1
|
Campos J, Sharninghausen LS, Manas MG, Crabtree RH. Methanol Dehydrogenation by Iridium N-Heterocyclic Carbene Complexes. Inorg Chem 2015; 54:5079-84. [DOI: 10.1021/ic502521c] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
|
10 |
123 |
2
|
Sharninghausen LS, Mercado BQ, Crabtree RH, Hazari N. Selective conversion of glycerol to lactic acid with iron pincer precatalysts. Chem Commun (Camb) 2015; 51:16201-4. [DOI: 10.1039/c5cc06857f] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A family of iron complexes of PNP pincer ligands are active catalysts for the conversion of glycerol to lactic acid with high activity and selectivity.
Collapse
|
|
10 |
73 |
3
|
Michaelos TK, Shopov DY, Sinha SB, Sharninghausen LS, Fisher KJ, Lant HMC, Crabtree RH, Brudvig GW. A Pyridine Alkoxide Chelate Ligand That Promotes Both Unusually High Oxidation States and Water-Oxidation Catalysis. Acc Chem Res 2017; 50:952-959. [PMID: 28272869 DOI: 10.1021/acs.accounts.6b00652] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Water-oxidation catalysis is a critical bottleneck in the direct generation of solar fuels by artificial photosynthesis. Catalytic oxidation of difficult substrates such as water requires harsh conditions, so the ligand must be designed both to stabilize high oxidation states of the metal center and to strenuously resist ligand degradation. Typical ligand choices either lack sufficient electron donor power or fail to stand up to the oxidizing conditions. Our research on Ir-based water-oxidation catalysts (WOCs) has led us to identify a ligand, 2-(2'-pyridyl)-2-propanoate or "pyalk", that fulfills these requirements. Work with a family of Cp*Ir(chelate)Cl complexes had indicated that the pyalk-containing precursor gave the most robust WOC, which was still molecular in nature but lost the Cp* fragment by oxidative degradation. In trying to characterize the resulting active "blue solution" WOC, we were able to identify a diiridium(IV)-mono-μ-oxo core but were stymied by the extensive geometrical isomerism and coordinative variability. By moving to a family of monomeric complexes [IrIII/IV(pyalk)3] and [IrIII/IV(pyalk)2Cl2], we were able to better understand the original WOC and identify the special properties of the ligand. In this Account, we cover some results using the pyalk ligand and indicate the main features that make it particularly suitable as a ligand for oxidation catalysis. The alkoxide group of pyalk allows for proton-coupled electron transfer (PCET) and its strong σ- and π-donor power strongly favors attainment of exceptionally high oxidation states. The aromatic pyridine ring with its methyl-protected benzylic position provides strong binding and degradation resistance during catalytic turnover. Furthermore, the ligand has two additional benefits: broad solubility in aqueous and nonaqueous solvents and an anisotropic ligand field that enhances the geometry-dependent redox properties of its complexes. After discussion of the general properties, we highlight the specific complexes studied in more detail. In the iridium work, the isolated mononuclear complexes showed easily accessible Ir(III/IV) redox couples, in some cases with the Ir(IV) state being indefinitely stable in water. We were able to rationalize the unusual geometry-dependent redox properties of the various isomers on the basis of ligand-field effects. Even more striking was the isolation and full characterization of a stable Rh(IV) state, for which prior examples were very reactive and poorly characterized. Importantly, we were able to convert monomeric Ir complexes to [Cl(pyalk)2IrIV-O-IrIVCl(pyalk)2] derivatives that help model the "blue solution" properties and provide groundwork for rational synthesis of active, well-defined WOCs. More recent work has moved toward the study of first-row transition metal complexes. Manganese-based studies have highlighted the importance of the chelate effect for labile metals, leading to the synthesis of pincer-type pyalk derivatives. Beyond water oxidation, we believe the pyalk ligand and its derivatives will also prove useful in other oxidative transformations.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
72 |
4
|
Manas MG, Sharninghausen LS, Lin E, Crabtree RH. Iridium catalyzed reversible dehydrogenation – Hydrogenation of quinoline derivatives under mild conditions. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.04.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
10 |
61 |
5
|
Wright JS, Kaur T, Preshlock S, Tanzey SS, Winton WP, Sharninghausen LS, Wiesner N, Brooks AF, Sanford MS, Scott PJH. Copper-Mediated Late-stage Radiofluorination: Five Years of Impact on Pre-clinical and Clinical PET Imaging. Clin Transl Imaging 2020; 8:167-206. [PMID: 33748018 PMCID: PMC7968072 DOI: 10.1007/s40336-020-00368-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Copper-mediated radiofluorination (CMRF) is emerging as the method of choice for the formation of aromatic C-18F bonds. This minireview examines proof-of-concept, pre-clinical, and in-human imaging studies of new and established imaging agents containing aromatic C-18F bonds synthesized with CMRF. An exhaustive discussion of CMRF methods is not provided, although key developments that have enabled or improved upon the syntheses of fluorine-18 imaging agents are discussed. METHODS A comprehensive literature search from April 2014 onwards of the Web of Science and PubMed library databases was performed to find reports that utilize CMRF for the synthesis of fluorine-18 radiopharmaceuticals, and these represent the primary body of research discussed in this minireview. Select conference proceedings, previous reports describing alternative methods for the synthesis of imaging agents, and preceding fluorine-19 methodologies have also been included for discussion. CONCLUSIONS CMRF has significantly expanded the chemical space that is accessible to fluorine-18 radiolabeling with production methods that can meet the regulatory requirements for use in Nuclear Medicine. Furthermore, it has enabled novel and improved syntheses of radiopharmaceuticals and facilitated subsequent PET imaging studies. The rapid adoption of CMRF will undoubtedly continue to simplify the production of imaging agents and inspire the development of new radiofluorination methodologies.
