1
|
Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci U S A 1996; 93:1065-70. [PMID: 8577715 PMCID: PMC40031 DOI: 10.1073/pnas.93.3.1065] [Citation(s) in RCA: 329] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The structure of m7GpppN (where N is any nucleotide), termed cap, is present at the 5' end of all eukaryotic cellular mRNAs (except organellar). The eukaryotic initiation factor 4E (eIF-4E) binds to the cap and facilitates the formation of translation initiation complexes. eIF-4E is implicated in control of cell growth, as its overexpression causes malignant transformation of rodent cells and deregulates HeLa cell growth. It was suggested that overexpression of eIF-4E results in the enhanced translation of poorly translated mRNAs that encode growth-promoting proteins. Indeed, enhanced expression of several proteins, including cyclin D1 and ornithine decarboxylase (ODC), was documented in eIF-4E-overexpressing NTH 3T3 cells. However, the mechanism underlying this increase has not been elucidated. Here, we studied the mode by which eIF-4E increases the expression of cyclin D1 and ODC. We show that the increase in the amount of cyclin D1 and ODC is directly proportional to the degree of eIF-4E overexpression. Two mechanisms, which are not mutually exclusive, are responsible for the increase. In eIF-4E-overexpressing cells the rate of translation initiation of ODC mRNA was increased inasmuch as the mRNA sedimented with heavier polysomes. For cyclin D1 mRNA, translation initiation was not increased, but rather its amount in the cytoplasm increased, without a significant increase in total mRNA. Whereas, in the parental NIH 3T3 cell line, a large proportion of the cyclin D1 mRNA was confined to the nucleus, in eIF-4E-overexpressing cells the vast majority of the mRNA was present in the cytoplasm. These results indicate that eIF-4E affects directly or indirectly mRNA nucleocytoplasmic transport, in addition to its role in translation initiation.
Collapse
|
research-article |
29 |
329 |
2
|
Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, Schmidt EV, Sonenberg N, London IM. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 1995; 270:21176-80. [PMID: 7673150 DOI: 10.1074/jbc.270.36.21176] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Regulation of the cell cycle is orchestrated by cyclins and cyclin-dependent kinases. We have demonstrated previously that overexpression of eukaryotic translation initiation factor 4E (eIF-4E) in NIH 3T3 cells growing in 10% fetal calf serum leads to highly elevated levels of cyclin D1 protein without significant increase in cyclin D1 mRNA levels, suggesting that a post-transcriptional mechanism is involved. (Rosenwald, I. B., Lazaris-Karatzas, A., Sonenberg, N., and Schmidt, E. V. (1993) Mol. Cell. Biol. 13, 7358-7363). In the present research, we did not find any significant effect of eIF-4E on polysomal distribution of cyclin D1 mRNA. However, the total amount of cyclin D1 mRNA associated with polysomes was significantly increased by eIF-4E overexpression. Further, we determined that the levels of both cyclin D1 protein and mRNA are increased in serum-deprived cells overexpressing eIF-4E. Nuclear run-on experiments demonstrated that the rate of the cyclin D1 transcription is not down-regulated in serum-deprived cells overexpressing eIF-4E. Thus, elevated levels of eIF-4E may lead to increased transcription of the cyclin D1 gene, and this effect becomes visible when serum deprivation down-regulates the rate of cyclin D1 mRNA synthesis in control cells. However, artificial overexpression of cyclin D1 mRNA in serum-deprived cells in the absence of eIF-4E overexpression did not cause the elevation of cyclin D1 protein, and this overexpressed cyclin D1 mRNA accumulated in the nucleus, suggesting that one post-transcriptional role of eIF-4E is to transport cyclin D1 mRNA from the nucleus to cytoplasmic polysomes.
Collapse
|
|
30 |
204 |
3
|
Jobling SA, Gehrke L. Enhanced translation of chimaeric messenger RNAs containing a plant viral untranslated leader sequence. Nature 1987; 325:622-5. [PMID: 3492677 DOI: 10.1038/325622a0] [Citation(s) in RCA: 162] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eukaryotic messenger RNAs are translated with unequal efficiencies in vivo and in vitro and the molecular basis of this phenomenon is not understood. As an approach to understanding the role of the 5' untranslated leader sequence in regulating mRNA translational efficiency, chimaeric mRNAs have been generated by joining a heterologous leader to complementary DNA (cDNA) sequences, followed by in vitro transcription using SP6 RNA polymerase and in vitro protein synthesis. We used the untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4), a well-translated, highly competitive message, to replace the leader sequence of barley alpha-amylase (B alpha A) and human interleukin 1 beta (IL-1 beta) cDNAs. Deletion of transcribed vector sequences and replacement of the native untranslated region with the AMV RNA 4 leader can result in as much as a 35-fold increase in mRNA translational efficiency; moreover, the translational efficiency of the chimaeric mRNAs containing the AMV RNA 4 leader is at least as great as that of virion RNA 4. The results suggest that the chimaeric AMV-mRNAs have either a higher relative affinity or a diminished requirement for a limiting component(s) of the translational machinery; in addition, it may be feasible, through use of heterologous leader sequences, to increase expression of engineered genes or cDNAs without changing the antigenic or biological properties of the encoded protein.
