1
|
Liepinsh E, Ilag LL, Otting G, Ibáñez CF. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J 1997; 16:4999-5005. [PMID: 9305641 PMCID: PMC1170134 DOI: 10.1093/emboj/16.16.4999] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The intracellular domain of the p75 neurotrophin receptor (p75ICD) lacks catalytic activity but contains a motif similar to death domains found in the cytoplasmic regions of members of the tumor necrosis factor receptor family and their downstream targets. Although some aspects of the signaling pathways downstream of p75 have been elucidated recently, mechanisms of receptor activation and proximal signaling events are unknown. Here we report the nuclear magnetic resonance (NMR) structure of the 145 residue long p75ICD. The death domain of p75ICD consists of two perpendicular sets of three helices packed into a globular structure. The polypeptide segment connecting the transmembrane and death domains as well as the serine/threonine-rich C-terminal end are highly flexible in p75ICD. Unlike the death domains involved in signaling by the TNF receptor and Fas, p75ICD does not self-associate in solution. A surface area devoid of charged residues in the p75ICD death domain may indicate a potential site of interaction with downstream targets.
Collapse
|
research-article |
28 |
224 |
2
|
Stenberg F, Chovanec P, Maslen SL, Robinson CV, Ilag LL, von Heijne G, Daley DO. Protein Complexes of the Escherichia coli Cell Envelope. J Biol Chem 2005; 280:34409-19. [PMID: 16079137 DOI: 10.1074/jbc.m506479200] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein complexes are an intrinsic aspect of life in the membrane. Knowing which proteins are assembled in these complexes is therefore essential to understanding protein function(s). Unfortunately, recent high throughput protein interaction studies have failed to deliver any significant information on proteins embedded in the membrane, and many membrane protein complexes remain ill defined. In this study, we have optimized the blue native-PAGE technique for the study of membrane protein complexes in the inner and outer membranes of Escherichia coli. In combination with second dimension SDS-PAGE and mass spectrometry, we have been able to identify 43 distinct protein complexes. In addition to a number of well characterized complexes, we have identified known and orphan proteins in novel oligomeric states. For two orphan proteins, YhcB and YjdB, our findings enable a tentative functional assignment. We propose that YhcB is a hitherto unidentified additional subunit of the cytochrome bd oxidase and that YjdB, which co-localizes with the ZipA protein, is involved in cell division. Our reference two-dimensional blue native-SDS-polyacrylamide gels will facilitate future studies of the assembly and composition of E. coli membrane protein complexes during different growth conditions and in different mutant backgrounds.
Collapse
|
|
20 |
174 |
3
|
McKenna R, Xia D, Willingmann P, Ilag LL, Krishnaswamy S, Rossmann MG, Olson NH, Baker TS, Incardona NL. Atomic structure of single-stranded DNA bacteriophage phi X174 and its functional implications. Nature 1992; 355:137-43. [PMID: 1370343 PMCID: PMC4167681 DOI: 10.1038/355137a0] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanism of DNA ejection, viral assembly and evolution are related to the structure of bacteriophage phi X174. The F protein forms a T = 1 capsid whose major folding motif is the eight-stranded antiparallel beta barrel found in many other icosahedral viruses. Groups of 5 G proteins form 12 dominating spikes that enclose a hydrophilic channel containing some diffuse electron density. Each G protein is a tight beta barrel with its strands running radially outwards and with a topology similar to that of the F protein. The 12 'pilot' H proteins per virion may be partially located in the putative ion channel. The small, basic J protein is associated with the DNA and is situated in an interior cleft of the F protein. Tentatively, there are three regions of partially ordered DNA structure,
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
33 |
167 |
4
|
McKay AR, Ruotolo BT, Ilag LL, Robinson CV. Mass measurements of increased accuracy resolve heterogeneous populations of intact ribosomes. J Am Chem Soc 2007; 128:11433-42. [PMID: 16939266 DOI: 10.1021/ja061468q] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is established that noncovalent complexes can be maintained both during and after electrospray and that assemblies of increasing size and complexity often lead to broadened peaks in mass spectra. This broadening arises from the tendency of large protein assemblies to form adducts with salts and is compounded when complexes are isolated directly from cells, without the full protein complement. To investigate the origins of this broadening in mass spectral peaks and to develop the optimal method for analyzing mass spectra of large protein complexes, we have carried out a systematic investigation of a series of noncovalent complexes representing a range of different sizes and architectures. We establish a positive correlation between peak width and the increased mass observed and show that this correlation is independent of the instrumental parameters employed. Using this relationship we show that we can determine masses of both 30S subunits and intact 2.3 MDa 70S ribosomes from Thermus thermophilus. The masses of both particles are consistent with multiple populations of ribosomes. To identify these various populations we combine simulated mass spectra of ribosomes, with and without the full protein complement, and estimate the extent of adducts from our study of known complexes. The results allow us to determine the contribution of the different subpopulations to the overall mass spectrum. We confirm the existence of these subpopulations using tandem mass spectrometry of intact 30S subunits. Overall, the results show that, rather than uniform particles, gas-phase ribosomes consist of a number of discrete populations. More generally, the results establish a rigorous procedure for accurate mass measurement and spectral analysis of heterogeneous macromolecular assemblies.
