1
|
Janelidze S, Teunissen CE, Zetterberg H, Allué JA, Sarasa L, Eichenlaub U, Bittner T, Ovod V, Verberk IMW, Toba K, Nakamura A, Bateman RJ, Blennow K, Hansson O. Head-to-Head Comparison of 8 Plasma Amyloid-β 42/40 Assays in Alzheimer Disease. JAMA Neurol 2021; 78:1375-1382. [PMID: 34542571 PMCID: PMC8453354 DOI: 10.1001/jamaneurol.2021.3180] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Importance Blood-based tests for brain amyloid-β (Aβ) pathology are needed for widespread implementation of Alzheimer disease (AD) biomarkers in clinical care and to facilitate patient screening and monitoring of treatment responses in clinical trials. Objective To compare the performance of plasma Aβ42/40 measured using 8 different Aβ assays when detecting abnormal brain Aβ status in patients with early AD. Design, Setting, and Participants This study included 182 cognitively unimpaired participants and 104 patients with mild cognitive impairment from the BioFINDER cohort who were enrolled at 3 different hospitals in Sweden and underwent Aβ positron emission tomography (PET) imaging and cerebrospinal fluid (CSF) and plasma collection from 2010 to 2014. Plasma Aβ42/40 was measured using an immunoprecipitation-coupled mass spectrometry developed at Washington University (IP-MS-WashU), antibody-free liquid chromatography MS developed by Araclon (LC-MS-Arc), and immunoassays from Roche Diagnostics (IA-Elc); Euroimmun (IA-EI); and Amsterdam University Medical Center, ADx Neurosciences, and Quanterix (IA-N4PE). Plasma Aβ42/40 was also measured using an IP-MS-based method from Shimadzu in 200 participants (IP-MS-Shim) and an IP-MS-based method from the University of Gothenburg (IP-MS-UGOT) and another immunoassay from Quanterix (IA-Quan) among 227 participants. For validation, 122 participants (51 cognitively normal, 51 with mild cognitive impairment, and 20 with AD dementia) were included from the Alzheimer Disease Neuroimaging Initiative who underwent Aβ-PET and plasma Aβ assessments using IP-MS-WashU, IP-MS-Shim, IP-MS-UGOT, IA-Elc, IA-N4PE, and IA-Quan assays. Main Outcomes and Measures Discriminative accuracy of plasma Aβ42/40 quantified using 8 different assays for abnormal CSF Aβ42/40 and Aβ-PET status. Results A total of 408 participants were included in this study. In the BioFINDER cohort, the mean (SD) age was 71.6 (5.6) years and 49.3% of the cohort were women. When identifying participants with abnormal CSF Aβ42/40 in the whole cohort, plasma IP-MS-WashU Aβ42/40 showed significantly higher accuracy (area under the receiver operating characteristic curve [AUC], 0.86; 95% CI, 0.81-0.90) than LC-MS-Arc Aβ42/40, IA-Elc Aβ42/40, IA-EI Aβ42/40, and IA-N4PE Aβ42/40 (AUC range, 0.69-0.78; P < .05). Plasma IP-MS-WashU Aβ42/40 performed significantly better than IP-MS-UGOT Aβ42/40 and IA-Quan Aβ42/40 (AUC, 0.84 vs 0.68 and 0.64, respectively; P < .001), while there was no difference in the AUCs between IP-MS-WashU Aβ42/40 and IP-MS-Shim Aβ42/40 (0.87 vs 0.83; P = .16) in the 2 subcohorts where these biomarkers were available. The results were similar when using Aβ-PET as outcome. Plasma IPMS-WashU Aβ42/40 and IPMS-Shim Aβ42/40 showed highest coefficients for correlations with CSF Aβ42/40 (r range, 0.56-0.65). The BioFINDER results were replicated in the Alzheimer Disease Neuroimaging Initiative cohort (mean [SD] age, 72.4 [5.4] years; 43.4% women), where the IP-MS-WashU assay performed significantly better than the IP-MS-UGOT, IA-Elc, IA-N4PE, and IA-Quan assays but not the IP-MS-Shim assay. Conclusions and Relevance The results from 2 independent cohorts indicate that certain MS-based methods performed better than most of the immunoassays for plasma Aβ42/40 when detecting brain Aβ pathology.