Collapse
|
|
38 |
162 |
4
|
Chen JJ, Throop MS, Gehrke L, Kuo I, Pal JK, Brodsky M, London IM. Cloning of the cDNA of the heme-regulated eukaryotic initiation factor 2 alpha (eIF-2 alpha) kinase of rabbit reticulocytes: homology to yeast GCN2 protein kinase and human double-stranded-RNA-dependent eIF-2 alpha kinase. Proc Natl Acad Sci U S A 1991; 88:7729-33. [PMID: 1679235 PMCID: PMC52376 DOI: 10.1073/pnas.88.17.7729] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have cloned the cDNA of the heme-regulated eIF-2 alpha kinase (HRI) of rabbit reticulocytes. In vitro translation of mRNA transcribed from the HRI cDNA yields a 90-kDa polypeptide that exhibits eIF-2 alpha kinase activity and is recognized by a monoclonal antibody directed against authentic HRI. The open reading frame sequence of the HRI cDNA contains all 11 catalytic domains of protein kinases with consensus sequences of protein-serine/threonine kinases in conserved catalytic domains VI and VIII. The HRI cDNA also contains an insert of approximately 140 amino acids between catalytic domains V and VI. The HRI cDNA coding sequence has extensive homology to GCN2 protein kinase of Saccharomyces cerevisiae and to human double-stranded-RNA-dependent eIF-2 alpha kinase. This observation suggests that GCN2 protein kinase may be an eIF-2 alpha kinase in yeast. In addition, HRI has an unusually high degree of homology to three protein kinases (NimA, Wee1, and CDC2) that are involved in the regulation of the cell cycle.
Collapse
|
research-article |
34 |
161 |
5
|
Gray ML, Burstein D, Lesperance LM, Gehrke L. Magnetization transfer in cartilage and its constituent macromolecules. Magn Reson Med 1995; 34:319-25. [PMID: 7500869 DOI: 10.1002/mrm.1910340307] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The goal of this work was to investigate magnetization transfer (MT) in cartilage by measuring water proton signals Ms/Mo, as an indicator of MT, in (i) single-component systems of the tissue's constituent macromolecules and (ii) intact cartilage under control conditions and after two pathomimetic interventions. Ms/Mo was quantified with a 12-microT saturation pulse applied 6 kHz off resonance. Both glycosaminoglycans (GAG) and collagen exhibited concentration dependent effects on Ms/Mo, being approximately linear for GAG solutions (Ms/Mo = -0.0137[% GAG] + 1.02) and exponential for collagen suspensions (Ms/Mo = 0.80 x exp[-(%collagen)/6.66] + 0.20); the direct saturation of water could not account for the measured Ms/Mo. Although the effect of collagen on Ms/Mo is much stronger than for a corresponding concentration of GAG, Ms/Mo is not very sensitive to changes in collagen concentration in the physiological range. Tissue degradation with 25 mg/ml trypsin led to an increase in Ms/Mo from the baseline value of 0.2 (final/initial values = 1.15 +/- 0.13, n = 11, P < 0.001). In contrast, a 10-day treatment of cartilage with 100 ng/ml of interleukin-1 beta (IL-1 beta) caused a 19% decrease in Ms/Mo (final/initial values = 0.81 +/- 0.08, n = 3, P = 0.085). The changes in hydration and macromolecular content for the two treatments were comparable, suggesting that Ms/Mo is sensitive to macromolecular structure as well as concentration. In conclusion, whereas the baseline Ms/Mo value in cartilage may be primarily due to the tissue collagen concentration, changes in Ms/Mo may be due to physiological or pathophysiological changes in GAG concentration and tissue structure, and the measured Ms/Mo may differentiate between various pathomimetic degradative procedures.
