1
|
Jones ST, Cagno V, Janeček M, Ortiz D, Gasilova N, Piret J, Gasbarri M, Constant DA, Han Y, Vuković L, Král P, Kaiser L, Huang S, Constant S, Kirkegaard K, Boivin G, Stellacci F, Tapparel C. Modified cyclodextrins as broad-spectrum antivirals. SCIENCE ADVANCES 2020; 6:eaax9318. [PMID: 32064341 PMCID: PMC6989148 DOI: 10.1126/sciadv.aax9318] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/22/2019] [Indexed: 05/18/2023]
Abstract
Viral infections kill millions of people and new antivirals are needed. Nontoxic drugs that irreversibly inhibit viruses (virucidal) are postulated to be ideal. Unfortunately, all virucidal molecules described to date are cytotoxic. We recently developed nontoxic, broad-spectrum virucidal gold nanoparticles. Here, we develop further the concept and describe cyclodextrins, modified with mercaptoundecane sulfonic acids, to mimic heparan sulfates and to provide the key nontoxic virucidal action. We show that the resulting macromolecules are broad-spectrum, biocompatible, and virucidal at micromolar concentrations in vitro against many viruses [including herpes simplex virus (HSV), respiratory syncytial virus (RSV), dengue virus, and Zika virus]. They are effective ex vivo against both laboratory and clinical strains of RSV and HSV-2 in respiratory and vaginal tissue culture models, respectively. Additionally, they are effective when administrated in mice before intravaginal HSV-2 inoculation. Lastly, they pass a mutation resistance test that the currently available anti-HSV drug (acyclovir) fails.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
123 |
2
|
Udayabhaskararao T, Altantzis T, Houben L, Coronado-Puchau M, Langer J, Popovitz-Biro R, Liz-Marzán LM, Vuković L, Král P, Bals S, Klajn R. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science 2017; 358:514-518. [DOI: 10.1126/science.aan6046] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/21/2017] [Indexed: 01/03/2023]
|
|
8 |
96 |
3
|
He J, Lin XM, Chan H, Vuković L, Král P, Jaeger HM. Diffusion and filtration properties of self-assembled gold nanocrystal membranes. NANO LETTERS 2011; 11:2430-2435. [PMID: 21548617 DOI: 10.1021/nl200841a] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Close-packed nanoparticle monolayers have recently been shown to form mechanically robust, free-standing membranes. We report the first measurements of molecular transport through such ultrathin sheets, self-assembled from dodecanethiol-ligated gold nanocrystals. For aqueous solutions we find filtration coefficients 2 orders of magnitude larger than those observed in polymer-based filters, sieving of large solutes, and for smaller solutes a pronounced dependence of rejection on being charged. These results open up new possibilities for controlled delivery and separation of nano-objects.
Collapse
|
|
14 |
81 |
4
|
Vuković L, Khatib FA, Drake SP, Madriaga A, Brandenburg KS, Král P, Onyuksel H. Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media. J Am Chem Soc 2011; 133:13481-8. [PMID: 21780810 DOI: 10.1021/ja204043b] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular assemblies of highly PEG-ylated phospholipids are important in many biomedical applications. We have studied sterically stabilized micelles (SSMs) of self-assembled DSPE–PEG2000 in pure water and isotonic HEPES-buffered saline solution. The observed SSM sizes of 2–15 nm largely depend on the solvent and the lipid concentration used. The critical micelle concentration of DSPE–PEG2000 is 10 times higher in water than in buffer, and the viscosity of the dispersion dramatically increases with the lipid concentration. To explain the experimentally observed results, we performed atomistic molecular dynamics simulations of solvated SSMs. Our modeling revealed that the observed assemblies have very different aggregation numbers (N(agg) ≈ 90 in saline solution and N(agg) < 8 in water) because of very different screening of their charged PO4(–) groups. We also demonstrate that the micelle cores can inflate and their coronas can fluctuate strongly, thus allowing storage and delivery of molecules with different chemistries.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
80 |
5
|
Beyene AG, Alizadehmojarad AA, Dorlhiac G, Goh N, Streets AM, Král P, Vuković L, Landry MP. Ultralarge Modulation of Fluorescence by Neuromodulators in Carbon Nanotubes Functionalized with Self-Assembled Oligonucleotide Rings. NANO LETTERS 2018; 18:6995-7003. [PMID: 30350638 PMCID: PMC6771428 DOI: 10.1021/acs.nanolett.8b02937] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Noncovalent interactions between single-stranded DNA (ssDNA) oligonucleotides and single wall carbon nanotubes (SWNTs) have provided a unique class of tunable chemistries for a variety of applications. However, mechanistic insight into both the photophysical and intermolecular phenomena underlying their utility is lacking, which results in obligate heuristic approaches for producing ssDNA-SWNT based technologies. In this work, we present