Collapse
|
research-article |
4 |
280 |
2
|
Janelidze S, Palmqvist S, Leuzy A, Stomrud E, Verberk IMW, Zetterberg H, Ashton NJ, Pesini P, Sarasa L, Allué JA, Teunissen CE, Dage JL, Blennow K, Mattsson-Carlgren N, Hansson O. Detecting amyloid positivity in early Alzheimer's disease using combinations of plasma Aβ42/Aβ40 and p-tau. Alzheimers Dement 2022; 18:283-293. [PMID: 34151519 DOI: 10.1002/alz.12395] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION We studied usefulness of combining blood amyloid beta (Aβ)42/Aβ40, phosphorylated tau (p-tau)217, and neurofilament light (NfL) to detect abnormal brain Aβ deposition in different stages of early Alzheimer's disease (AD). METHODS Plasma biomarkers were measured using mass spectrometry (Aβ42/Aβ40) and immunoassays (p-tau217 and NfL) in cognitively unimpaired individuals (CU, N = 591) and patients with mild cognitive impairment (MCI, N = 304) from two independent cohorts (BioFINDER-1, BioFINDER-2). RESULTS In CU, a combination of plasma Aβ42/Aβ40 and p-tau217 detected abnormal brain Aβ status with area under the curve (AUC) of 0.83 to 0.86. In MCI, the models including p-tau217 alone or Aβ42/Aβ40 and p-tau217 had similar AUCs (0.86-0.88); however, the latter showed improved model fit. The models were implemented in an online application providing individualized risk assessments (https://brainapps.shinyapps.io/PredictABplasma/). DISCUSSION A combination of plasma Aβ42/Aβ40 and p-tau217 discriminated Aβ status with relatively high accuracy, whereas p-tau217 showed strongest associations with Aβ pathology in MCI but not in CU.
Collapse
|
|
3 |
101 |
3
|
Lacosta AM, Pascual-Lucas M, Pesini P, Casabona D, Pérez-Grijalba V, Marcos-Campos I, Sarasa L, Canudas J, Badi H, Monleón I, San-José I, Munuera J, Rodríguez-Gómez O, Abdelnour C, Lafuente A, Buendía M, Boada M, Tárraga L, Ruiz A, Sarasa M. Safety, tolerability and immunogenicity of an active anti-Aβ 40 vaccine (ABvac40) in patients with Alzheimer's disease: a randomised, double-blind, placebo-controlled, phase I trial. ALZHEIMERS RESEARCH & THERAPY 2018; 10:12. [PMID: 29378651 PMCID: PMC5789644 DOI: 10.1186/s13195-018-0340-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Background Immunotherapy targeting the amyloid-β (Aβ) peptide is a promising strategy for the treatment of Alzheimer’s disease (AD); however, none of the active or passive vaccines tested have been demonstrated to be effective to date. We have developed the first active vaccine against the C-terminal end of Aβ40, ABvac40, and assessed its safety and tolerability in a phase I clinical trial. Methods A randomised, double-blind, placebo-controlled, parallel-group, phase I study of ABvac40 was conducted with patients aged 50–85 years with mild to moderate AD. Participants were entered into three separate groups according to time of study entry and were randomly allocated to receive ABvac40 or placebo (overall ratio 2:1). The first group received two half-doses of ABvac40 or placebo, whereas the second and third groups received two and three full doses, respectively. All treatments were administered subcutaneously at 4-week intervals. Patients, carers and investigators were blind to treatment allocation throughout the study. The primary objective was to assess the safety and tolerability of ABvac40 by registering all adverse events (AEs). All patients who received at least one dose of treatment were included in the safety analysis. The secondary objective was to evaluate the immunogenicity of ABvac40 by titration of specific anti-Aβ40 antibodies in plasma. Results Twenty-four patients were randomly allocated: 16 patients to the ABvac40 group and 8 patients to the placebo group. All randomised patients completed the