Collapse
|
Journal Article |
18 |
149 |
5
|
Callaghan AJ, Aurikko JP, Ilag LL, Günter Grossmann J, Chandran V, Kühnel K, Poljak L, Carpousis AJ, Robinson CV, Symmons MF, Luisi BF. Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. J Mol Biol 2004; 340:965-79. [PMID: 15236960 DOI: 10.1016/j.jmb.2004.05.046] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 05/21/2004] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
The hydrolytic endoribonuclease RNase E, which is widely distributed in bacteria and plants, plays key roles in mRNA degradation and RNA processing in Escherichia coli. The enzymatic activity of RNase E is contained within the conserved amino-terminal half of the 118 kDa protein, and the carboxy-terminal half organizes the RNA degradosome, a multi-enzyme complex that degrades mRNA co-operatively and processes ribosomal and other RNA. The study described herein demonstrates that the carboxy-terminal domain of RNase E has little structure under native conditions and is unlikely to be extensively folded within the degradosome. However, three isolated segments of 10-40 residues, and a larger fourth segment of 80 residues, are predicted to be regions of increased structural propensity. The larger of these segments appears to be a protein-RNA interaction site while the other segments possibly correspond to sites of self-recognition and interaction with the other degradosome proteins. The carboxy-terminal domain of RNase E may thus act as a flexible tether of the degradosome components. The implications of these and other observations for the organization of the RNA degradosome are discussed.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
133 |
6
|
Ilag LL, Videler H, McKay AR, Sobott F, Fucini P, Nierhaus KH, Robinson CV. Heptameric (L12)6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria. Proc Natl Acad Sci U S A 2005; 102:8192-7. [PMID: 15923259 PMCID: PMC1149426 DOI: 10.1073/pnas.0502193102] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribosomes are universal translators of the genetic code into protein and represent macromolecular structures that are asymmetric, often heterogeneous, and contain dynamic regions. These properties pose considerable challenges for modern-day structural biology. Despite these obstacles, high-resolution x-ray structures of the 30S and 50S subunits have revealed the RNA architecture and its interactions with proteins for ribosomes from Thermus thermophilus, Deinococcus radiodurans, and Haloarcula marismortui. Some regions, however, remain inaccessible to these high-resolution approaches because of their high conformational dynamics and potential heterogeneity, specifically the so-called L7/L12 stalk complex. This region plays a vital role in protein synthesis by interacting with GTPase factors in translation. Here, we apply tandem MS, an approach widely applied to peptide sequencing for proteomic applications but not previously applied to MDa complexes. Isolation and activation of ions assigned to intact 30S and 50S subunits releases proteins S6 and L12, respectively. Importantly, this process reveals, exclusively while attached to ribosomes, a phosphorylation of L12, the protein located in multiple copies at the tip of the stalk complex. Moreover, through tandem MS we discovered a stoichiometry for the stalk protuberance on Thermus thermophilus and other thermophiles and contrast this assembly with the analogous one on ribosomes from mesophiles. Together with evidence for a potential interaction with the degradosome, these results show that important findings on ribosome structure, interactions, and modifications can be discovered by tandem MS, even on well studied ribosomes from Thermus thermophilus.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
119 |
7
|
Ibáñez CF, Ilag LL, Murray-Rust J, Persson H. An extended surface of binding to Trk tyrosine kinase receptors in NGF and BDNF allows the engineering of a multifunctional pan-neurotrophin. EMBO J 1993; 12:2281-93. [PMID: 8508763 PMCID: PMC413458 DOI: 10.1002/j.1460-2075.1993.tb05882.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Neurotrophin-mediated cell survival and differentiation of vertebrate neurons is caused by ligand-specific binding to the Trk family of tyrosine kinase receptors. However, sites in the neurotrophins responsible for the binding to Trk receptors and the mechanisms whereby this interaction results in receptor activation and biological activity are unknown. Here we show that in nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), discontinuous stretches of amino acid residues group together on one side of the neurotrophin dimer forming a continuous surface responsible for binding to and activation of TrkA and TrkB receptors. Two symmetrical surfaces are formed along the two-fold axis of the neurotrophin dimer providing a model for ligand-mediated receptor dimerization. Mutated neurotrophins inducing similar levels of receptor phosphorylation showed different biological activities, suggesting that structural differences in a ligand may result in dissimilar responses in a given tyrosine kinase receptor. Our results allowed us to combine structural elements from NGF, BDNF and neurotrophin-3 to engineer a pan-neurotrophin that efficiently activates all Trk receptors and displays multiple neurotrophic specificities.