Collapse
|
|
30 |
111 |
6
|
Gehrke L, Auron PE, Quigley GJ, Rich A, Sonenberg N. 5'-Conformation of capped alfalfa mosaic virus ribonucleic acid 4 may reflect its independence of the cap structure or of cap-binding protein for efficient translation. Biochemistry 1983; 22:5157-64. [PMID: 6317016 DOI: 10.1021/bi00291a015] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Most eukaryotic mRNAs are characterized by the presence of a 5'-terminal cap structure (m7GpppN), and removal of the cap or translation of capped mRNAs in the presence of cap analogues (m7G) results in most cases in a significant decrease in the translational efficiency of the mRNAs. One way of explaining the importance of the 5'-cap is that cap-binding proteins recognize the cap structure, destabilize the mRNA secondary structure, and thus allow the 40S ribosomal subunit to bind to the mRNA [Sonenberg, N., Guertin, D., Cleveland, D., & Trachsel, H. (1981) Cell (Cambridge, Mass.) 27, 563-572]. Our data and those of others indicate that the translational efficiency of alfalfa mosaic virus RNA 4 (AMV-4 RNA), a naturally capped RNA, is not affected significantly by cap analogues or by removal of the cap. In order to examine the potential relationship between the function of the cap structure and secondary structure at the 5'-mRNA terminus, partial enzymatic digestion of capped AMV-4 RNA with single strand specific and double strand specific nucleases has been performed, and the experimental data have been compared with computer-generated models of AMV-4 secondary structure. In addition, the in vitro translatability of AMV-4 has been examined as a function of increasing potassium concentration, conditions that are likely to increase mRNA secondary structure. The nuclease-digestion results demonstrate that under native ionic conditions, the 5'-terminus of AMV-4 RNA is predominantly single stranded, although computer modeling and double-strand nuclease digestions indicate that the 5'-terminus can form weak base pairs with internal regions of the molecule.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
42 |
87 |
7
|
Houser-Scott F, Baer ML, Liem KF, Cai JM, Gehrke L. Nucleotide sequence and structural determinants of specific binding of coat protein or coat protein peptides to the 3' untranslated region of alfalfa mosaic virus RNA 4. J Virol 1994; 68:2194-205. [PMID: 8139004 PMCID: PMC236695 DOI: 10.1128/jvi.68.4.2194-2205.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The specific binding of alfalfa mosaic virus coat protein to viral RNA requires determinants in the 3' untranslated region (UTR). Coat protein and peptide binding sites in the 3' UTR of alfalfa mosaic virus RNA 4 have been analyzed by hydroxyl radical footprinting, deletion mapping, and site-directed mutagenesis experiments. The 3' UTR has several stable hairpins that are flanked by single-stranded (A/U)UGC sequences. Hydroxyl radical footprinting data show that five sites in the 3' UTR of alfalfa mosaic virus RNA 4 are protected by coat protein, and four of the five protected regions contain AUGC or UUGC. Electrophoretic mobility band shift results suggest four coat protein binding sites in the 3' UTR. A 3'-terminal 39-nucleotide RNA fragment containing four AUGC repeats bound coat protein and coat protein peptides with high affinity; however, coat protein bound poorly to antisense 3' UTR transcripts and poly(AUGC)10. Site-directed mutagenesis of AUGC865-868 resulted in a loss of coat protein binding and peptide binding by the RNA fragment. Alignment of alfalfa mosaic RNA sequences with those from several closely related ilarviruses demonstrates that AUGC865-868 is perfectly conserved; moreover, the RNAs are predicted to form similar 3'-terminal secondary structures. The data strongly suggest that alfalfa mosaic virus coat protein and ilavirus coat proteins recognize invariant AUGC sequences in the context of conserved structural elements.