study, therefore the intention-to-treat and safety populations were identical. Overall, 71 AEs affecting 18 patients were recorded: 11 (69%) in the ABvac40 group and 7 (88%) in the placebo group (p = 0.6214). Neither incident vasogenic oedema nor sulcal effusion (amyloid-related imaging abnormalities corresponding to vasogenic oedema and sulcal effusions) nor microhaemorrhages (amyloid-related imaging abnormalities corresponding to microhaemorrhages and hemosiderin deposits) were detected throughout the study period in the ABvac40-treated patients. Eleven of 12 (~92%) individuals receiving three injections of ABvac40 developed specific anti-Aβ40 antibodies. Conclusions ABvac40 showed a favourable safety and tolerability profile while eliciting a consistent and specific immune response. An ongoing phase II clinical trial is needed to confirm these results and to explore the clinical efficacy of ABvac40. Trial registration ClinicalTrials.gov, NCT03113812. Retrospectively registered on 14 April 2017. Electronic supplementary material The online version of this article (10.1186/s13195-018-0340-8) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
71 |
4
|
Pérez-Grijalba V, Arbizu J, Romero J, Prieto E, Pesini P, Sarasa L, Guillen F, Monleón I, San-José I, Martínez-Lage P, Munuera J, Hernández I, Buendía M, Sotolongo-Grau O, Alegret M, Ruiz A, Tárraga L, Boada M, Sarasa M. Plasma Aβ42/40 ratio alone or combined with FDG-PET can accurately predict amyloid-PET positivity: a cross-sectional analysis from the AB255 Study. Alzheimers Res Ther 2019; 11:96. [PMID: 31787105 PMCID: PMC6886187 DOI: 10.1186/s13195-019-0549-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND To facilitate population screening and clinical trials of disease-modifying therapies for Alzheimer's disease, supportive biomarker information is necessary. This study was aimed to investigate the association of plasma amyloid-beta (Aβ) levels with the presence of pathological accumulation of Aβ in the brain measured by amyloid-PET. Both plasma Aβ42/40 ratio alone or combined with an FDG-PET-based biomarker of neurodegeneration were assessed as potential AD biomarkers. METHODS We included 39 cognitively normal subjects and 20 patients with mild cognitive impairment from the AB255 Study who had undergone PiB-PET scans. Total Aβ40 and Aβ42 levels in plasma (TP42/40) were quantified using ABtest kits. Subjects were dichotomized as Aβ-PET positive or negative, and the ability of TP42/40 to detect Aβ-PET positivity was assessed by logistic regression and receiver operating characteristic analyses. Combination of plasma Aβ biomarkers and FDG-PET was further assessed as an improvement for brain amyloidosis detection and diagnosis classification. RESULTS Eighteen (30.5%) subjects were Aβ-PET positive. TP42/40 ratio alone identified Aβ-PET status with an area under the curve (AUC) of 0.881 (95% confidence interval [CI] = 0.779-0.982). Discriminating performance of TP42/40 to detect Aβ-PET-positive subjects yielded sensitivity and specificity values at Youden's cutoff of 77.8% and 87.5%, respectively, with a positive predictive value of 0.732 and negative predictive value of 0.900. All these parameters improved after adjusting the model for significant covariates. Applying TP42/40 as the first screening tool in a sequential diagnostic work-up would reduce the number of Aβ-PET scans by 64%. Combination of both FDG-PET scores and plasma Aβ biomarkers was found to be the most accurate Aβ-PET predictor, with an AUC of 0.965 (95% CI = 0.913-0.100). CONCLUSIONS Plasma TP42/40 ratio showed a relevant and significant potential as a screening tool to identify brain Aβ positivity in preclinical and prodromal stages of Alzheimer's disease.