Collapse
|
|
32 |
117 |
8
|
Dokland T, McKenna R, Ilag LL, Bowman BR, Incardona NL, Fane BA, Rossmann MG. Structure of a viral procapsid with molecular scaffolding. Nature 1997; 389:308-13. [PMID: 9305849 DOI: 10.1038/38537] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The assembly of a macromolecular structure proceeds along an ordered morphogenetic pathway, and is accomplished by the switching of proteins between discrete conformations as they are added to the nascent assembly. Scaffolding proteins often play a catalytic role in the assembly process, rather like molecular chaperones. Although macromolecular assembly processes are fundamental to all biological systems, they have been characterized most thoroughly in viral systems, such as the icosahedral Escherichia coli bacteriophage phiX174. The phiX174 virion contains the proteins F, G, H and J. During assembly, two scaffoldingproteins B and D are required for the formation of a 108S, 360-A-diameter procapsid from pentameric precursors containing the F, G and H proteins. The procapsid contains 240 copies of protein D, forming an external scaffold, and 60 copies each of the internal scaffolding protein B, the capsid protein F, and the spike protein G. Maturation involves packaging of DNA and J proteins and loss of protein B, producing a 132S intermediate. Subsequent removal of the external scaffold yields the mature virion. Both the F and G proteins have the eight-stranded antiparallel beta-sandwich motif common to many plant and animal viruses. Here we describe the structure of a procapsid-like particle at 3.5-A resolution, showing how the scaffolding proteins coordinate assembly of the virus by interactions with the F and G proteins, and showing that the F protein undergoes conformational changes during capsid maturation.
Collapse
|
|
28 |
114 |
9
|
Abstract
OBJECTIVE To describe risk factors associated with microalbuminuria (MA) in subjects with diabetes, investigate the predictive value of MA as a marker of risk for diabetic nephropathy (DN), and define risk factors associated with the development and progression of MA. RESEARCH DESIGN AND METHODS We conducted a prospective longitudinal study of 23 diabetic subjects with persistent MA and 209 diabetic subjects without MA who attended diabetes clinics at the University of Michigan Medical Center in 1989 and 1990. Both groups were examined at baseline and after 7 years. At baseline, urinary albumin-to-creatinine ratios were studied in random, first morning, and 24-h urine samples. At follow-up, a 12-h overnight urine sample was collected and analyzed for albumin and creatinine. At baseline, MA was defined by at least two separate urine specimens with albumin-to-creatinine ratios between 30 and 299 microg albumin per milligram of creatinine. RESULTS MA regressed in 56% of subjects with baseline MA without systematic application of corrective measures and developed in 16% of subjects without baseline MA. The predictive value positive of MA as a marker of risk for DN was 43%, and the predictive value negative was 77%. In the combined cohort, the incidence and progression of MA were significantly associated with poor glycemic control and duration of diabetes between 10 and 14 years. CONCLUSIONS MA may not be as sensitive and specific a predictor of DN as previously suggested. Other markers of risk for DN are needed for optimal clinical management.
Collapse
|
|
24 |
112 |
10
|
Ilag LL, Kumar AM, Söll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. THE PLANT CELL 1994; 6:265-75. [PMID: 7908550 PMCID: PMC160432 DOI: 10.1105/tpc.6.2.265] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
5-Aminolevulinic acid (ALA) is the universal precursor of tetrapyrroles, such as chlorophyll and heme. The major control of chlorophyll biosynthesis is at the step of ALA formation. In the chloroplasts of plants, as in Escherichia coli, ALA is derived from the glutamate of Glu-tRNA via the two-step C5 pathway. The first enzyme, Glu-tRNA reductase, catalyzes the reduction of Glu-tRNA to glutamate 1-semialdehyde with the release of intact tRNA. The second enzyme, glutamate 1-semialdehyde 2,1-aminomutase, converts glutamate 1-semialdehyde to ALA. To further examine ALA formation in plants, we isolated Arabidopsis genes that encode the enzymes of the C5 pathway via functional complementation of mutations in the corresponding genes of E. coli. The Glu-tRNA reductase gene was designated HEMA and the glutamate 1-semialdehyde 2,1-aminomutase gene, GSA1. Each gene contains two short introns (149 and 241 nucleotides for HEMA, 153 and 86 nucleotides for GSA1). The deduced amino acid sequence of the HEMA protein predicts a protein of 60 kD with substantial similarity (30 to 47% identity) to sequences derived from the known hemA genes from microorganisms that make ALA by the C5 pathway. Purified Arabidopsis HEMA protein has Glu-tRNA reductase activity. The GSA1 gene encodes a 50-kD protein whose deduced amino acid sequence shows extensive homology (55 to 78% identity) with glutamate 1-semialdehyde 2,1-aminomutase proteins from other species. RNA gel blot analyses indicated that transcripts for both genes are found in root, leaf, stem, and flower tissues and that their levels are dramatically elevated by light. Thus, light may regulate ALA, and hence chlorophyll formation, by exerting coordinated transcriptional control over both enzymes of the C5 pathway.