Collapse
|
research-article |
31 |
67 |
8
|
Ansel-McKinney P, Scott SW, Swanson M, Ge X, Gehrke L. A plant viral coat protein RNA binding consensus sequence contains a crucial arginine. EMBO J 1996. [DOI: 10.1002/j.1460-2075.1996.tb00888.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
|
29 |
60 |
9
|
Baer ML, Houser F, Loesch-Fries LS, Gehrke L. Specific RNA binding by amino-terminal peptides of alfalfa mosaic virus coat protein. EMBO J 1994; 13:727-35. [PMID: 8313916 PMCID: PMC394864 DOI: 10.1002/j.1460-2075.1994.tb06312.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Specific RNA-protein interactions and ribonucleoprotein complexes are essential for many biological processes, but our understanding of how ribonucleoprotein particles form and accomplish their biological functions is rudimentary. This paper describes the interaction of alfalfa mosaic virus (A1MV) coat protein or peptides with viral RNA. A1MV coat protein is necessary both for virus particle formation and for the initiation of replication of the three genomic RNAs. We have examined protein determinants required for specific RNA binding and analyzed potential structural changes elicited by complex formation. The results indicate that the amino-terminus of the viral coat protein, which lacks primary sequence homology with recognized RNA binding motifs, is both necessary and sufficient for binding to RNA. Circular dichroism spectra and electrophoretic mobility shift experiments suggest that the RNA conformation is altered when amino-terminal coat protein peptides bind to the viral RNA. The peptide--RNA interaction is functionally significant because the peptides will substitute for A1MV coat protein in initiating RNA replication. The apparent conformational change that accompanies RNA--peptide complex formation may generate a structure which, unlike the viral RNA alone, can be recognized by the viral replicase.
Collapse
|
research-article |
31 |
54 |
10
|
Schneider R, Agol VI, Andino R, Bayard F, Cavener DR, Chappell SA, Chen JJ, Darlix JL, Dasgupta A, Donzé O, Duncan R, Elroy-Stein O, Farabaugh PJ, Filipowicz W, Gale M, Gehrke L, Goldman E, Groner Y, Harford JB, Hatzglou M, He B, Hellen CU, Hentze MW, Hershey J, Hershey P, Hohn T, Holcik M, Hunter CP, Igarashi K, Jackson R, Jagus R, Jefferson LS, Joshi B, Kaempfer R, Katze M, Kaufman RJ, Kiledjian M, Kimball SR, Kimchi A, Kirkegaard K, Koromilas AE, Krug RM, Kruys V, Lamphear BJ, Lemon S, Lloyd RE, Maquat LE, Martinez-Salas E, Mathews MB, Mauro VP, Miyamoto S, Mohr I, Morris DR, Moss EG, Nakashima N, Palmenberg A, Parkin NT, Pe'ery T, Pelletier J, Peltz S, Pestova TV, Pilipenko EV, Prats AC, Racaniello V, Read GS, Rhoads RE, Richter JD, Rivera-Pomar R, Rouault T, Sachs A, Sarnow P, Scheper GC, Schiff L, Schoenberg DR, Semler BL, Siddiqui A, Skern T, Sonenberg N, Sossin W, Standart N, Tahara SM, Thomas AA, Toulmé JJ, Wilusz J, Wimmer E, Witherell G, Wormington M. New ways of initiating translation in eukaryotes. Mol Cell Biol 2001; 21:8238-46. [PMID: 11710333 PMCID: PMC99989 DOI: 10.1128/mcb.21.23.8238-8246.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
editorial |
24 |
53 |
11
|
Gehrke L, Jobling SA, Paik LS, McDonald B, Rosenwasser LJ, Auron PE. A point mutation uncouples human interleukin-1 beta biological activity and receptor binding. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39265-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
|
35 |
52 |
12
|
Szczepankiewicz BG, Liu G, Jae HS, Tasker AS, Gunawardana IW, von Geldern TW, Gwaltney SL, Wu-Wong JR, Gehrke L, Chiou WJ, Credo RB, Alder JD, Nukkala MA, Zielinski NA, Jarvis K, Mollison KW, Frost DJ, Bauch JL, Hui YH, Claiborne AK, Li Q, Rosenberg SH. New antimitotic agents with activity in multi-drug-resistant cell lines and in vivo efficacy in murine tumor models. J Med Chem 2001; 44:4416-30. [PMID: 11728187 DOI: 10.1021/jm010231w] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During a screen for compounds that could inhibit cell proliferation, a series of new tubulin-binding compounds was identified with the discovery of oxadiazoline 1 (A-105972). This compound showed good cytotoxic activity against non-multi-drug-resistant and multi-drug-resistant cancer cell lines, but its utility in vivo was limited by a short half-life. Medicinal chemistry efforts led to the discovery of indolyloxazoline 22g (A-259745), which maintained all of the in vitro activity seen with oxadiazoline 1, but also demonstrated a better pharmacokinetic profile, and dose-dependent in vivo activity. Over a 28 day study, indolyloxazoline 22g increased the life span of tumor-implanted mice by up to a factor of 3 upon oral dosing. This compound, and others of its structural class, may prove to be useful in the development of new chemotherapeutic agents to treat human cancers.