an ultrasensitive "turn-on" nanosensor for neuromodulators dopamine and norepinephrine with strong relative change in fluorescence intensity (Δ F/ F0) of up to 3500%, a signal appropriate for in vivo neuroimaging, and uncover the photophysical principles and intermolecular interactions that govern the molecular recognition and fluorescence modulation of this nanosensor synthesized from the spontaneous self-assembly of (GT)6 ssDNA rings on SWNTs. The fluorescence modulation of the ssDNA-SWNT conjugate is shown to exhibit remarkable sensitivity to the ssDNA sequence chemistry, length, and surface density, providing a set of parameters with which to tune nanosensor dynamic range, analyte selectivity and strength of fluorescence turn-on. We employ classical and quantum mechanical molecular dynamics simulations to rationalize our experimental findings. Calculations show that (GT)6 ssDNA form ordered rings around (9,4) SWNTs, inducing periodic surface potentials that modulate exciton recombination lifetimes. Further evidence is presented to elucidate how dopamine analyte binding modulates SWNT fluorescence. We discuss the implications of our findings for SWNT-based molecular imaging applications.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
63 |
6
|
Landry MP, Vuković L, Kruss S, Bisker G, Landry AM, Islam S, Jain R, Schulten K, Strano MS. Comparative Dynamics and Sequence Dependence of DNA and RNA Binding to Single Walled Carbon Nanotubes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:10048-10058. [PMID: 26005509 PMCID: PMC4440682 DOI: 10.1021/jp511448e] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Noncovalent polymer-single walled carbon nanotube (SWCNT) conjugates have gained recent interest due to their prevalent use as electrochemical and optical sensors, SWCNT-based therapeutics, and for SWCNT separation. However, little is known about the effects of polymer-SWCNT molecular interactions on functional properties of these conjugates. In this work, we show that SWCNT complexed with related polynucleotide polymers (DNA, RNA) have dramatically different fluorescence stability. Surprisingly, we find a difference of nearly 2500-fold in fluorescence emission between the most fluorescently stable DNA-SWCNT complex, C30 DNA-SWCNT, compared to the least fluorescently stable complex, (AT)7A-(GU)7G DNA-RNA hybrid-SWCNT. We further reveal the existence of three regimes in which SWCNT fluorescence varies nonmonotonically with SWCNT concentration. We utilize molecular dynamics simulations to elucidate the conformation and atomic details of SWCNT-corona phase interactions. Our results show that variations in polynucleotide sequence or sugar backbone can lead to large changes in the conformational stability of the polymer SWCNT corona and the SWCNT optical response. Finally, we demonstrate the effect of the coronae on the response of a recently developed dopamine nanosensor, based on (GT)15 DNA- and (GU)15 RNA-SWCNT complexes. Our results clarify several features of the sequence dependence of corona phases produced by polynucleotides adsorbed to single walled carbon nanotubes, and the implications for molecular recognition in such phases.
Collapse
|
research-article |
10 |
52 |
7
|
Bae JW, Pearson RM, Patra N, Sunoqrot S, Vuković L, Král P, Hong S. Dendron-mediated self-assembly of highly PEGylated block copolymers: a modular nanocarrier platform. Chem Commun (Camb) 2011; 47:10302-4. [PMID: 21858356 DOI: 10.1039/c1cc14331j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PEGylated dendron coils (PDCs) were investigated as a novel potential nanocarrier platform. PDCs self-assembled into micelles at lower CMCs than linear copolymer counterparts by 1-2 orders of magnitude, due to the unique architecture of dendrons. MD simulations also supported thermodynamically favourable self-assembly mediated by dendrons.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
45 |
8
|
Shaham-Niv S, Rehak P, Vuković L, Adler-Abramovich L, Král P, Gazit E. Formation of Apoptosis-Inducing Amyloid Fibrils by Tryptophan. Isr J Chem 2016. [DOI: 10.1002/ijch.201600076] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
|
9 |
42 |
9
|
James C, Rush AM, Insley T, Vuković L, Adamiak L, Král P, Gianneschi NC. Poly(oligonucleotide). J Am Chem Soc 2014; 136:11216-9. [PMID: 25077676 PMCID: PMC4140503 DOI: 10.1021/ja503142s] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Indexed: 01/01/2023]
Abstract
Here we report the preparation of poly(oligonucleotide) brush polymers and amphiphilic brush copolymers from nucleic acid monomers via graft-through polymerization. We describe the polymerization of PNA-norbornyl monomers to yield poly-PNA (poly(peptide nucleic acid)) via ring-opening metathesis polymerization (ROMP) with the initiator, (IMesH2)(C5H5N)2(Cl)2RuCHPh.1 In addition, we present the preparation of poly-PNA nanoparticles from amphiphilic block copolymers and describe their hybridization to a complementary single-stranded DNA (ssDNA) oligonucleotide.