Collapse
|
Comparative Study |
31 |
108 |
11
|
Jiang L, Eriksson J, Lage S, Jonasson S, Shams S, Mehine M, Ilag LL, Rasmussen U. Diatoms: a novel source for the neurotoxin BMAA in aquatic environments. PLoS One 2014; 9:e84578. [PMID: 24392143 PMCID: PMC3879315 DOI: 10.1371/journal.pone.0084578] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/15/2013] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) or Lou Gehrig's disease is a neurological disorder linked to environmental exposure to a non-protein amino acid, β-N-methylamino-L-alanine (BMAA). The only organisms reported to be BMAA-producing, are cyanobacteria--prokaryotic organisms. In this study, we demonstrate that diatoms--eukaryotic organisms--also produce BMAA. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry revealed the occurrence of BMAA in six investigated axenic diatom cultures. BMAA was also detected in planktonic field samples collected on the Swedish west coast that display an overrepresentation of diatoms relative to cyanobacteria. Given the ubiquity of diatoms in aquatic environments and their central role as primary producers and the main food items of zooplankton, the use of filter and suspension feeders as livestock fodder dramatically increases the risk of human exposure to BMAA-contaminated food.
Collapse
|
research-article |
11 |
103 |
12
|
Harmer NJ, Ilag LL, Mulloy B, Pellegrini L, Robinson CV, Blundell TL. Towards a resolution of the stoichiometry of the fibroblast growth factor (FGF)-FGF receptor-heparin complex. J Mol Biol 2004; 339:821-34. [PMID: 15165853 DOI: 10.1016/j.jmb.2004.04.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 03/30/2004] [Accepted: 04/13/2004] [Indexed: 11/22/2022]
Abstract
The 22 members of the fibroblast growth factor (FGF) family have been implicated in cell proliferation, differentiation, survival, and migration. They are required for both development and maintenance of vertebrates, demonstrating an exquisite pattern of affinities for both protein and proteoglycan receptors. Recent crystal structures have suggested two models for the complex between FGFs, FGF receptors (FGFRs) and the proteoglycan heparan sulphate that mediates signalling, and have provided insight into how FGFs show differing affinities for the range of FGFRs. However, the physiological relevance of the two different models has not been made clear. Here, we demonstrate that the two complexes can be prepared from the same protein components, confirming that neither complex is the product of misfolded protein samples. Analyses of the complexes with mass spectrometry and analytical ultracentrifugation show that the species observed are consistent with the crystal structures formed using the two preparation protocols. This analysis supports the contention that both of the crystal structures reflect the state of the molecules in solution. Mass spectrometry of the complexes suggests that the stoichiometry of the complexes is 2 FGF1:2 FGFR2:1 heparin, regardless of the method used to prepare the complexes. These observations suggest that the two proposed complex architectures may both have relevance to the formation of an in vivo signalling complex, with a combination of the two interactions contributing to the formation of a larger focal complex.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
85 |
13
|
Rydén M, Murray-Rust J, Glass D, Ilag LL, Trupp M, Yancopoulos GD, McDonald NQ, Ibáñez CF. Functional analysis of mutant neurotrophins deficient in low-affinity binding reveals a role for p75LNGFR in NT-4 signalling. EMBO J 1995; 14:1979-90. [PMID: 7744005 PMCID: PMC398297 DOI: 10.1002/j.1460-2075.1995.tb07190.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The neurotrophins mediate their effects through binding to two classes of receptors, a tyrosine kinase receptor, member of the Trk family, and the low-affinity neurotrophin receptor, p75LNGFR, of as yet undefined signalling capacity. The need for a two-component receptor system in neurotrophin signalling is still not understood. Using site-directed mutagenesis, we have identified positively charged surfaces in BDNF, NT-3 and NT-4 that mediate binding to p75LNGFR. Arg31 and His33 in NT-3, and Arg34 and Arg36 in NT-4, located in an exposed hairpin loop, were found to be essential for binding to p75LNGFR. In BDNF, however, positively charged residues critical for p75LNGFR binding (Lys95, Lys96 and Arg97) were found in a spatially close but distinct loop region. Models of each neurotrophin were built using the coordinates of NGF. Analysis of their respective electrostatic surface potentials revealed similar clusters of positively charged residues in each neurotrophin but with differences in their precise spatial locations. Disruption of this positively charged interface abolished binding to p75LNGFR but not activation of cognate Trk receptors or biological activity in Trk-expressing fibroblasts. Unexpectedly, loss of low-affinity binding in NT-4, but not in BDNF or NT-3, affected receptor activation and biological activity in neuronal cells co-expressing p75LNGFR and TrkB, suggesting a role for p75LNGFR in regulating biological responsiveness to NT-4. These findings reveal a possible mechanism of ligand discrimination by p75LNGFR and suggest this receptor may selectively modulate the biological actions of specific neurotrophin family members.
