1
|
Lee CH, Cheng SH, Huang IP, Souris JS, Yang CS, Mou CY, Lo LW. Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew Chem Int Ed Engl 2011; 49:8214-9. [PMID: 20865709 DOI: 10.1002/anie.201002639] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
Research Support, Non-U.S. Gov't |
14 |
250 |
2
|
Souris JS, Lee CH, Cheng SH, Chen CT, Yang CS, Ho JAA, Mou CY, Lo LW. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 2010; 31:5564-74. [PMID: 20417962 DOI: 10.1016/j.biomaterials.2010.03.048] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/18/2010] [Indexed: 11/19/2022]
Abstract
Nanoparticle-assisted drug delivery has been emerging as an active research area in recent years. The in vivo biodistribution of nanoparticle and its following mechanisms of biodegradation and/or excretion determine the feasibility and applicability of such a nano-delivery platform in the practical clinical translation. In this work we report the synthesis of the highly positive charge, near-infrared fluorescent mesoporous silica nanoparticles (MSNs) that demonstrate rapid hepatobiliary excretion, for use as traceable drug delivery platforms of high capacity. MSNs were incorporated with near-infrared fluorescent dye indocyanine green (ICG) via covalent or ionic bonding, to derive comparable constructs of significantly different net surface charge. In vivo fluorescence imaging and subsequent inductively coupled plasma-mass spectroscopy of harvested tissues, urine, and feces revealed markedly different uptake and elimination behaviors between the two conjugations; with more highly charged moieties (+34.4 mV at pH 7.4) being quickly excreted from the liver into the gastrointestinal tract, while less charged moieties (-17.6 mV at pH 7.4) remained sequestered within the liver. Taken together, these findings suggest that charge-dependent adsorption of serum proteins greatly facilitates the hepatobiliary excretion of silica nanoparticles, and that nanoparticle residence time in vivo can be regulated by manipulation of surface charge.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
231 |
3
|
Lo LW, Koch CJ, Wilson DF. Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: a phosphor with general application for measuring oxygen concentration in biological systems. Anal Biochem 1996; 236:153-60. [PMID: 8619481 DOI: 10.1006/abio.1996.0144] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Oxygen-dependent quenching of phosphorescence is a function of the frequency of collision between the phosphor and molecular oxygen and of the efficiency of energy transfer during these collisions. Thus, quenching is dependent on the rate of diffusion of the phosphor and its molecular environment. For measurements in biological samples, the Pd-porphyrin is bound to serum albumin, and this provides a uniform microenvironment for the phosphor which is relatively unaffected by changes in the pH and ionic composition of the medium. Calibration of the phosphor is of particular value because it is absolute, i.e., the calibration is valid independent of the laboratory and the time of measurement. This paper reports the calibration constants determined for Pd-meso-tetra (4-carboxyphenyl) porphine, as measured by two independent methods: by stoichiometric titration of the oxygen with ascorbate in the presence of ascorbate oxidase and by comparison with a high-accuracy oxygen electrode. The measurements were carried out in a specially designed thermostatted vessel in which the oxygen electrode and phosphorescence lifetime measurements of oxygen were made simultaneously. The calibration constants for the oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine were determined as a function of albumin concentration, ionic strength in medium, pH, and temperature.