Collapse
|
rapid-communication |
11 |
36 |
10
|
Polo E, Nitka TA, Neubert E, Erpenbeck L, Vuković L, Kruss S. Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17693-17703. [PMID: 29708725 DOI: 10.1021/acsami.8b04373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Integrins are transmembrane receptors that mediate cell-adhesion, signaling cascades and platelet-mediated blood clotting. Most integrins bind to the common short peptide Arg-Gly-Asp (RGD). The conformational freedom of the RGD motif determines how strong and to which integrins it binds. Here, we present a novel approach to tune binding constants by confining RGD peptide motifs via noncovalent adsorption of single-stranded DNA (ssDNA) anchors onto single-walled carbon nanotubes (SWCNTs). Semiconducting SWCNTs display fluorescence in the near-infrared (nIR) region and are versatile fluorescent building blocks for imaging and biosensing. The basic idea of this approach is that the DNA adsorbed on the SWCNT surface determines the conformational freedom of the RGD motif and affects binding affinities. The RGD motif was conjugated to different ssDNA sequences in both linear ssDNA-RGD and bridged ssDNA-RGD-ssDNA geometries. Molecular dynamics (MD) simulations show that the RGD motif in all the synthesized systems is mostly exposed to solvent and thus available for binding, but its flexibility depends on the exact geometry. The affinity for the human platelet integrin αIIbβ3 could be modulated up to 15-fold by changing the ssDNA sequence. IC50 values varied from 309 nM for (C)20-RGD/SWCNT hybrids to 29 nM for (GT)15-RGD/SWCNT hybrids. When immobilized onto surface adhesion of epithelial cells increased 6-fold for (GT)15-RGD/SWCNTs. (GT)15-RGD/SWCNTs also increased the number of adhering human platelets by a factor of 4.8. Additionally, αIIbβ3 integrins on human platelets were labeled in the nIR by incubating them with these ssDNA-peptide/SWCNT hybrids. In summary, we show that ssDNA-peptide hybrid structures noncovalently adsorb onto SWCNTs and serve as recognition units for cell surface receptors such as integrins. The DNA sequence affects the overall RGD affinity, which is a versatile and straightforward approach to tune binding affinities. In combination with the nIR fluorescence properties of SWCNTs, these new hybrid materials promise many applications in integrin targeting and bioimaging.
Collapse
|
|
7 |
35 |
11
|
Sen S, Han Y, Rehak P, Vuković L, Král P. Computational studies of micellar and nanoparticle nanomedicines. Chem Soc Rev 2018; 47:3849-3860. [DOI: 10.1039/c8cs00022k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The review highlights recent computational modeling of micellar and nanoparticle nanomedicines, which elucidates their functional roles in atomistic details.
Collapse
|
|
7 |
30 |
12
|
Wang B, Vuković L, Král P. Nanoscale rotary motors driven by electron tunneling. PHYSICAL REVIEW LETTERS 2008; 101:186808. [PMID: 18999853 DOI: 10.1103/physrevlett.101.186808] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Indexed: 05/27/2023]
Abstract
We examine by semiclassical molecular dynamics simulations the possibility of driving nanoscale rotary motors by electron tunneling. The model systems studied have a carbon nanotube shaft with covalently attached "isolating" molecular stalks ending with "conducting" blades. Periodic charging and discharging of the blades at two metallic electrodes maintains an electric dipole on the blades that is rotated by an external electric field. Our simulations demonstrate that these molecular motors can be efficient under load and in the presence of noise and defects.