Collapse
|
|
24 |
47 |
13
|
Chen JJ, Pal JK, Petryshyn R, Kuo I, Yang JM, Throop MS, Gehrke L, London IM. Amino acid microsequencing of internal tryptic peptides of heme-regulated eukaryotic initiation factor 2 alpha subunit kinase: homology to protein kinases. Proc Natl Acad Sci U S A 1991; 88:315-9. [PMID: 1671169 PMCID: PMC50801 DOI: 10.1073/pnas.88.2.315] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have purified the heme-regulated eukaryotic initiation factor 2 alpha subunit (eIF-2 alpha) kinase (HRI) from rabbit reticulocytes for amino acid microsequencing. This kinase is a single 92-kDa polypeptide and migrates in perfect alignment with 32P-labeled HRI on SDS/PAGE. Its functions of binding ATP and of autophosphorylation and eIF-2 alpha phosphorylation are inhibited by hemin. The amino acid sequences of three tryptic peptides of HRI have been obtained. A search of the data base of the National Biomedical Research Foundation reveals that these amino acid sequences are unique and that two of these three sequences show homology to protein kinases. HRI peptide P-52 contains Asp-Phe-Gly, which is the most highly conserved short stretch of amino acids in catalytic domain VII of protein kinases. HRI peptide P-74 contains the conserved amino acid residues Asp-(Met)-Tyr-Ser-(Val)-Gly-Val found in catalytic domain IX of protein kinases [Hanks, S. K., Quinn, A. M. & Hunter, T. (1988) Science 241, 42-52]. These findings are consistent with the autokinase and eIF-2 alpha kinase activities of HRI. Synthetic HRI peptide P-74 is a very potent inhibitor of eIF-2 alpha phosphorylation by HRI. Since little is known about the function of conserved domain IX, P-74 peptide may be useful in elucidating the role of this domain of protein kinases.
Collapse
|
research-article |
34 |
41 |
14
|
Han EK, Kyu-Ho Han E, Gehrke L, Tahir SK, Credo RB, Cherian SP, Sham H, Rosenberg SH, Ng S. Modulation of drug resistance by alpha-tubulin in paclitaxel-resistant human lung cancer cell lines. Eur J Cancer 2000; 36:1565-71. [PMID: 10930805 DOI: 10.1016/s0959-8049(00)00145-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Beta(beta)-tubulin isotype variation has recently been implicated in the modulation of resistance to paclitaxel in human lung cancer cells and in primary human ovarian tumour samples. Whether alpha-tubulin is involved in drug resistance has not been reported. We have generated a paclitaxel-resistant cell line (H460/T800) from the sensitive human lung carcinoma parental cell line NCI-H460. The resistant cells are more than 1000-fold resistant to taxol and overexpress P-glycoprotein. Interestingly, H460/T800 cells also overexpress alpha- and beta-tubulin as detected by Western blot analysis. From Northern blot analysis, the mechanism of tubulin overexpression appears to be post-transcriptional. To understand whether alpha-tubulin plays a role in drug resistance, we transfected antisense human kalpha1 cDNA construct into the H460/T800 paclitaxel-resistant cells. The antisense clones displayed a reduced alpha-tubulin expression, and the cells were 45-51% more sensitive to paclitaxel and other known antimitotic drugs, compared with vector transfected controls. Complementary experiments of transfecting the sense kalpha1 cDNA into H460 cells conferred a 1.8- to 3.3-fold increase in the IC(50) of several antimitotic agents. Our study suggests that alpha-tubulin is one of the factors that contributes to drug resistance.
Collapse
|
|
25 |
40 |
15
|
Gwaltney SL, Imade HM, Barr KJ, Li Q, Gehrke L, Credo RB, Warner RB, Lee JY, Kovar P, Wang J, Nukkala MA, Zielinski NA, Frost D, Ng SC, Sham HL. Novel sulfonate analogues of combretastatin A-4: potent antimitotic agents. Bioorg Med Chem Lett 2001; 11:871-4. [PMID: 11294380 DOI: 10.1016/s0960-894x(01)00098-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfonate analogues of combretastatin A-4 have been prepared. These compounds compete with colchicine and combretastatin A-4 for the colchicine binding site on tubulin and are potent inhibitors of tubulin polymerization and cell proliferation. Importantly, these compounds also inhibit the proliferation of P-glycoprotein positive (+) cancer cells, which are resistant to many other antitumor agents.