Collapse
|
|
29 |
191 |
4
|
Cheng SH, Lee CH, Chen MC, Souris JS, Tseng FG, Yang CS, Mou CY, Chen CT, Lo LW. Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics—the trio of imaging, targeting and therapy. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00645a] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
|
15 |
166 |
5
|
Vinogradov SA, Lo LW, Jenkins WT, Evans SM, Koch C, Wilson DF. Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors. Biophys J 1996; 70:1609-17. [PMID: 8785320 PMCID: PMC1225130 DOI: 10.1016/s0006-3495(96)79764-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A newly developed water-soluble phosphor suitable for measuring oxygen pressure in the blood (Green 2W) was used for noninvasive, in vivo imaging of oxygen distribution in the vascular systems of mice. Oxygen quenches the phosphorescence of Green 2W, measured in the presence of 2% albumin, according to the Stern-volmer relationship. This oxygen-dependent quenching of phosphorescence has been used to obtain digital maps of the oxygen distribution in the tissue vasculature. EMT-6 mammary carcinoma tumors were grown by injecting 1 x 10(6) cells in 0.1-ml carrier into the subcutaneous space over the muscle on the hindquarter. When the tumors were approximately 8 mm in diameter, 300 micrograms of phosphorescence probe (Green 2W; absorption maximum 636 nm) was injected into the tail vein. The mice were immobilized with intraperotoneal Ketamine (133 mg/kg) and Xylazine (10 mg/kg) and illuminated with flashes (< 4-microseconds t1/2) of light of 630 +/- 12 nm. The emitted phosphorescence (790-nm maximum) was imaged an intensified CCD camera. Images were collected beginning at 30, 50, 80, 120, 180, 240, 420, and 2500 microseconds after the flash and used to calculate digital maps of the phosphorescence lifetimes and oxygen pressure. Both the illumination light and the phosphorescence were in the near-infrared region of the spectrum, where tissue has greatly decreased absorbance. The light therefore readily passed through the skin and centimeter thicknesses of tissue. The oxygen maps could be obtained by illuminating from the side of the mouse opposite the camera (and tumor). The tumors were readily observed as regions with oxygen pressures substantially below those of the surrounding tissue. Thus, phosphorescence measurements can noninvasively detect volumes of tissue with below-normal oxygen pressure in the presence of much larger volumes of tissue with normal oxygen pressures. In addition, tissue oxygen pressures can be monitored in real time, even through centimeter thicknesses of tissue.
Collapse
|
research-article |
29 |
143 |
6
|
Cheng SH, Lee CH, Yang CS, Tseng FG, Mou CY, Lo LW. Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b816636f] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
|
16 |
122 |
7
|
Chiu JJ, Chen LJ, Lee PL, Lee CI, Lo LW, Usami S, Chien S. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood 2003; 101:2667-74. [PMID: 12468429 DOI: 10.1182/blood-2002-08-2560] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular endothelial cells (ECs), which exist in close proximity to vascular smooth muscle cells (SMCs), are constantly subjected to blood flow-induced shear stress. Although the effect of shear stress on endothelial biology has been extensively studied, the influence of SMCs on endothelial response to shear stress remains largely unexplored. We examined the potential role of SMCs in regulating the shear stress-induced gene expression in ECs, using a parallel-plate coculture flow system in which these 2 types of cells were separated by a porous membrane. In this coculture system, SMCs tended to orient perpendicularly to the flow direction, whereas the ECs were elongated and aligned with the flow direction. Under static conditions, coculture with SMCs induced EC gene expression of intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and E-selectin, while attenuating EC gene expression of endothelial nitric oxide synthase (eNOS). Shear stress significantly inhibited SMC-induced adhesion molecule gene expression. These EC responses under static and shear conditions were not observed in the absence of close communication between ECs and SMCs, and they were also not observed when ECs were cocultured with fibroblasts instead of SMCs. Our findings indicate that under static conditions, coculture with SMCs induces ICAM-1, VCAM-1, and E-selectin gene expression in ECs. These coculture effects are inhibited by shear stress and require specific interaction between ECs and SMCs in close contact.
Collapse
|
|
22 |
115 |
8
|
Vinogradov SA, Lo LW, Wilson DF. Dendritic Polyglutamic Porphyrins: Probing Porphyrin Protection by Oxygen-Dependent Quenching of Phosphorescence. Chemistry 1999. [DOI: 10.1002/(sici)1521-3765(19990401)5:4<1338::aid-chem1338>3.0.co;2-n] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
26 |
107 |
9
|
Chen CK, Huang PK, Law WC, Chu CH, Chen NT, Lo LW. Biodegradable Polymers for Gene-Delivery Applications. Int J Nanomedicine 2020; 15:2131-2150. [PMID: 32280211 PMCID: PMC7125329 DOI: 10.2147/ijn.s222419] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Gene-based therapies have emerged as a new modality for combating a myriad of currently incurable diseases. However, the fragile nature of gene therapeutics has significantly hampered their biomedical applications. Correspondingly, the development of gene-delivery vectors is of critical importance for gene-based therapies. To date, a variety of gene-delivery vectors have been created and utilized for gene delivery. In general, they can be categorized into viral- and non-viral vectors. Due to safety issues associated with viral vectors, non-viral vectors have recently attracted much more research focus. Of these non-viral vectors, polymeric vectors, which have been preferred due to their low immunogenicity, ease of production, controlled chemical composition and high chemical versatility, have constituted an ideal alternative to viral vectors. In particular, biodegradable polymers, which possess advantageous biocompatibility and biosafety, have been considered to have great potential in clinical applications. In this context, the aim of this review is to introduce the recent development and progress of biodegradable polymers for gene delivery applications, especially for their chemical structure design, gene delivery capacity and additional biological functions. Accordingly, we first define and categorize biodegradable polymers, followed by describing their corresponding degradation mechanisms. Various types of biodegradable polymers resulting from natural and synthetic polymers will be introduced and their applications in gene delivery will be examined. Finally, a future perspective regarding the development of biodegradable polymer vectors will be given.