Collapse
|
|
17 |
24 |
13
|
Vuković L, Koh HR, Myong S, Schulten K. Substrate recognition and specificity of double-stranded RNA binding proteins. Biochemistry 2014; 53:3457-66. [PMID: 24801449 PMCID: PMC4051425 DOI: 10.1021/bi500352s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Recognition of double-stranded (ds)
RNA is an important part of many cellular pathways, including RNA
silencing, viral recognition, RNA editing, processing, and transport.
dsRNA recognition is often achieved by dsRNA binding domains (dsRBDs).
We use atomistic molecular dynamics simulations to examine the binding
interface of the transactivation response RNA binding protein (TRBP)
dsRBDs to dsRNA substrates. Our results explain the exclusive selectivity
of dsRBDs toward dsRNA and against DNA–RNA hybrid and dsDNA
duplexes. We also provide corresponding experimental evidence. The
dsRNA duplex is recognized by dsRBDs through the A-form of three duplex
grooves and by the chemical properties of RNA bases, which have 2′-hydroxyl
groups on their sugar rings. Our simulations show that TRBP dsRBD
discriminates dsRNA- from DNA-containing duplexes primarily through
interactions at two duplex grooves. The simulations also reveal that
the conformation of the DNA–RNA duplex can be altered by dsRBD
proteins, resulting in a weak binding of dsRBDs to DNA–RNA
hybrids. Our study reveals the structural and molecular basis of protein–RNA
interaction that gives rise to the observed substrate specificity
of dsRNA binding proteins.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
21 |
14
|
Kelich P, Jeong S, Navarro N, Adams J, Sun X, Zhao H, Landry MP, Vuković L. Discovery of DNA-Carbon Nanotube Sensors for Serotonin with Machine Learning and Near-infrared Fluorescence Spectroscopy. ACS NANO 2022; 16:736-745. [PMID: 34928575 DOI: 10.1021/acsnano.1c08271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA-wrapped single walled carbon nanotube (SWNT) conjugates have distinct optical properties leading to their use in biosensing and imaging applications. A critical limitation in the development of DNA-SWNT sensors is the current inability to predict unique DNA sequences that confer a strong analyte-specific optical response to these sensors. Here, near-infrared (nIR) fluorescence response data sets for ∼100 DNA-SWNT conjugates, narrowed down by a selective evolution protocol starting from a pool of ∼1010 unique DNA-SWNT candidates, are used to train machine learning (ML) models to predict DNA sequences with strong optical response to neurotransmitter serotonin. First, classifier models based on convolutional neural networks (CNN) are trained on sequence features to classify DNA ligands as either high response or low response to serotonin. Second, support vector machine (SVM) regression models are trained to predict relative optical response values for DNA sequences. Finally, we demonstrate with validation experiments that integrating the predictions of ensembles of the highest quality neural network classifiers (convolutional or artificial) and SVM regression models leads to the best predictions of both high and low response sequences. With our ML approaches, we discovered five DNA-SWNT sensors with higher fluorescence intensity response to serotonin than obtained previously. Overall, the explored ML approaches, shown to predict useful DNA sequences, can be used for discovery of DNA-based sensors and nanobiotechnologies.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
20 |
15
|
Vuković L, Burmeister CF, Král P, Groenhof G. Control Mechanisms of Photoisomerization in Protonated Schiff Bases. J Phys Chem Lett 2013; 4:1005-1011. [PMID: 26291368 DOI: 10.1021/jz400133u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We performed ab initio excited-state molecular dynamics simulations of a gas-phase photoexcited protonated Schiff base (C1-N2═C3-C4═C5-C6) to search for control mechanisms of its photoisomerization. The excited molecule twists by ∼90° around either the N2C3 bond or the C4C5 bond and relaxes to the ground electronic state through a conical intersection with either a trans or cis outcome. We show that a large initial distortion of several dihedral angles and a specific normal vibrational mode combining pyramidalization and double-bond twisting can lead to a preferential rotation of atoms around the C4C5 bond. We also show that selective pretwisting of several dihedral angles in the initial ground state thermal ensemble (by analogy to a protein pocket) can significantly increase the fraction of photoreactive (cis → trans) trajectories. We demonstrate that new ensembles with higher degrees of control over the photoisomerization reaction can be obtained by a computational directed evolution approach on the ensembles of molecules with the pretwisted geometries.
