptotic cells. The lowest number of apoptotic cells was in the CAPE+PD+stem cell group. Conclusion The results showed that the use of CAPE and stem cells in Parkinson rats caused a significant reduction in the apoptotic cells.
Collapse
|
research-article |
3 |
|
12
|
MoradiAmin M, Yousefpour M, Samadzadehaghdam N, Ghahari L, Ghorbani M, Mafi M. Automatic classification of acute lymphoblastic leukemia cells and lymphocyte subtypes based on a novel convolutional neural network. Microsc Res Tech 2024; 87:1615-1626. [PMID: 38445461 DOI: 10.1002/jemt.24551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is a life-threatening disease that commonly affects children and is classified into three subtypes: L1, L2, and L3. Traditionally, ALL is diagnosed through morphological analysis, involving the examination of blood and bone marrow smears by pathologists. However, this manual process is time-consuming, laborious, and prone to errors. Moreover, the significant morphological similarity between ALL and various lymphocyte subtypes, such as normal, atypic, and reactive lymphocytes, further complicates the feature extraction and detection process. The aim of this study is to develop an accurate and efficient automatic system to distinguish ALL cells from these similar lymphocyte subtypes without the need for direct feature extraction. First, the contrast of microscopic images is enhanced using histogram equalization, which improves the visibility of important features. Next, a fuzzy C-means clustering algorithm is employed to segment cell nuclei, as they play a crucial role in ALL diagnosis. Finally, a novel convolutional neural network (CNN) with three convolutional layers is utilized to classify the segmented nuclei into six distinct classes. The CNN is trained on a labeled dataset, allowing it to learn the distinguishing features of each class. To evaluate the performance of the proposed model, quantitative metrics are employed, and a comparison is made with three well-known deep networks: VGG-16, DenseNet, and Xception. The results demonstrate that the proposed model outperforms these networks, achieving an approximate accuracy of 97%. Moreover, the model's performance surpasses that of other studies focused on 6-class classification in the context of ALL diagnosis. RESEARCH HIGHLIGHTS: Deep neural networks eliminate the requirement for feature extraction in ALL classification The proposed convolutional neural network achieves an impressive accuracy of approximately 97% in classifying six ALL and lymphocyte subtypes.
Collapse
|
|
1 |
|
13
|
Jadidi M, Biat SM, Sameni HR, Safari M, Vafaei AA, Ghahari L. Mesenchymal stem cells that located in the electromagnetic fields improves rat model of Parkinson's disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:741-8. [PMID: 27635198 PMCID: PMC5010846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 12/24/2015] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The main characteristic of mesenchymal stem cells (MSCs) is their ability to produce other cell types. Electromagnetic field (EMF) stimulates differentiation of MSCs into other cells. In this study, we investigated whether EMF can effect on the differentiation of MSCs into dopaminergic (DA) neurons. MATERIALS AND METHODS An EMF with a frequency of 50 Hz and two intensities of 40 and 400 µT 1hr/day was generated around the cells for a week. Afterwards, these cells were injected into the left ventricle of Parkinsonian rats. The rats survived for 2 weeks, and then sampling was performed. RESULTS The injected cells differentiated into DA neurons and sporadically settled in the substantia nigra pars compacta (SNpc). Transplanted rats exhibited significant partial correction apomorphine-induced rotational behavior compared to Parkinsonian rats (5.0±0.1 vs 7.57±0.08). Results demonstrated that endogenous serum and brain derived neurotrophic factor (BDNF) were altered in all experimental groups. The greatest increase was in group of 400 µT EMF in comparison with Parkinsonian rats (398±15 vs. 312±11.79 pg ⁄ mg). Current study have shown that 6-Hydroxydopamine can cause severe loss of dopaminergic neurons (68±6.58), but injected MSCs that exposed to 40 and 400 µT EMF increased dopaminergic neurons in SNpc (108±2.33 & 126±3.89) (P<0.001). CONCLUSION Electromagnetic fields with particular frequencies stimulate MSCs. So, these cells had anti-Parkinsonian properties in our studies.
Collapse
|
research-article |
9 |
|