Collapse
|
Review |
5 |
105 |
10
|
Huang IP, Sun SP, Cheng SH, Lee CH, Wu CY, Yang CS, Lo LW, Lai YK. Enhanced Chemotherapy of Cancer Using pH-Sensitive Mesoporous Silica Nanoparticles to Antagonize P-Glycoprotein–Mediated Drug Resistance. Mol Cancer Ther 2011; 10:761-9. [DOI: 10.1158/1535-7163.mct-10-0884] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
14 |
95 |
11
|
Lin SY, Chen NT, Sum SP, Lo LW, Yang CS. Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chem Commun (Camb) 2008:4762-4. [DOI: 10.1039/b808207c] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
17 |
83 |
12
|
Lo LW, Cheng JJ, Chiu JJ, Wung BS, Liu YC, Wang DL. Endothelial exposure to hypoxia induces Egr-1 expression involving PKCalpha-mediated Ras/Raf-1/ERK1/2 pathway. J Cell Physiol 2001; 188:304-12. [PMID: 11473356 DOI: 10.1002/jcp.1124] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypoxia induces endothelial dysfunction that results in a series of cardiovascular injuries. Early growth response-1 (Egr-1) has been indicated as a common theme in vascular injury. Here we demonstrates that in bovine aortic endothelial cells (ECs) subjected to hypoxia (PO(2) approximately 23 mmHg), rapidly increased Egr-1 mRNA expression which peaked within 30 min and decreased afterwards. Treatment of ECs with PD98059, a specific inhibitor to mitogen-activated protein kinase (MAPK/ERK), inhibited this hypoxia-induced Egr-1 expression. The involvement of ERK pathway was further substantiated by the inhibition of Egr-1 promoter activities when ECs were co-transfected with a dominant negative mutant of Ras (RasN17), Raf-1 (Raf 301), or a catalytically inactive mutant of ERK2 (mERK). In addition, the hypoxia-induced transcriptional activity of Elk-1, an ERK substrate, was abolished by administration of PD98059. Addition of calphostin C, a protein kinase C (PKC) inhibitor, completely blocked the hypoxia-augmented Egr-1 expression. The likewise occurred while exposing ECs to D609 to inhibit phospholipase C and BAPTA/AM to chelate intracellular calcium. Hypoxia to ECs increased ERK phosphorylation within 10 min and which was abolished by administration of PD98095, calphostin C, and BAPTA/AM. Hypoxia triggered a transient translocation of PKCalpha from cytosol to membrane fraction concurrent with the association of PKCalpha to Raf-1. Involvement of PKCalpha in mediating ERK activation was further confirmed by the inhibition of ERK and the subsequent Egr-1 gene induction with antisense oligonucleotides to PKCalpha. These results indicate that ECs under hypoxia induce Egr-1 expression and this induction requires calcium, phospholipase C activation, and PKCalpha-mediated Ras/Raf-1/ERK1/2 signaling pathway. Our finding support the importance of specific PKC isozyme linked to MAPK pathway in the regulation of endothelial responses to hypoxia.
Collapse
|
|
24 |
80 |
13
|
Lee CH, Cheng SH, Huang IP, Souris JS, Yang CS, Mou CY, Lo LW. Intracellular pH-Responsive Mesoporous Silica Nanoparticles for the Controlled Release of Anticancer Chemotherapeutics. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002639] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
15 |
80 |
14
|
Chen NT, Cheng SH, Liu CP, Souris JS, Chen CT, Mou CY, Lo LW. Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling. Int J Mol Sci 2012; 13:16598-623. [PMID: 23443121 PMCID: PMC3546710 DOI: 10.3390/ijms131216598] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 01/10/2023] Open
Abstract
Förster resonance energy transfer (FRET) may be regarded as a "smart" technology in the design of fluorescence probes for biological sensing and imaging. Recently, a variety of nanoparticles that include quantum dots, gold nanoparticles, polymer, mesoporous silica nanoparticles and upconversion nanoparticles have been employed to modulate FRET. Researchers have developed a number of "visible" and "activatable" FRET probes sensitive to specific changes in the biological environment that are especially attractive from the biomedical point of view. This article reviews recent progress in bringing these nanoparticle-modulated energy transfer schemes to fruition for applications in biosensing, molecular imaging and drug delivery.