Collapse
|
Multicenter Study |
6 |
39 |
5
|
Pérez-Grijalba V, Romero J, Pesini P, Sarasa L, Monleón I, San-José I, Arbizu J, Martínez-Lage P, Munuera J, Ruiz A, Tárraga L, Boada M, Sarasa M. Plasma Aβ42/40 Ratio Detects Early Stages of Alzheimer's Disease and Correlates with CSF and Neuroimaging Biomarkers in the AB255 Study. JPAD-JOURNAL OF PREVENTION OF ALZHEIMERS DISEASE 2020; 6:34-41. [PMID: 30569084 DOI: 10.14283/jpad.2018.41] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Easily accessible biomarkers are needed for the early identification of individuals at risk of developing Alzheimer's disease (AD) in large population screening strategies. OBJECTIVES This study evaluated the potential of plasma β-amyloid (Aβ) biomarkers in identifying early stages of AD and predicting cognitive decline over the following two years. DESIGN Total plasma Aβ42/40 ratio (TP42/40) was determined in 83 cognitively normal individuals (CN) and 145 subjects with amnestic mild cognitive impairment (a-MCI) stratified by an FDG-PET AD-risk pattern. RESULTS Significant lower TP42/40 ratio was found in a-MCI patients compared to CN. Moreover, a-MCIs with a high-risk FDG-PET pattern for AD showed even lower plasma ratio levels. Low TP42/40 at baseline increased the risk of progression to dementia by 70%. Furthermore, TP42/40 was inversely associated with neocortical amyloid deposition (measured with PiB-PET) and was concordant with the AD biomarker profile in cerebrospinal fluid (CSF). CONCLUSIONS TP42/40 demonstrated value in the identification of individuals suffering a-MCI, in the prediction of progression to dementia, and in the detection of underlying AD pathology revealed by FDG-PET, Amyloid-PET and CSF biomarkers, being, thus, consistently associated with all the well-established indicators of AD.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
20 |
6
|
Sarasa L, Gallego C, Monleón I, Olvera A, Canudas J, Montañés M, Pesini P, Sarasa M. Cloning, sequencing and expression in the dog of the main amyloid precursor protein isoforms and some of the enzymes related with their processing. Neuroscience 2010; 171:1091-101. [DOI: 10.1016/j.neuroscience.2010.09.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 02/07/2023]
|
|
15 |
18 |
7
|
Pascual-Lucas M, Allué JA, Sarasa L, Fandos N, Castillo S, Terencio J, Sarasa M, Tartari JP, Sanabria Á, Tárraga L, Ruíz A, Marquié M, Seo SW, Jang H, Boada M. Clinical performance of an antibody-free assay for plasma Aβ42/Aβ40 to detect early alterations of Alzheimer's disease in individuals with subjective cognitive decline. Alzheimers Res Ther 2023; 15:2. [PMID: 36604729 PMCID: PMC9814201 DOI: 10.1186/s13195-022-01143-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Accessible and cost-effective diagnostic tools are urgently needed to accurately quantify blood biomarkers to support early diagnosis of Alzheimer's disease (AD). In this study, we investigated the ability of plasma amyloid-beta (Aβ)42/Aβ40 ratio measured by an antibody-free mass-spectrometric (MS) method, ABtest-MS, to detect early pathological changes of AD. METHODS This cohort study included data from the baseline and 2-year follow-up visits from the Fundació ACE Healthy Brain Initiative (FACEHBI) study. Plasma Aβ42/Aβ40 was measured with ABtest-MS and compared to 18F-Florbetaben PET as the reference standard (cutoff for early amyloid deposition of 13.5 centiloids). Cross-validation was performed in an independent DPUK-Korean cohort. Additionally, associations of plasma Aβ42/Aβ40 with episodic memory performance and brain atrophy were assessed. RESULTS The FACEHBI cohort at baseline included 200 healthy individuals with subjective cognitive decline (SCD), of which 36 (18%) were Aβ-PET positive. Plasma Aβ42/Aβ40 levels were significantly lower in Aβ-PET positive individuals (median [interquartile range, IQR], 0.215 [0.203-0.236]) versus Aβ-PET negative subjects (median [IQR], 0.261 [0.244-0.279]) (P < .001). Plasma Aβ42/Aβ40 was significantly correlated with Aβ-PET levels (rho = -0.390; P < .001) and identified Aβ-PET status with an area under the receiver operating characteristic curve (AUC) of 0.87 (95% confidence interval [CI], 0.80-0.93). A cutoff for the Aβ42/Aβ40 ratio of 0.241 (maximum Youden index) yielded a sensitivity of 86.1% and a specificity of 80.5%. These findings were cross-validated in an independent DPUK-Korean cohort (AUC 0.86 [95% CI 0.77-0.95]). Lower plasma Aβ42/Aβ40 ratio was associated with worse episodic memory performance and increased brain atrophy. Plasma Aβ42/Aβ40 at baseline predicted clinical conversion to mild cognitive impairment and longitudinal changes in amyloid deposition and brain atrophy at 2-year follow-up. CONCLUSIONS This study suggests that plasma Aβ42/Aβ40, as determined by this MS-based assay, has potential value as an accurate and cost-effective tool to identify individuals in the earliest stages of AD, supporting its implementation in clinical trials, preventative strategies and clinical practice.