Collapse
|
|
24 |
39 |
16
|
Ansel-McKinney P, Gehrke L. RNA determinants of a specific RNA-coat protein peptide interaction in alfalfa mosaic virus: conservation of homologous features in ilarvirus RNAs. J Mol Biol 1998; 278:767-85. [PMID: 9614941 DOI: 10.1006/jmbi.1998.1656] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alfalfa mosaic virus (AMV) coat protein and tobacco streak virus (TSV) coat protein bind specifically to the 3' untranslated regions of the viral RNAs and are required with the genomic RNAs to initiate virus replication. A combination of nucleotide substitutions, hydroxyl radical footprinting, and ethylation and chemical modification interference analysis has been used to define the RNA determinants important for the specific binding of the 3'-terminal 39 nucleotides of AMV RNA 3/4 (AMV843-881) to an amino-terminal coat protein peptide (CP26). The results demonstrate that potential phosphate and base-specific contacts as well as ribose moieties protected upon peptide binding cluster in lower hairpin stems and flanking AUGC sequences of the viral RNA, without direct involvement of loop nucleotides. Nucleotides identified in the modification-interference analyses as important for RNA-protein interactions are highly conserved among AMV and the ilarvirus RNAs. This RNA sequence homology, coupled with the recent identification of an RNA binding consensus sequence for AMV and ilarvirus coat proteins, provides a framework for understanding the functional equivalence of AMV and TSV coat proteins in binding RNA and activating virus replication and may explain why heterologous AMV and ilarvirus coat protein-RNA mixtures are infectious.
Collapse
|
|
27 |
34 |
17
|
Quigley GJ, Gehrke L, Roth DA, Auron PE. Computer-aided nucleic acid secondary structure modeling incorporating enzymatic digestion data. Nucleic Acids Res 1984; 12:347-66. [PMID: 6320093 PMCID: PMC321009 DOI: 10.1093/nar/12.1part1.347] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We present a computer-aided method for determining nucleic acid secondary structure. The method utilizes a program which has the capability to filter matrix diagonal data on the basis of diagonal length, stabilization energy, and chemical and enzymatic data. The program also allows the user to assign selected regions of the structure as uniquely single-stranded or paired, and to filter out "trade-off" structures on the basis of such pairing. In order to demonstrate the utility of the program we present a preliminary secondary structure for the 3' end of alfalfa mosaic virus RNA 4 (AMV-4 RNA). This structure is based on an analysis which includes the use of in vitro partial enzymatic digestion of the RNA.
Collapse
|
research-article |
41 |
34 |
18
|
Houser-Scott F, Ansel-McKinney P, Cai JM, Gehrke L. In vitro genetic selection analysis of alfalfa mosaic virus coat protein binding to 3'-terminal AUGC repeats in the viral RNAs. J Virol 1997; 71:2310-9. [PMID: 9032367 PMCID: PMC191340 DOI: 10.1128/jvi.71.3.2310-2319.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The coat proteins of alfalfa mosaic virus (AMV) and the related ilarviruses bind specifically to the 3' untranslated regions of the viral RNAs, which contain conserved repeats of the tetranucleotide sequence AUGC. The purpose of this study was to develop a more detailed understanding of RNA sequence and/or structural determinants required for coat protein binding by characterizing the role of the AUGC repeats. Starting with a complex pool of 39-nucleotide RNA molecules containing random substitutions in the AUGC repeats, in vitro genetic selection was used to identify RNAs that bound coat protein. After six iterative rounds of selection, amplification, and reselection, 25% of the RNAs selected from the randomized pool were wild type; that is, they contained all four AUGC sequences. Among the 31 clones analyzed, AUGC was clearly the preferred selected sequence at the four repeats, but some nucleotide sequence variability was observed at AUGC(865-868) if the other three AUGC repeats were present. Variant RNAs that bound coat protein with affinities equal to or greater than that of the wild-type molecule were not selected. To extend the in vitro selection results, RNAs containing specific nucleotide substitutions were transcribed in vitro and tested in coat protein and peptide binding assays. The data strongly suggest that the AUGC repeats provide sequence-specific determinants and contribute to a structural platform for specific coat protein binding. Coat protein may function in maintaining the 3' ends of the genomic RNAs during replication by stabilizing an RNA structure that defines the 3' terminus as the initiation site for minus-strand synthesis.