Collapse
|
Review |
13 |
79 |
15
|
Chiu JJ, Wung BS, Hsieh HJ, Lo LW, Wang DL. Nitric oxide regulates shear stress-induced early growth response-1. Expression via the extracellular signal-regulated kinase pathway in endothelial cells. Circ Res 1999; 85:238-46. [PMID: 10436166 DOI: 10.1161/01.res.85.3.238] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial cells (ECs) subjected to shear stress constantly release nitric oxide (NO). The effect of NO on shear stress-induced endothelial responses was examined. ECs subjected to shear stress induced a transient and shear force-dependent increase in early growth response-1 (Egr-1) mRNA levels. Treatment of ECs with an NO donor, S-nitroso-N-acetylpenicillamine (SNAP) or 3-morpholinosydnonimine (SIN-1), inhibited this shear stress-induced Egr-1 expression. Conversely, an NO synthase inhibitor to ECs, N(G)-monomethyl-L-arginine, augmented this Egr-1 expression. NO modulation of Egr-1 expression was demonstrated by functional analysis of Egr-1 promoter activity using a chimera containing the Egr-1 promoter region (-698 bp) and reporter gene luciferase. In contrast to the enhanced promoter activity after N(G)-monomethyl-L-arginine treatment, shear stress-induced Egr-1 promoter activity was attenuated after ECs were treated with an NO donor. ECs cotransfected with a dominant negative mutant of Ras (RasN17), Raf-1 (Raf301), or a catalytically inactive mutant of extracellular signal-regulated kinase (ERK)-2 (mERK) inhibited shear stress-induced Egr-1 promoter activity. NO modulation of the signaling pathway was shown by its inhibitory effect on shear stress-induced ERK1/ERK2 phosphorylation and activity. This inhibitory effect was further substantiated by the inhibition of NO on both the shear stress-induced transcriptional activity of Elk-1 (an ERK substrate) and the promoter activity of a reporter construct containing serum response element. NO-treated ECs resulted in a reduction of binding of nuclear proteins to the Egr-1 binding sequences in the platelet-derived growth factor-A promoter region. These results indicate that shear stress-induced Egr-1 expression is modulated by NO via the ERK signaling pathway in ECs. Our findings support the importance of NO as a negative regulator in endothelial responses to hemodynamic forces.
Collapse
MESH Headings
- Calcium-Calmodulin-Dependent Protein Kinases/physiology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Early Growth Response Protein 1
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- Gene Expression/drug effects
- Gene Expression/physiology
- Genes, Reporter/genetics
- Humans
- Immediate-Early Proteins
- Nitric Oxide/pharmacology
- Phosphorylation
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Promoter Regions, Genetic/drug effects
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-raf/physiology
- RNA, Messenger/metabolism
- Stress, Mechanical
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- ets-Domain Protein Elk-1
- ras Proteins/physiology
Collapse
|
|
26 |
78 |
16
|
Tai LA, Tsai PJ, Wang YC, Wang YJ, Lo LW, Yang CS. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release. NANOTECHNOLOGY 2009; 20:135101. [PMID: 19420485 DOI: 10.1088/0957-4484/20/13/135101] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Iron oxide nanoparticles can serve as a heating source upon alternative magnetic field (AMF) exposure. Iron oxide nanoparticles can be mixed with thermosensitive nanovehicles for hyperthermia-induced drug release, yet such a design and mechanism may not be suitable for controllable drug release applications in which the tissues are susceptible to environmental temperature change such as brain tissue. In the present study, iron oxide nanoparticles were entrapped inside of thermosensitive liposomes for AMF-induced drug release while the environmental temperature was maintained at a constant level. Carboxyfluorescein was co-entrapped with the iron oxide nanoparticles in the liposomes as a model compound for monitoring drug release and environmental temperature was maintained with a water circulator jacket. These experiments have been successfully performed in solution, in phantom and in anesthetized animals. Furthermore, the thermosensitive liposomes were administered into rat forearm skeletal muscle, and the release of carboxylfluorescein triggered by the external alternative magnetic field was monitored by an implanted microdialysis perfusion probe with an on-line laser-induced fluorescence detector. In the future such a device could be applied to simultaneous magnetic resonance imaging and non-invasive drug release in temperature-sensitive applications.