Collapse
|
|
30 |
84 |
14
|
Spáčil Z, Eriksson J, Jonasson S, Rasmussen U, Ilag LL, Bergman B. Analytical protocol for identification of BMAA and DAB in biological samples. Analyst 2010; 135:127-32. [DOI: 10.1039/b921048b] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
15 |
79 |
15
|
Rosenstock J, Hollander P, Bhargava A, Ilag LL, Pollom RK, Zielonka JS, Huster WJ, Prince MJ. Similar efficacy and safety of LY2963016 insulin glargine and insulin glargine (Lantus®) in patients with type 2 diabetes who were insulin-naïve or previously treated with insulin glargine: a randomized, double-blind controlled trial (the ELEMENT 2 study). Diabetes Obes Metab 2015; 17:734-41. [PMID: 25931141 DOI: 10.1111/dom.12482] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022]
Abstract
AIMS To compare the efficacy and safety of LY2963016 insulin glargine (LY IGlar) and the reference product (Lantus(®)) insulin glargine (IGlar) in combination with oral antihyperglycaemic medications in patients with type 2 diabetes (T2D). METHODS This phase III, randomized, double-blind, 24-week study enrolled patients with T2D who were insulin-naïve [glycated haemoglobin (HbA1c) ≥7 and ≤11.0%] or previously on IGlar (HbA1c ≤11%) and treated with ≥2 oral antihyperglycaemic medications. Patients were randomized to receive once-daily LY IGlar (n = 376) or IGlar (n = 380) for 24 weeks. The primary efficacy outcome was to test the non-inferiority (0.4% and then 0.3% margin) of LY IGlar to IGlar, as measured by change in HbA1c from baseline to 24 weeks. RESULTS Both treatment groups had similar and significant (p < 0.001) within-group decreases in mean HbA1c values from baseline. LY IGlar met non-inferiority criteria compared with IGlar for change in HbA1c from baseline [-1.29 vs -1.34%; respectively, least-squares mean difference 0.052% (95% confidence interval -0.070 to 0.175); p > 0.05]. There were no treatment differences (p > 0.05) in fasting plasma glucose, proportion of patients reaching HbA1c <7% or insulin dose at 24 weeks. Adverse events, allergic reactions, weight change, hypoglycaemia and insulin antibodies were similar between treatment groups. Similar findings were observed in patients who were insulin-naïve or previously treated with IGlar at baseline. CONCLUSIONS Both LY IGlar and IGlar, when used in combination with oral antihyperglycaemic medications, provided effective and similar glucose control with similar safety profiles in patients with T2D.