Collapse
|
research-article |
2 |
18 |
8
|
Pannee J, Shaw LM, Korecka M, Waligorska T, Teunissen CE, Stoops E, Vanderstichele HMJ, Mauroo K, Verberk IMW, Keshavan A, Pesini P, Sarasa L, Pascual‐Lucas M, Fandos N, Allué J, Portelius E, Andreasson U, Yoda R, Nakamura A, Kaneko N, Yang S, Liu H, Palme S, Bittner T, Mawuenyega KG, Ovod V, Bollinger J, Bateman RJ, Li Y, Dage JL, Stomrud E, Hansson O, Schott JM, Blennow K, Zetterberg H. The global Alzheimer's Association round robin study on plasma amyloid β methods. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12242. [PMID: 34692980 PMCID: PMC8515356 DOI: 10.1002/dad2.12242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Blood-based assays to measure brain amyloid beta (Aβ) deposition are an attractive alternative to the cerebrospinal fluid (CSF)-based assays currently used in clinical settings. In this study, we examined different blood-based assays to measure Aβ and how they compare among centers and assays. METHODS Aliquots from 81 plasma samples were distributed to 10 participating centers. Seven immunological assays and four mass-spectrometric methods were used to measure plasma Aβ concentrations. RESULTS Correlations were weak for Aβ42 while Aβ40 correlations were stronger. The ratio Aβ42/Aβ40 did not improve the correlations and showed weak correlations. DISCUSSION The poor correlations for Aβ42 in plasma might have several potential explanations, such as the high levels of plasma proteins (compared to CSF), sensitivity to pre-analytical sample handling and specificity, and cross-reactivity of different antibodies. Different methods might also measure different pools of plasma Aβ42. We, however, hypothesize that greater correlations might be seen in future studies because many of the methods have been refined during completion of this study.
Collapse
|
research-article |
4 |
15 |
9
|
Pérez-Grijalba V, Pesini P, Allué JA, Sarasa L, Montañés M, Lacosta AM, Casabona D, San-José I, Boada M, Tárraga L, Ruiz A, Sarasa M. Aβ1-17 is a Major Amyloid-β Fragment Isoform in Cerebrospinal Fluid and Blood with Possible Diagnostic Value in Alzheimer's Disease. ACTA ACUST UNITED AC 2014; 43:47-56. [DOI: 10.3233/jad-140156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
11 |
12 |
10
|
Allué JA, Sarasa L, Izco M, Pérez-Grijalba V, Fandos N, Pascual-Lucas M, Ogueta S, Pesini P, Sarasa M. Outstanding Phenotypic Differences in the Profile of Amyloid-β between Tg2576 and APPswe/PS1dE9 Transgenic Mouse Models of Alzheimer's Disease. J Alzheimers Dis 2018; 53:773-85. [PMID: 27258422 PMCID: PMC4981901 DOI: 10.3233/jad-160280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
APPswe/PS1dE9 and Tg2576 are very common transgenic mouse models of Alzheimer’s disease (AD), used in many laboratories as tools to research the mechanistic process leading to the disease. In order to augment our knowledge about the amyloid-β (Aβ) isoforms present in both transgenic mouse models, we have developed two chromatographic methods, one acidic and the other basic, for the characterization of the Aβ species produced in the brains of the two transgenic mouse models. After immunoprecipitation and micro-liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry, 10 species of Aβ, surprisingly all of human origin, were detected in the brain of Tg2576 mouse, whereas 39 species, of both murine and human origin, were detected in the brain of the APP/PS1 mouse. To the best of our knowledge, this is the first study showing the identification of such a high number of Aβ species in the brain of the APP/PS1 transgenic mouse, whereas, in contrast, a much lower number of Aβ species were identified in the Tg2576 mouse. Therefore, this study brings to light a relevant phenotypic difference between these two popular mice models of AD.