Collapse
|
|
12 |
16 |
16
|
Chaturvedi P, Han Y, Král P, Vuković L. Adaptive Evolution of Peptide Inhibitors for Mutating SARS-CoV-2. ADVANCED THEORY AND SIMULATIONS 2020; 3:2000156. [PMID: 33173846 PMCID: PMC7646009 DOI: 10.1002/adts.202000156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 virus is currently causing a worldwide pandemic with dramatic societal consequences for the humankind. In the past decades, disease outbreaks due to such zoonotic pathogens have appeared with an accelerated rate, which calls for an urgent development of adaptive (smart) therapeutics. Here, a computational strategy is developed to adaptively evolve peptides that could selectively inhibit mutating S protein receptor binding domains (RBDs) of different SARS-CoV-2 viral strains from binding to their human host receptor, angiotensin-converting enzyme 2 (ACE2). Starting from suitable peptide templates, based on selected ACE2 segments (natural RBD binder), the templates are gradually modified by random mutations, while retaining those mutations that maximize their RBD-binding free energies. In this adaptive evolution, atomistic molecular dynamics simulations of the template-RBD complexes are iteratively perturbed by the peptide mutations, which are retained under favorable Monte Carlo decisions. The computational search will provide libraries of optimized therapeutics capable of reducing the SARS-CoV-2 infection on a global scale.
Collapse
|
research-article |
5 |
16 |
17
|
Vuković L, Madriaga A, Kuzmis A, Banerjee A, Tang A, Tao K, Shah N, Král P, Onyuksel H. Solubilization of therapeutic agents in micellar nanomedicines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15747-15754. [PMID: 24283508 PMCID: PMC3962120 DOI: 10.1021/la403264w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We use atomistic molecular dynamics simulations to reveal the binding mechanisms of therapeutic agents in PEG-ylated micellar nanocarriers (SSM). In our experiments, SSM in buffer solutions can solubilize either ≈11 small bexarotene molecules or ≈6 (2 in low ionic strength buffer) human vasoactive intestinal peptide (VIP) molecules. Free energy calculations reveal that molecules of the poorly water-soluble drug bexarotene can reside at the micellar ionic interface of the PEG corona, with their polar ends pointing out. Alternatively, they can reside in the alkane core center, where several bexarotene molecules can self-stabilize by forming a cluster held together by a network of hydrogen bonds. We also show that highly charged molecules, such as VIP, can be stabilized at the SSM ionic interface by Coulombic coupling between their positively charged residues and the negatively charged phosphate headgroups of the lipids. The obtained results illustrate that atomistic simulations can reveal drug solubilization character in nanocarriers and be used in efficient optimization of novel nanomedicines.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
16 |
18
|
Gorle S, Pan Y, Sun Z, Shlyakhtenko LS, Harris RS, Lyubchenko YL, Vuković L. Computational Model and Dynamics of Monomeric Full-Length APOBEC3G. ACS CENTRAL SCIENCE 2017; 3:1180-1188. [PMID: 29202020 PMCID: PMC5704289 DOI: 10.1021/acscentsci.7b00346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 05/29/2023]
Abstract
APOBEC3G (A3G) is a restriction factor that provides innate immunity against HIV-1 in the absence of viral infectivity factor (Vif) protein. However, structural information about A3G, which can aid in unraveling the mechanisms that govern its interactions and define its antiviral activity, remains unknown. Here, we built a computer model of a full-length A3G using docking approaches and molecular dynamics simulations, based on the available X-ray and NMR structural data for the two protein domains. The model revealed a large-scale dynamics of the A3G monomer, as the two A3G domains can assume compact forms or extended dumbbell type forms with domains visibly separated from each other. To validate the A3G model, we performed time-lapse high-speed atomic force microscopy (HS-AFM) experiments enabling us to get images of a fully hydrated A3G and to directly visualize its dynamics. HS-AFM confirmed that A3G exists in two forms, a globular form (∼84% of the time) and a dumbbell form (∼16% of the time), and can dynamically switch from one form to the other. The obtained HS-AFM results are in line with the computer modeling, which demonstrates a similar distribution between two forms. Furthermore, our simulations capture the complete process of A3G switching from the DNA-bound state to the closed state. The revealed dynamic nature of monomeric A3G could aid in target recognition including scanning for cytosine locations along the DNA strand and in interactions with viral RNA during packaging into HIV-1 particles.