Collapse
|
Clinical Trial, Phase III |
10 |
78 |
16
|
McKenna R, Ilag LL, Rossmann MG. Analysis of the single-stranded DNA bacteriophage phi X174, refined at a resolution of 3.0 A. J Mol Biol 1994; 237:517-43. [PMID: 8158636 DOI: 10.1006/jmbi.1994.1253] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structure of the bacteriophage phi X174 was examined in a 2.7 A resolution map and refined, using 6.0 A to 3.0 A resolution data with F > or = 5 sigma (F). The final R-factor was 20.9% and the root-mean-square deviation from idealized bond lengths was 0.021 A. The Hendrickson-Konnert refinement was restrained by the phases derived from the molecular replacement icosahedral averaging procedure. The mature phage capsid consists of 60 copies of the F protein with 426 amino acids, the G protein with 175 amino acids and the J protein with 37 amino acids, as well as 12 copies of the H protein with 328 amino acids. The entire polypeptide chain of the F and G protein, all but the first N-terminal residue of the J protein, and 178 solvent molecules were included in the refinement calculations. The secondary structural features of the F, G and J proteins and their interactions with each other are described. The majority of the protein-protein interactions are between the icosahedral 5-fold related interfaces of the F and of the G proteins. These pentameric units of the F and G proteins form the 9S and 6S assembly intermediates, respectively. The J protein lacks any secondary structure and acts as a linking arm between the icosahedral 5-fold related F proteins. Water molecules were introduced only after phase extension to 2.7 A resolution had been completed. The F protein is associated with lower "thermal" parameters and exhibits greater water order in its environment than the G and J proteins. The largest thermal parameters occur in residues on the viral surface. The solvent contributes to the interactions between the proteins. There is an interface of solvent molecules between the F and the G pentamers which stabilizes the pentameric G protein spikes in a crater centered at each of the icosahedral 5-fold vertices of the F protein capsid. Sequence alignments of the F, G and J amino acid sequences for the homologous bacteriophages G4, alpha 3, phi K and phi X174 with respect to the phi X174 structure demonstrated the conservation of functionally important residues on the viral surface.
Collapse
|
|
31 |
69 |
17
|
Österlund N, Moons R, Ilag LL, Sobott F, Gräslund A. Native Ion Mobility-Mass Spectrometry Reveals the Formation of β-Barrel Shaped Amyloid-β Hexamers in a Membrane-Mimicking Environment. J Am Chem Soc 2019; 141:10440-10450. [DOI: 10.1021/jacs.9b04596] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
|
6 |
63 |
18
|
Callaghan AJ, Grossmann JG, Redko YU, Ilag LL, Moncrieffe MC, Symmons MF, Robinson CV, McDowall KJ, Luisi BF. Quaternary Structure and Catalytic Activity of the Escherichia coli Ribonuclease E Amino-Terminal Catalytic Domain. Biochemistry 2003; 42:13848-55. [PMID: 14636052 DOI: 10.1021/bi0351099] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNase E is an essential endoribonuclease that plays a central role in the processing and degradation of RNA in Escherichia coli and other bacteria. Most endoribonucleases have been shown to act distributively; however, Feng et al. [(2002) Proc. Natl. Acad. Sci. U.S.A. 99, 14746-14751] have recently found that RNase E acts via a scanning mechanism. A structural explanation for the processivity of RNase E is provided here, with our finding that the conserved catalytic domain of E. coli RNase E forms a homotetramer. Nondissociating nanoflow-electrospray mass spectrometry suggests that the tetramer binds up to four molecules of a specific substrate RNA analogue. The tetrameric assembly of the N-terminal domain of RNase E is consistent with crystallographic analyses, which indicate that the tetramer possesses approximate D(2) dihedral symmetry. Using X-ray solution scattering data and symmetry restraints, a solution shape is calculated for the tetramer. This shape, together with limited proteolysis data, suggests that the S1-RNA binding domains of RNase E lie on the periphery of the tetramer. These observations have implications for the structure and function of the RNase E/RNase G ribonuclease family and for the assembly of the E. coli RNA degradosome, in which RNase E is the central component.
Collapse
|
|
22 |
59 |
19
|
Blevins TC, Dahl D, Rosenstock J, Ilag LL, Huster WJ, Zielonka JS, Pollom RK, Prince MJ. Efficacy and safety of LY2963016 insulin glargine compared with insulin glargine (Lantus®) in patients with type 1 diabetes in a randomized controlled trial: the ELEMENT 1 study. Diabetes Obes Metab 2015; 17:726-33. [PMID: 25974640 DOI: 10.1111/dom.12496] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/27/2022]
Abstract
AIMS To compare the efficacy and safety of LY2963016 insulin glargine (LY IGlar) and the reference product (Lantus®) insulin glargine (IGlar) in patients with type 1 diabetes (T1D). METHODS This phase III, randomized, open-label, 52-week study enrolled patients with T1D [glycated haemoglobin (HbA1c) ≤11%] being treated with basal (once-daily) and bolus insulin. Patients were randomized to receive once-daily LY IGlar (n = 268) or IGlar (n = 267) in combination with mealtime insulin lispro for 52 weeks. The primary efficacy outcome was to test the non-inferiority (0.4% and then 0.3% margin) of LY IGlar to IGlar as measured by change in HbA1c from baseline to 24 weeks. RESULTS Both treatment groups had similar and significant (p < 0.001) within-group decreases in mean HbA1c values from baseline. LY IGlar met the non-inferiority criteria compared with IGlar for change in HbA1c from baseline to 24 weeks [-0.35 vs -0.46%, least-squares mean difference 0.108% (95% confidence interval -0.002 to 0.219), p > 0.05]. There were no significant (p > 0.05) treatment differences in other efficacy measures, including proportion of patients reaching HbA1c <7%, daily mean blood glucose, and insulin dose at 24 and 52 weeks. At 52 weeks, similar findings were observed between LY IGlar and IGlar for safety outcomes, including adverse events, allergic reactions, hypoglycaemia, weight change and insulin antibodies. CONCLUSIONS Both LY IGlar and IGlar, when used in combination with mealtime insulin lispro, provided effective and similar glucose control and similar safety profiles.