Collapse
|
research-article |
28 |
31 |
19
|
Rosenwasser LJ, Webb AC, Clark BD, Irie S, Chang L, Dinarello CA, Gehrke L, Wolff SM, Rich A, Auron PE. Expression of biologically active human interleukin 1 subpeptides by transfected simian COS cells. Proc Natl Acad Sci U S A 1986; 83:5243-6. [PMID: 3487789 PMCID: PMC323927 DOI: 10.1073/pnas.83.14.5243] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
"Interleukin 1" (IL-1) is a term used to describe the family of macrophage-derived proteins that mediate many immune and inflammatory reactions. We have previously described the molecular cloning and sequencing of the cDNA encoding the predominant (neutral) form of human IL-1, which has been designated IL-1 beta. We report here that transfection of simian COS cells with this cDNA clone results in the transcription of IL-1 mRNA and the synthesis of antibody-neutralizable intracellular IL-1 biological activity. In addition, selective deletion of regions of the IL-1 cDNA judged not to be essential for function, on the basis of conserved sequence homology, resulted in localization of a "core" region responsible for a majority of the biological activity. These results permit mapping the active site of IL-1 to a peptide of 6970 molecular weight located within the carboxyl third (between Met-136 and Gln-197) of the IL-1 precursor.
Collapse
|
research-article |
39 |
30 |
20
|
Jobling SA, Cuthbert CM, Rogers SG, Fraley RT, Gehrke L. In vitro transcription and translational efficiency of chimeric SP6 messenger RNAs devoid of 5' vector nucleotides. Nucleic Acids Res 1988; 16:4483-98. [PMID: 3260027 PMCID: PMC336643 DOI: 10.1093/nar/16.10.4483] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A plasmid containing the bacteriophage SP6 promoter, designated pHSTO, permits in vitro transcription of RNAs devoid of vector-derived nucleotides. This vector has been characterized for relative transcriptional activity using constructs which alter the conserved nucleotides extending beyond the SP6 transcriptional initiation site. SP6 polymerase efficiently transcribes cDNA inserts which contain a guanosine (G) nucleotide at position +1 relative to the SP6 promoter; however, inserts with an adenosine (A) or pyrimidine at position +1 are not transcribed. Several cellular and viral cDNAs have been transcribed into translatable messenger RNA using this vector; however, SP6 polymerase will not transcribe the A-T rich untranslated leader from alfalfa mosaic virus RNA 4 efficiently unless the viral mRNA cap site is separated from the transcriptional initiation site by twelve base pairs of vector DNA. Chimeric messenger RNAs were created by linking the untranslated leader sequence of several viral mRNAs to the coding region of barley alpha-amylase, and the resultant mRNAs were translated in a wheat germ extract to determine relative translational efficiencies. The untranslated leader sequences of turnip yellow mosaic virus coat protein mRNA and black beetle virus RNA 2 did not increase translational efficiency, while the tobacco mosaic virus leader stimulated translation significantly. The results indicate that substitution of a cognate untranslated leader sequence with a leader derived from a highly efficient mRNA does not necessarily predict enhanced translational efficiency of the chimeric mRNA.
Collapse
|
research-article |
37 |
27 |
21
|
Hann LE, Webb AC, Cai JM, Gehrke L. Identification of a competitive translation determinant in the 3' untranslated region of alfalfa mosaic virus coat protein mRNA. Mol Cell Biol 1997; 17:2005-13. [PMID: 9121448 PMCID: PMC232047 DOI: 10.1128/mcb.17.4.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report that the competitive translational activity of alfalfa mosaic virus coat protein mRNA (CP RNA), a nonadenylated mRNA, is determined in part by the 3' untranslated region (UTR). Competitive translation was characterized both in vitro, with cotranslation assays, and in vivo, with microinjected Xenopus laevis oocytes. In wheat germ extracts, coat protein synthesis was constant when a fixed amount of full-length CP RNA was cotranslated with increasing concentrations of competitor globin mRNA. However, translation of CP RNA lacking the 3' UTR decreased significantly under competitive conditions. RNA stabilities were equivalent. In X. laevis oocytes, which are translationally saturated and are an inherently competitive translational environment, full-length CP RNA assembled into large polysomes and coat protein synthesis was readily detectable. Alternatively, CP RNA lacking the 3' UTR sedimented as small polysomes, and little coat protein was detected. Again, RNA stabilities were equivalent. Site-directed mutagenesis was used to localize RNA sequences or structures required for competitive translation. Since the CP RNA 3' UTR has an unusually large number of AUG nucleotide triplets, two AUG-containing sites were altered in full-length RNA prior to oocyte injections. Nucleotide substitutions at the sequence GAUG, 20 nucleotides downstream of the coat protein termination codon, specifically reduced full-length CP RNA translation, while similar substitutions at the next AUG triplet had little effect on translation. The competitive influence of the 3' UTR could be explained by RNA-protein interactions that affect translation initiation or by ribosome reinitiation at downstream AUG codons, which would increase the number of ribosomes committed to coat protein synthesis.