Collapse
|
research-article |
8 |
15 |
19
|
Zhang Y, Vuković L, Rudack T, Han W, Schulten K. Recognition of Poly-Ubiquitins by the Proteasome through Protein Refolding Guided by Electrostatic and Hydrophobic Interactions. J Phys Chem B 2016; 120:8137-46. [PMID: 27012670 DOI: 10.1021/acs.jpcb.6b01327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specificity of protein degradation by cellular proteasomes comes from tetra-ubiquitin recognition. We carry out molecular dynamics simulations to characterize how the ubiquitin receptor Rpn10 recognizes in the 26S proteasome K48-linked tetra-ubiquitin. In the binding pose, ubiquitin and Rpn10 interact primarily through hydrophobic patches. However, K48-linked tetra-ubiquitin mostly assumes a closed form in solution prior to binding, in which its hydrophobic patches are not exposed to solvent. Likewise, the hydrophobic ubiquitin interacting motifs (UIMs) of Rpn10 are mostly protected prior to binding. As a result, ubiquitin recognition in the proteasome requires refolding of both K48-linked tetra-ubiquitin and Rpn10. Simulations suggest that conserved complementary electrostatic patterns of Rpn10 and ubiquitins guide protein association (stage 1 in the recognition process), which induces refolding (stage 2), and then facilitates formation of hydrophobic contacts (stage 3). The simulations also explain why Rpn10 has a higher affinity for K48-linked tetra-ubiquitin than for mono-ubiquitin and K48-linked di- and tri-ubiquitins. Simulation results expand on the current view that the flexible arm of Rpn10 acts as an extended fragment of α-helices and flexible coils in the recognition process.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
10 |
20
|
Vuković L, Vokac E, Král P. Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes. J Phys Chem Lett 2014; 5:2131-2137. [PMID: 26270504 DOI: 10.1021/jz500761s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We reveal by classical molecular dynamics simulations electroosmotic flows in thin neutral carbon (CNT) and boron nitride (BNT) nanotubes filled with ionic solutions of hydrated monovalent atomic ions. We observe that in (12,12) BNTs filled with single ions in an electric field, the net water velocity increases in the order of Na(+) < K(+) < Cl(-), showing that different ions have different power to drag water in thin nanotubes. However, the effect gradually disappears in wider nanotubes. In (12,12) BNTs containing neutral ionic solutions in electric fields, we observe net water velocities going in the direction of Na(+) for (Na(+), Cl(-)) and in the direction of Cl(-) for (K(+), Cl(-)). We hypothesize that the electroosmotic flows are caused by different strengths of friction between ions with different hydration shells and the nanotube walls.
Collapse
|
|
11 |
9 |
21
|
Sen S, Vuković L, Král P. Computational screening of nanoparticles coupling to Aβ40 peptides and fibrils. Sci Rep 2019; 9:17804. [PMID: 31780663 PMCID: PMC6883061 DOI: 10.1038/s41598-019-52594-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
Blocking the formation, growth, and breaking of amyloid fibrils by synthetic nanosystems could provide a treatment of neurodegenerative diseases. With this in mind, here atomistic molecular dynamics simulations are used to screen for nanoparticles (NPs), covered with different mixtures of ligands, including positively and negatively charged ligands, Aβ40-cut-peptide, and synthetic inhibitor ligands, in their selective coupling to Aβ40 peptides and their fibrils. The simulations reveal that only Aβ40-cut-peptide-covered NPs have strong and selective coupling to Aβ40 monomers. On the other hand, positive, positive-neutral, Janus, and peptide NPs couple to the beta sheet surfaces of Aβ40 fibrils and only the negative-neutral NPs couple to the fibril tips.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
9 |
22
|
Vuković L, Chipot C, Makino DL, Conti E, Schulten K. Molecular Mechanism of Processive 3' to 5' RNA Translocation in the Active Subunit of the RNA Exosome Complex. J Am Chem Soc 2016; 138:4069-78. [PMID: 26928279 PMCID: PMC4988868 DOI: 10.1021/jacs.5b12065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent experimental studies revealed structural details of 3' to 5' degradation of RNA molecules, performed by the exosome complex. ssRNA is channeled through its multisubunit ring-like core into the active site tunnel of its key exonuclease subunit Rrp44, which acts both as an enzyme and a motor. Even in isolation, Rrp44 can pull and sequentially cleave RNA nucleotides, one at a time, without any external energy input and release a final 3-5 nucleotide long product. Using molecular dynamics simulations, we identify the main factors that control these processes. Our free