Collapse
|
Journal Article |
7 |
10 |
11
|
Sarasa L, Allué JA, Pesini P, González-Martínez Á, Sarasa M. Identification of β-amyloid species in canine cerebrospinal fluid by mass spectrometry. Neurobiol Aging 2013; 34:2125-32. [DOI: 10.1016/j.neurobiolaging.2013.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/12/2013] [Accepted: 03/11/2013] [Indexed: 01/20/2023]
|
|
12 |
9 |
12
|
Pérez V, Sarasa L, Allue JA, Casabona D, Montanes M, Insua D, Badi H, Monleón I, Lacosta AM, San Jose I, Tarraga L, Boada‐Rovira M, Pesini P, Sarasa M. O2‐03‐05: Beta‐amyloid‐17 is a major beta‐amyloid fragment isoform in cerebrospinal fluid and blood that shows diagnostic value. Alzheimers Dement 2012. [DOI: 10.1016/j.jalz.2012.05.638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
13 |
5 |
13
|
Montañés M, Casabona D, Sarasa L, Pesini P, Sarasa M. Prevention of amyloid-β fibril formation using antibodies against the C-terminal region of amyloid-β1-40 and amyloid-β1-42. J Alzheimers Dis 2013; 34:133-7. [PMID: 23160008 DOI: 10.3233/jad-120850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease is characterized by the abnormal aggregation of amyloid-β (Aβ)1-40 and Aβ1-42 peptides into fibrils. In this work, we analyzed the kinetics of Aβ1-40 and Aβ1-42 fibril formation in vitro using Thioflavin T fluorescence. We synthesized high-purity peptides and performed a hexafluoro-2-propanol pre-treatment to yield uniform peptide solutions as starting materials. We found that the aggregation is clearly affected by the presence of sub-millimolar quantities of antibodies against the C-terminal region of the peptides. Because the fibrillization of these peptides is closely related to the pathogenesis of Alzheimer's disease, blocking this process may provide significant therapeutic benefit.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
5 |
14
|
Janelidze S, Palmqvist S, Leuzy A, Stomrud E, Verberk IM, Zetterberg H, Ashton NJ, Mattsson‐Carlgren N, Pesini P, Sarasa L, Allué JA, Teunissen CE, Dage JL, Blennow K, Hansson O. Detecting amyloid positivity in early Alzheimer disease using plasma biomarkers. Alzheimers Dement 2021. [DOI: 10.1002/alz.052117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
4 |
4 |
15
|
Jang H, Kim JS, Lee HJ, Kim CH, Na DL, Kim HJ, Allué JA, Sarasa L, Castillo S, Pesini P, Gallacher J, Seo SW. Performance of the plasma Aβ42/Aβ40 ratio, measured with a novel HPLC-MS/MS method, as a biomarker of amyloid PET status in a DPUK-KOREAN cohort. ALZHEIMERS RESEARCH & THERAPY 2021; 13:179. [PMID: 34686209 PMCID: PMC8540152 DOI: 10.1186/s13195-021-00911-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022]
Abstract
Background We assessed the feasibility of plasma Aβ42/Aβ40 determined using a novel liquid chromatography-mass spectrometry method (LC-MS) as a useful biomarker of PET status in a Korean cohort from the DPUK Study. Methods A total of 580 participants belonging to six groups, Alzheimer’s disease dementia (ADD, n = 134), amnestic mild cognitive impairment (aMCI, n = 212), old controls (OC, n = 149), young controls (YC, n = 15), subcortical vascular cognitive impairment (SVCI, n = 58), and cerebral amyloid angiopathy (CAA, n = 12), were included in this study. Plasma Aβ40 and Aβ42 were quantitated using a new antibody-free, LC-MS, which drastically reduced the sample preparation time and cost. We performed receiver operating characteristic (ROC) analysis to develop the cutoff of Aβ42/Aβ40 and investigated its performance predicting centiloid-based PET positivity (PET+). Results Plasma Aβ42/Aβ40 were lower for PET+ individuals in ADD, aMCI, OC, and SVCI (p < 0.001), but not in CAA (p = 0.133). In the group of YC, OC, aMCI, and ADD groups, plasma Aβ42/Aβ40 predicted PET+ with an area under the ROC curve (AUC) of 0.814 at a cutoff of 0.2576. When adding age, APOE4, and diagnosis, the AUC significantly improved to 0.912. Conclusion Plasma Aβ42/Aβ40, as measured by this novel LC-MS method, showed good discriminating performance based on PET positivity. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00911-7.