Collapse
|
Clinical Trial, Phase III |
10 |
59 |
20
|
Jiang L, Aigret B, De Borggraeve WM, Spacil Z, Ilag LL. Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples. Anal Bioanal Chem 2012; 403:1719-30. [PMID: 22526645 DOI: 10.1007/s00216-012-5966-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/13/2012] [Accepted: 03/22/2012] [Indexed: 11/25/2022]
Abstract
Algal blooms are well-known sources of acute toxic agents that can be lethal to aquatic organisms. However, one such toxin, β-N-methylamino-L-alanine (BMAA) is also believed to cause amyotrophic lateral sclerosis, also known as Lou Gehrig's disease. The detection and identification of BMAA in natural samples were challenging until the recent introduction of reliable methods. However, the issue of potential interference from unknown isomers of BMAA present in samples has not yet been thoroughly investigated. Based on a systematic database search, we generated a list of all theoretical BMAA structural isomers, which was subsequently narrowed down to seven possible interfering compounds for further consideration. The seven possible candidates satisfied the requirements of chemical stability and also shared important structural domains with BMAA. Two of the candidates, 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl) glycine (AEG) have recently been studied in the context of BMAA. A further isomer, β-amino-N-methyl-alanine (BAMA), has to be considered because it can potentially yield the fragment ion, which is diagnostic for BMAA. Here, we report the synthesis and analysis of BAMA, together with AEG, DAB, and other isomers that are of interest in the separation and detection of BMAA in biological samples by using either high-performance liquid chromatography or ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. We detected for the first time BAMA in blue mussel and oyster samples. This work extends the previously developed liquid chromatography-tandem mass spectrometry platform Spacil et al. (Analyst 135:127, 2010) to allow BMAA isomers to be distinguished, improving the detection and identification of this important amino acid.
Collapse
|
Journal Article |
13 |
58 |
21
|
Ilag LL, Jahn D, Eggertsson G, Söll D. The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. J Bacteriol 1991; 173:3408-13. [PMID: 2045363 PMCID: PMC207952 DOI: 10.1128/jb.173.11.3408-3413.1991] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
delta-Aminolevulinic acid (ALA), the first committed precursor of porphyrin biosynthesis, is formed in Escherichia coli by the C5 pathway in a three-step, tRNA-dependent transformation from glutamate. The first two enzymes of this pathway, glutamyl-tRNA synthetase and Glu-tRNA reductase, are known in E. coli (J. Lapointe and D. Söll, J. Biol. Chem. 247:4966-4974, 1972; D. Jahn, U. Michelsen, and D. Söll, J. Biol. Chem. 266:2542-2548, 1991). Here we present the mapping and cloning of the gene for the third enzyme, glutamate 1-semialdehyde (GSA) aminotransferase, and an initial characterization of the purified enzyme. Ethylmethane sulfonate-induced mutants of E. coli AB354 which required ALA for growth were isolated by selection for respiration-defective strains resistant to the aminoglycoside antibiotic kanamycin. Two mutations were mapped to min 4 at a locus named hemL. Map positions and resulting phenotypes suggest that hemL may be identical with the earlier described porphyrin biosynthesis mutation popC. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding clone pLC4-43 of the Clarke-Carbon bank (L. Clarke and J. Carbon, Cell 9:91-99, 1976) allowed the isolation of the gene. Physical mapping showed that hemL mapped clockwise next to fhuB. The hemL gene product was overexpressed and purified to apparent homogeneity. The pure protein efficiently converted GSA to ALA. The reaction was stimulated by the addition of pyridoxal 5' -phosphate or pyridoxamine 5' -phosphate and inhibited by gabaculine or aminooxyacetic acid. The molecular mass of the purified GSA aminotransferase under denaturing conditions was 40,000 Da, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has apparent native molecular mass of approximately 80,000 Da, as determined by rate zonal sedimentation on glycerol gradients and molecular sieving through Superose 12, which indicates a homodimeric alpha2, structure of the protein.