energy calculations reveal that RNA transfer from solution into the active site of Rrp44 is highly favorable, but dependent on the length of the RNA strand. While RNA strands formed by 5 nucleotides or more correspond to a decreasing free energy along the translocation coordinate toward the cleavage site, a 4-nucleotide RNA experiences a free energy barrier along the same direction, potentially leading to incomplete cleavage of ssRNA and the release of short (3-5) nucleotide products. We provide new insight into how Rrp44 catalyzes a localized enzymatic reaction and performs an action distributed over several RNA nucleotides, leading eventually to the translocation of whole RNA segments into the position suitable for cleavage.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
8 |
23
|
Vuković L, Král P. Coulombically driven rolling of nanorods on water. PHYSICAL REVIEW LETTERS 2009; 103:246103. [PMID: 20366215 DOI: 10.1103/physrevlett.103.246103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Indexed: 05/29/2023]
Abstract
We use molecular dynamics simulations to examine the possibility of rolling nanorods on the surfaces of polar liquids. Asymmetric charging of nanorod surfaces, generated by light excitation of its photoactive hydrophobic surfactants, can induce asymmetric Coulombic coupling to the polar liquid surfaces. We demonstrate that under this driving nanorods with diameters of 3-10 nm can roll on water with translational velocities of 1-5 nm/ns. The efficiency of this motion is controlled by the chemistry and dynamical phenomena at the nanorod-water interface.
Collapse
|
|
16 |
4 |
24
|
Paul A, Huang J, Han Y, Yang X, Vuković L, Král P, Zheng L, Herrmann A. Photochemical control of bacterial gene expression based on trans encoded genetic switches. Chem Sci 2021; 12:2646-2654. [PMID: 34164033 PMCID: PMC8179269 DOI: 10.1039/d0sc05479h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
Controlling gene expression by light with fine spatiotemporal resolution not only allows understanding and manipulating fundamental biological processes but also fuels the development of novel therapeutic strategies. In complement to exploiting optogenetic tools, photochemical strategies mostly rely on the incorporation of photo-responsive small molecules into the corresponding biomacromolecular scaffolds. Therefore, generally large synthetic effort is required and the switching of gene expression in both directions within a single system remains a challenge. Here, we report a trans encoded ribo-switch, which consists of an engineered tRNA mimicking structure (TMS), under control of small photo-switchable signalling molecules. The signalling molecules consist of two amino glycoside molecules that are connected via an azobenzene unit. The light responsiveness of our system originates from the photo-switchable noncovalent interactions between the signalling molecule and the TMS switch, leading to the demonstration of photochemically controlled expression of two different genes. We believe that this modular design will provide a powerful platform for controlling the expression of other functional proteins with high spatiotemporal resolution employing light as a stimulus.
Collapse
|
research-article |
4 |
3 |
25
|
Chaturvedi P, Han Y, Král P, Vuković L. Adaptive Evolution of Peptide Inhibitors for Mutating SARS-CoV-2. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:12622667. [PMID: 32676578 PMCID: PMC7359527 DOI: 10.26434/chemrxiv.12622667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/10/2020] [Indexed: 12/27/2022]
Abstract
The SARS-CoV-2 virus is currently causing a worldwide pandemic with dramatic societal consequences for the humankind. In the last decades, disease outbreaks due to such zoonotic pathogens have appeared with an accelerated rate, which calls for an urgent development of adaptive (smart) therapeutics. Here, we develop a computational strategy to adaptively evolve peptides that could selectively inhibit mutating S protein receptor binding domains (RBDs) of different SARS-CoV-2 viral strains from binding to their human host receptor, angiotensin-converting enzyme 2 (ACE2). Starting from suitable peptide templates, based on selected ACE2 segments (natural RBD binder), we gradually modify the templates by random mutations, while retaining those mutations that maximize their RBD-binding free energies. In this adaptive evolution, atomistic molecular dynamics simulations of the template-RBD complexes are iteratively perturbed by the peptide mutations, which are retained under favorable Monte Carlo decisions. The computational search will provide libraries of optimized therapeutics capable of reducing the SARS-CoV-2 infection on a global scale. .
Collapse
|
Preprint |
5 |
2 |