Collapse
|
|
16 |
76 |
17
|
Lin SY, Chen NT, Sun SP, Chang JC, Wang YC, Yang CS, Lo LW. The protease-mediated nucleus shuttles of subnanometer gold quantum dots for real-time monitoring of apoptotic cell death. J Am Chem Soc 2010; 132:8309-15. [PMID: 20499915 DOI: 10.1021/ja100561k] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subnanometer photoluminescent gold quantum dots (GQDs) are functionalized with a peptide moiety that contains both nuclear export signal (NES) and nuclear localization signal (NLS) sequences. By taking advantage of its small size and great photostability, the functionalized GQDs are used to mimic the actions of nucleus shuttle proteins, especially of those activated during cell apoptotic death, to work as protease-mediated cytoplasm-nucleus shuttles for dynamic monitoring of apoptosis. The resulting construct demonstrates activation of the nuclear pore complex (NPC) of cells, for bidirectional transport between nucleus and cytoplasm. A caspase-3 recognition sequence (DEVD), placed within the NLS/NES peptide, serves as a proteolytic site for activated caspase-3. Upon the induction of apoptosis, the activated caspase-3 cleaves the functional peptide on GQDs resulting in changes of subcellular distribution of GQDs. Such changes can be quantified as a function of time, by the ratios of GQDs photoluminescence in nucleus to that in cytoplasm. As such, the NES-linker-DEVD-linker-NLS peptide enables the GQDs to function as molecular probes for the real-time monitoring of cellular apoptosis.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
76 |
18
|
Cheng SH, Yu D, Tsai HM, Morshed RA, Kanojia D, Lo LW, Leoni L, Govind Y, Zhang L, Aboody KS, Lesniak MS, Chen CT, Balyasnikova IV. Dynamic In Vivo SPECT Imaging of Neural Stem Cells Functionalized with Radiolabeled Nanoparticles for Tracking of Glioblastoma. J Nucl Med 2015; 57:279-84. [PMID: 26564318 DOI: 10.2967/jnumed.115.163006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/09/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED There is strong clinical interest in using neural stem cells (NSCs) as carriers for targeted delivery of therapeutics to glioblastoma. Multimodal dynamic in vivo imaging of NSC behaviors in the brain is necessary for developing such tailored therapies; however, such technology is lacking. Here we report a novel strategy for mesoporous silica nanoparticle (MSN)-facilitated NSC tracking in the brain via SPECT. METHODS (111)In was conjugated to MSNs, taking advantage of the large surface area of their unique porous feature. A series of nanomaterial characterization assays was performed to assess the modified MSN. Loading efficiency and viability of NSCs with (111)In-MSN complex were optimized. Radiolabeled NSCs were administered to glioma-bearing mice via either intracranial or systemic injection. SPECT imaging and bioluminescence imaging were performed daily up to 48 h after NSC injection. Histology and immunocytochemistry were used to confirm the findings. RESULTS (111)In-MSN complexes show minimal toxicity to NSCs and robust in vitro and in vivo stability. Phantom studies demonstrate feasibility of this platform for NSC imaging. Of significance, we discovered that decayed (111)In-MSN complexes exhibit strong fluorescent profiles in preloaded NSCs, allowing for ex vivo validation of the in vivo data. In vivo, SPECT visualizes actively migrating NSCs toward glioma xenografts in real time after both intracranial and systemic administrations. This is in agreement with bioluminescence live imaging, confocal microscopy, and histology. CONCLUSION These advancements warrant further development and integration of this technology with MRI for multimodal noninvasive tracking of therapeutic NSCs toward various brain malignancies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
69 |
19
|
Wang YC, Wu YT, Huang HY, Lin HI, Lo LW, Tzeng SF, Yang CS. Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury. Biomaterials 2008; 29:4546-53. [PMID: 18774604 DOI: 10.1016/j.biomaterials.2008.07.050] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 07/31/2008] [Indexed: 12/29/2022]
Abstract