Collapse
|
|
4 |
3 |
16
|
Chun MY, Jang H, Kim HJ, Kim JP, Gallacher J, Allué JA, Sarasa L, Castillo S, Pascual-Lucas M, Na DL, Seo SW. Contribution of clinical information to the predictive performance of plasma β-amyloid levels for amyloid positron emission tomography positivity. Front Aging Neurosci 2023; 15:1126799. [PMID: 36998318 PMCID: PMC10044013 DOI: 10.3389/fnagi.2023.1126799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
BackgroundEarly detection of β-amyloid (Aβ) accumulation, a major biomarker for Alzheimer’s disease (AD), has become important. As fluid biomarkers, the accuracy of cerebrospinal fluid (CSF) Aβ for predicting Aβ deposition on positron emission tomography (PET) has been extensively studied, and the development of plasma Aβ is beginning to receive increased attention recently. In the present study, we aimed to determine whether APOE genotypes, age, and cognitive status increase the predictive performance of plasma Aβ and CSF Aβ levels for Aβ PET positivity.MethodsWe recruited 488 participants who underwent both plasma Aβ and Aβ PET studies (Cohort 1) and 217 participants who underwent both cerebrospinal fluid (CSF) Aβ and Aβ PET studies (Cohort 2). Plasma and CSF samples were analyzed using ABtest-MS, an antibody-free liquid chromatography-differential mobility spectrometry-triple quadrupole mass spectrometry method and INNOTEST enzyme-linked immunosorbent assay kits, respectively. To evaluate the predictive performance of plasma Aβ and CSF Aβ, respectively, logistic regression and receiver operating characteristic analyses were performed.ResultsWhen predicting Aβ PET status, both plasma Aβ42/40 ratio and CSF Aβ42 showed high accuracy (plasma Aβ area under the curve (AUC) 0.814; CSF Aβ AUC 0.848). In the plasma Aβ models, the AUC values were higher than plasma Aβ alone model, when the models were combined with either cognitive stage (p < 0.001) or APOE genotype (p = 0.011). On the other hand, there was no difference between the CSF Aβ models, when these variables were added.ConclusionPlasma Aβ might be a useful predictor of Aβ deposition on PET status as much as CSF Aβ, particularly when considered with clinical information such as APOE genotype and cognitive stage.
Collapse
|
|
2 |
3 |
17
|
Allué JA, Pascual‐Lucas M, Sarasa L, Castillo S, Sarasa M, Sáez ME, Abdel‐Latif S, Rissman RA, Terencio J. Clinical utility of an antibody-free LC-MS method to detect brain amyloid deposition in cognitively unimpaired individuals from the screening visit of the A4 Study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12451. [PMID: 37274930 PMCID: PMC10236000 DOI: 10.1002/dad2.12451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION This study explored the ability of plasma amyloid beta (Aβ)42/Aβ40 to identify brain amyloid deposition in cognitively unimpaired (CU) individuals. METHODS Plasma Aβ was quantified with an antibody-free high-performance liquid chromatography tandem mass spectrometry method from Araclon Biotech (ABtest-MS) in a subset of 731 CU individuals from the screening visit of the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) Study, to assess associations of Aβ42/Aβ40 with Aβ positron emission tomography (PET). RESULTS A model including Aβ42/Aβ40, age, apolipoprotein E ε4, and recruitment site identified Aβ PET status with an area under the curve of 0.88 and an overall accuracy of 81%. A plasma-based pre-screening step could save up to 42% of the total number of Aβ PET scans. DISCUSSION ABtest-MS accurately identified brain amyloid deposition in a population of CU individuals, supporting its implementation in AD secondary prevention trials to reduce recruitment time and costs. Although a certain degree of heterogeneity is inherent to large and multicentric trials, ABtest-MS could be more robust to pre-analytical bias compared to other immunoprecipitation mass spectrometry methods. HIGHLIGHTS Plasma amyloid beta (Aβ)42/Aβ40 accurately identified brain Aβ deposition in cognitively unimpaired individuals from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) Study.The inclusion of the recruitment site in the predictive models has a non-negligible effect.A plasma biomarker-based model could reduce recruitment costs in Alzheimer's disease secondary prevention trials.Antibody-free liquid chromatography mass spectrometry methods may be more robust to pre-analytical variability than other platforms.
Collapse
|
research-article |
2 |
2 |
18
|
Pascual‐Lucas M, Sarasa L, Molina EP, Castillo S, Pesini P, Allué JA. Aβ42/Aβ40 ratio in plasma predicts amyloid‐PET status in amnestic‐MCI patients. Alzheimers Dement 2021. [DOI: 10.1002/alz.057231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
4 |
|
19
|
Molina E, Castillo S, Lacosta AM, Allué JA, Fandos N, Montañés M, Romero J, Sarasa L, Boada M, Sarasa M. AB1601 topline results – Phase 2 study of ABvac40 in patients with amnestic mild cognitive impairment (a‐MCI) or very mild Alzheimer’s Disease (Vm‐AD). Alzheimers Dement 2022. [DOI: 10.1002/alz.065633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
3 |
|