Collapse
|
research-article |
34 |
58 |
22
|
Ilag LL, Ubarretxena-Belandia I, Tate CG, Robinson CV. Drug Binding Revealed by Tandem Mass Spectrometry of a Protein−Micelle Complex. J Am Chem Soc 2004; 126:14362-3. [PMID: 15521749 DOI: 10.1021/ja0450307] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein-micelle complex formed between the protein EmrE and the lipid dodecylmaltoside has been examined by mass spectrometry. The results show that despite the unfavorable hydrophobic environment in the mass spectrometer it is possible to preserve protein submicelle complexes in the gas phase. The peaks assigned to the submicelle complexes are broad in nature and consistent with a heterogeneous distribution of lipid molecules attached to the protein complex. As such, the spectrum cannot be interpreted. To simplify this complexity we used a tandem mass spectrometry procedure in which discrete m/z values are isolated from the peak and subjected to collision-induced dissociation. These spectra reveal clusters of DDM molecules as well as sequential release of TPP+ and EmrE from the complex as the collision cell voltage is raised. Taken together, the results provide direct evidence for drug binding within a relevant gas-phase protein-micelle complex.
Collapse
|
|
21 |
56 |
23
|
Maddalo G, Stenberg-Bruzell F, Götzke H, Toddo S, Björkholm P, Eriksson H, Chovanec P, Genevaux P, Lehtiö J, Ilag LL, Daley DO. Systematic Analysis of Native Membrane Protein Complexes inEscherichia coli. J Proteome Res 2011; 10:1848-59. [DOI: 10.1021/pr101105c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
14 |
51 |
24
|
Ilag LL, Jahn D. Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochemistry 1992; 31:7143-51. [PMID: 1643048 DOI: 10.1021/bi00146a016] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glutamate 1-semialdehyde aminotransferase (glutamate 1-semialdehyde 2,1-aminomutase; EC 5.4.3.8; GSA-AT) catalyzes the transfer of the amino group on carbon 2 of glutamate 1-semialdehyde (GSA) to the neighboring carbon 1 to form delta-aminolevulinic acid (ALA). To gain insight into the mechanism of this enzyme, possible intermediates were tested with purified enzyme and the reaction sequence was followed spectroscopically. While 4,5-dioxovaleric acid (DOVA) was efficiently converted to ALA by the pyridoxamine 5'-phosphate (PMP) form of the enzyme, 4,5-diaminovaleric acid (DAVA) was a substrate for the pyridoxal 5'-phosphate (PLP) form of GSA-AT. Thus, both substances are reaction intermediates. The purified enzyme showed an absorption spectrum with a peak around 338 nm. Addition of PLP led to increased absorption at 338 nm and a new peak around 438 nm. Incubation of the purified enzyme with PMP resulted in an additional absorption peak at 350 nm. The reaction of the PLP and PMP form of the enzyme with GSA allowed the detection of a series of peaks which varied in their intensities in a time-dependent manner. The most drastic changes to the spectrum that were observed during the reaction sequence were at 495 and 540 nm. Some of the detected absorption bands during GSA-AT catalysis were previously described for several other aminotransferases, indicating the relationship of the mechanisms. The reaction of the PMP form of the enzyme with DOVA resulted in a similar spectrum as described above, while the spectrum for the conversion of DAVA by the PLP form of the enzyme indicated a different mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
33 |
50 |
25
|
Abstract
We have compared micelles, reverse micelles, and reverse micelles encapsulating myoglobin using electrospray mass spectrometry. To enable a direct comparison, the same surfactant (cetyltrimethylammonium bromide (CTAB)) was used in each case and micelle formation was controlled by manipulating the aqueous and organic phases. Tandem mass spectra of the resulting micelle preparations reveal differences in the ions that dissociate: those that dissociate from regular micelles have undergone >90% exchange of bromide ions from the headgroup with acetate ions from bulk solvent. By contrast, for reverse micelles, ions are detected without exchange of bromide ions from the headgroup, consistent with their protection in the core of the micellar structure. Tandem mass spectra of micelles and reverse micelles reveal polydispersed assemblies containing several hundred CTAB molecules, indicating the coalescence of the micellar systems to form large assemblies. For reverse micelles incorporating myoglobin, spectra are consistent with one holo myogolobin molecule in association with approximately 270 CTAB molecules. Overall, therefore, our results show that the solution-phase orientation of surfactants is preserved during electrospray and are consistent with interactions being maintained between surfactants and an encapsulated protein.
Collapse
|
|
18 |
48 |