Glial cell line derived neurotrophic factor (GDNF) induces neuronal survival and tissue repair after spinal cord injury (SCI). A continuous GDNF supply is believed to gain greater efficacy in the neural restoration of the injured spinal cord. Accordingly, nanovehicle formulation for their efficient delivery and sustained release in injured spinal cord was examined. We first used fluorescence-labeled bovine serum albumin (FBSA) loaded in biodegradable poly(lactic acid-co-glycolic acid) (PLGA) for intraspinal administration after SCI and for in vitro study. Our results showed that the preservation of PLGA-FBSA was observed in the injured spinal cord at 24h, and PLGA-FBSA nanoparticles were well absorbed by neurons and glia, indicating that PLGA as a considerable nanovehicle for the delivery of neuroprotective polypeptide into injured spinal cord. Furthermore, intraspinal injection of GDNF encapsulated in PLGA (PLGA-GDNF) nanoparticles into the injured spinal cord proximal to the lesion center had no effect on gliosis when compared to that observed in SCI rats receiving PLGA injection. However, local administration of PLGA-GDNF effectively preserved neuronal fibers and led to the hindlimb locomotor recovery in rats with SCI, providing a potential strategy for the use of PLGA-GDNF in the treatment of SCI.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
67 |
20
|
Cheng SH, Li FC, Souris JS, Yang CS, Tseng FG, Lee HS, Chen CT, Dong CY, Lo LW. Visualizing dynamics of sub-hepatic distribution of nanoparticles using intravital multiphoton fluorescence microscopy. ACS NANO 2012; 6:4122-31. [PMID: 22486639 DOI: 10.1021/nn300558p] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanoparticles that do not undergo renal excretion or in vivo degradation into biocompatible debris often accumulate in the reticuloendothelial system, also know as the mononuclear phagocyte system, with undesired consequences that limit their clinical utility. In this work, we report the first application of intravital multiphoton fluorescence microscopy to dynamically track the hepatic metabolism of nanoparticles with subcellular resolution in real time. Using fluorescently labeled mesoporous silica nanoparticles (MSNs) in mice as a prototypical model, we observed significant hepatocyte uptake of positively charged, but not negatively charged, moieties. Conversely, in vivo imaging of negatively charged, but not positively charged, MSNs reveals an overwhelming propensity for the former's rapid uptake by Kupffer cells in liver sinusoids. Since the only prerequisite for these studies was that nanoparticles are fluorescently labeled and not of a specific composition or structure, the techniques we present can readily be extended to a wide variety of nanoparticle structures and surface modifications (e.g., shape, charge, hydrophobicity, PEGylation) in the preclinical assessment and tailoring of their hepatotoxicities and clearances.
Collapse
|
|
13 |
66 |
21
|
Chen NT, Wu CY, Chung CY, Hwu Y, Cheng SH, Mou CY, Lo LW. Probing the dynamics of doxorubicin-DNA intercalation during the initial activation of apoptosis by fluorescence lifetime imaging microscopy (FLIM). PLoS One 2012; 7:e44947. [PMID: 23028696 PMCID: PMC3445590 DOI: 10.1371/journal.pone.0044947] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 08/14/2012] [Indexed: 12/11/2022] Open
Abstract
Doxorubicin is a potent anthracycline antibiotic, commonly used to treat a wide range of cancers. Although postulated to intercalate between DNA bases, many of the details of doxorubicin's mechanism of action remain unclear. In this work, we demonstrate the ability of fluorescence lifetime imaging microscopy (FLIM) to dynamically monitor doxorubicin-DNA intercalation during the earliest stages of apoptosis. The fluorescence lifetime of doxorubicin in nuclei is found to decrease rapidly during the first 2 hours following drug administration, suggesting significant changes in the doxorubicin-DNA binding site's microenvironment upon apoptosis initiation. Decreases in doxorubicin fluorescence lifetimes were found to be concurrent with increases in phosphorylation of H2AX (an immediate signal of DNA double-strand breakage), but preceded activation of caspase-3 (a late signature of apoptosis) by more than 150 minutes. Time-dependent doxorubicin FLIM analyses of the effects of pretreating cells with either Cyclopentylidene-[4-(4-chlorophenyl)thiazol-2-yl)-hydrazine (a histone acetyltransferase inhibitor) or Trichostatin A (a histone deacetylase inhibitor) revealed significant correlation of fluorescence lifetime with the stage of chromatin decondensation. Taken together, our findings suggest that monitoring the dynamics of doxorubicin fluorescence lifetimes can provide valuable information during the earliest phases of doxorubicin-induced apoptosis; and implicate that FLIM can serve as a sensitive, high-resolution tool for the elucidation of intercellular mechanisms and kinetics of anti-cancer drugs that bear fluorescent moieties.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