Collapse
|
research-article |
28 |
24 |
22
|
Browning KS, Lax SR, Humphreys J, Ravel JM, Jobling SA, Gehrke L. Evidence that the 5′-untranslated leader of mRNA affects the requirement for wheat germ initiation factors 4A, 4F, and 4G. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81562-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
37 |
23 |
23
|
Swanson MM, Ansel-McKinney P, Houser-Scott F, Yusibov V, Loesch-Fries LS, Gehrke L. Viral coat protein peptides with limited sequence homology bind similar domains of alfalfa mosaic virus and tobacco streak virus RNAs. J Virol 1998; 72:3227-34. [PMID: 9525649 PMCID: PMC109790 DOI: 10.1128/jvi.72.4.3227-3234.1998] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Accepted: 12/12/1997] [Indexed: 02/06/2023] Open
Abstract
An unusual and distinguishing feature of alfalfa mosaic virus (AMV) and ilarviruses such as tobacco streak virus (TSV) is that the viral coat protein is required to activate the early stages of viral RNA replication, a phenomenon known as genome activation. AMV-TSV coat protein homology is limited; however, they are functionally interchangeable in activating virus replication. For example, TSV coat protein will activate AMV RNA replication and vice versa. Although AMV and TSV coat proteins have little obvious amino acid homology, we recently reported that they share an N-terminal RNA binding consensus sequence (Ansel-McKinney et al., EMBO J. 15:5077-5084, 1996). Here, we biochemically compare the binding of chemically synthesized peptides that include the consensus RNA binding sequence and lysine-rich (AMV) or arginine-rich (TSV) environment to 3'-terminal TSV and AMV RNA fragments. The arginine-rich TSV coat protein peptide binds viral RNA with lower affinity than the lysine-rich AMV coat protein peptides; however, the ribose moieties protected from hydroxyl radical attack by the two different peptides are localized in the same area of the predicted RNA structures. When included in an infectious inoculum, both AMV and TSV 3'-terminal RNA fragments inhibited AMV RNA replication, while variant RNAs unable to bind coat protein did not affect replication significantly. The data suggest that RNA binding and genome activation functions may reside in the consensus RNA binding sequence that is apparently unique to AMV and ilarvirus coat proteins.
Collapse
|
research-article |
27 |
19 |
24
|
Gwaltney SL, Imade HM, Li Q, Gehrke L, Credo RB, Warner RB, Lee JY, Kovar P, Frost D, Ng SC, Sham HL. Novel sulfonate derivatives: potent antimitotic agents. Bioorg Med Chem Lett 2001; 11:1671-3. [PMID: 11425534 DOI: 10.1016/s0960-894x(01)00279-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis and biological evaluation of novel sulfonate analogues of E-7010 are reported. Several of the compounds are potent inhibitors of cell proliferation and tubulin polymerization. Importantly, these compounds are also active against P-glycoprotein positive (+) cancer cells, which are resistant to many other antitumor agents.
Collapse
|
|
24 |
17 |
25
|
Bast RE, Garfield SA, Gehrke L, Ilan J. Coordination of ribosome content and polysome formation during estradiol stimulation of vitellogenin synthesis in immature male chick livers. Proc Natl Acad Sci U S A 1977; 74:3133-7. [PMID: 269377 PMCID: PMC431465 DOI: 10.1073/pnas.74.8.3133] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To elucidate the mechanisms by which protein synthesis is affected by estradiol, we characterized cockerel liver polysomal profiles during hormone induction and withdrawal. We describe a method for isolating intact polysomes which results in preparations that are stable even after storage in solution at 10 degrees for 16 hr. In addition, our procedure eliminates the necessity for starving animals prior to experiments. Recovery of radioactive polysomes indicated that yield is about 90% and that our polysomal preparations appear to represent polysome distribution in vivo. Using this approach we show that estradiol injection stimulates ribosome content 6-fold and that formation of polysomes is coincident with the induction of vitellogenin synthesis. We also demonstrate that the size and number of polysomes increase and decrease in a coordinated fashion with the rate of vitellogenin synthesis. The kinetics of ribosome synthesis and the fact that at least 80% of the newly synthesized ribosomes are directly recruited into polysomes indicate that ribosomes might be limiting the rate of protein synthesis during the stimulatory phase of the hormone cycle.
Collapse
|
research-article |
48 |
17 |