63 |
22
|
Lo LW, Koropatnick J, Stich HF. The mutagenicity and cytotoxicity of selenite, "activated" selenite and selenate for normal and DNA repair-deficient human fibroblasts. Mutat Res 1978; 49:305-12. [PMID: 634305 DOI: 10.1016/0027-5107(78)90103-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
At doses varying from 8 x 10(-5) to 3 x 10(-3) M sodium selenite (Na2SeO3) induced DNA fragmentation, DNA-repair synthesis, chromosome aberrations and a mitotic inhibition in cultured human fibroblasts. The response of DNA repair-deficient xeroderma pigmentosum (XP) fibroblasts to selenite is comparable to that of control cells. Incubation with mouse liver S-9 microsomal fraction increased the capacity of selenite to induce chromosome aberrations, DNA-repair synthesis and a lethal effect. XP cells behaved as control cells when treated with activated selenite. Sodium selenate (Na2SeO4) at doses ranging from 8 x 10(-5) to 3 x 10(-3) M could not be activated by incubating with a S-9 preparation. Selenate had the capacity to induce a small but significant DNA-repair synthesis.
Collapse
|
|
47 |
62 |
23
|
Chen NT, Tang KC, Chung MF, Cheng SH, Huang CM, Chu CH, Chou PT, Souris JS, Chen CT, Mou CY, Lo LW. Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy. Theranostics 2014; 4:798-807. [PMID: 24955141 PMCID: PMC4063978 DOI: 10.7150/thno.8934] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022] Open
Abstract
The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunately, many studies have also shown that often the intensity of pulsed coherent irradiation of GNRs needed results in irreversible deformation of GNRs, greatly reducing their two-photon luminescence (TPL) emission intensity. In this work we report the design, synthesis, and evaluation of mesoporous silica-encased gold nanorods (MS-GNRs) that incorporate photosensitizers (PSs) for two-photon-activated photodynamic therapy (TPA-PDT). The PSs, doped into the nano-channels of the mesoporous silica shell, can be efficiently excited via intra-particle plasmonic resonance energy transfer from the encased two-photon excited gold nanorod and further generates cytotoxic singlet oxygen for cancer eradication. In addition, due to the mechanical support provided by encapsulating mesoporous silica matrix against thermal deformation, the two-photon luminescence stability of GNRs was significantly improved; after 100 seconds of 800 nm repetitive laser pulse with the 30 times higher than average power for imaging acquisition, MS-GNR luminescence intensity exhibited ~260% better resistance to deformation than that of the uncoated gold nanorods. These results strongly suggest that MS-GNRs with embedded PSs might provide a promising photodynamic therapy for the treatment of deeply situated cancers via plasmonic resonance energy transfer.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
62 |
24
|
Chen NT, Cheng SH, Souris JS, Chen CT, Mou CY, Lo LW. Theranostic applications of mesoporous silica nanoparticles and their organic/inorganic hybrids. J Mater Chem B 2013; 1:3128-3135. [DOI: 10.1039/c3tb20249f] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
|
12 |
60 |
25
|
Sivasubramanian M, Chuang YC, Lo LW. Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers. Molecules 2019; 24:E520. [PMID: 30709030 PMCID: PMC6385004 DOI: 10.3390/molecules24030520] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/03/2022] Open
Abstract
Enthusiasm for photodynamic therapy (PDT) as a potential therapeutic intervention for cancer has increased exponentially in recent decades. Photodynamic therapy constitutes a clinically approved, minimally invasive treatment modality that uses a photosensitizer (light absorbing molecule) and light to kill cancer cells. The principle of PDT is, when irradiated with a light of a suitable wavelength, a photosensitizer absorbs the light energy and generates cytotoxic free radicals through various mechanisms. The overall efficiency of PDT depends on characteristics of activation light and in-situ dosimetry, including the choice of photosensitizer molecule, wavelength of the light, and tumor location and microenvironment, for instance, the use of two-photon laser or an X-ray irradiator as the light source increases tissue-penetration depth, enabling it to achieve deep PDT. In this mini-review, we discuss the various designs and strategies for single, two-photon, and X-ray-mediated PDT for improved clinical outcomes.
Collapse
|
Review |
6 |
56 |