Collapse
|
research-article |
5 |
54 |
6
|
Sinha SB, Shopov DY, Sharninghausen LS, Stein CJ, Mercado BQ, Balcells D, Pedersen TB, Reiher M, Brudvig GW, Crabtree RH. Redox Activity of Oxo-Bridged Iridium Dimers in an N,O-Donor Environment: Characterization of Remarkably Stable Ir(IV,V) Complexes. J Am Chem Soc 2017. [PMID: 28648068 DOI: 10.1021/jacs.7b04874] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemical and electrochemical oxidation or reduction of our recently reported Ir(IV,IV) mono-μ-oxo dimers results in the formation of fully characterized Ir(IV,V) and Ir(III,III) complexes. The Ir(IV,V) dimers are unprecedented and exhibit remarkable stability under ambient conditions. This stability and modest reduction potential of 0.99 V vs NHE is in part attributed to complete charge delocalization across both Ir centers. Trends in crystallographic bond lengths and angles shed light on the structural changes accompanying oxidation and reduction. The similarity of these mono-μ-oxo dimers to our Ir "blue solution" water-oxidation catalyst gives insight into potential reactive intermediates of this structurally elusive catalyst. Additionally, a highly reactive material, proposed to be a Ir(V,V) μ-oxo species, is formed on electrochemical oxidation of the Ir(IV,V) complex in organic solvents at 1.9 V vs NHE. Spectroelectrochemistry shows reversible conversion between the Ir(IV,V) and proposed Ir(V,V) species without any degradation, highlighting the exceptional oxidation resistance of the 2-(2-pyridinyl)-2-propanolate (pyalk) ligand and robustness of these dimers. The Ir(III,III), Ir(IV,IV) and Ir(IV,V) redox states have been computationally studied both with DFT and multiconfigurational calculations. The calculations support the stability of these complexes and provide further insight into their electronic structures.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
40 |
7
|
Campos J, Sharninghausen LS, Crabtree RH, Balcells D. A Carbene-Rich but Carbonyl-Poor [Ir6(IMe)8(CO)2H14]2+Polyhydride Cluster as a Deactivation Product from Catalytic Glycerol Dehydrogenation. Angew Chem Int Ed Engl 2014; 53:12808-11. [DOI: 10.1002/anie.201407997] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Indexed: 11/08/2022]
|
|
11 |
37 |
8
|
Sharninghausen LS, Sinha SB, Shopov DY, Choi B, Mercado BQ, Roy X, Balcells D, Brudvig GW, Crabtree RH. High Oxidation State Iridium Mono-μ-oxo Dimers Related to Water Oxidation Catalysis. J Am Chem Soc 2016; 138:15917-15926. [PMID: 27960326 DOI: 10.1021/jacs.6b07716] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The highly active iridium "blue solution" chemical and electrochemical water oxidation catalyst obtained from Cp*IrL(OH) precursors (L = 2-pyridyl-2-propanoate) has been difficult to characterize as no crystal structure can be obtained because of the multiplicity of geometrical isomers present. Other data suggest complete loss of the Cp* ligand and the formation of a LIr-O-IrL unit. We have now developed a route to a series of well-defined Ir(IV,IV) mono-μ-oxo dimers, containing the closely related L2Ir-O-IrL2 unit. Unlike the catalyst, these model compounds are separable by silica gel chromatography and readily form single crystals. We report three stereoisomers with the formula ClL2Ir-O-IrL2Cl, which are fully characterized, including by X-ray crystallography, and are compared to the "blue solution". To the best of our knowledge, these species represent the first examples of structurally characterized dinuclear μ-oxo Ir(IV,IV) compounds without metal-carbon bonds.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
35 |
9
|
Manas MG, Sharninghausen LS, Balcells D, Crabtree RH. Experimental and computational studies of borohydride catalyzed hydrosilylation of a variety of CO and CN functionalities including esters, amides and heteroarenes. NEW J CHEM 2014. [DOI: 10.1039/c3nj01485a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
11 |
33 |
10
|
Sinha SB, Shopov DY, Sharninghausen LS, Vinyard DJ, Mercado BQ, Brudvig GW, Crabtree RH. A Stable Coordination Complex of Rh(IV) in an N,O-Donor Environment. J Am Chem Soc 2015; 137:15692-5. [PMID: 26641941 DOI: 10.1021/jacs.5b12148] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We describe facial and meridional isomers of [Rh(III)(pyalk)3], as well as meridional [Rh(IV)(pyalk)3](+) {pyalk =2-(2-pyridyl)-2-propanoate}, the first coordination complex in an N,O-donor environment to show a clean, reversible Rh(III/IV) redox couple and to have a stable Rh(IV) form, which we characterize by EPR and UV-visible spectroscopy as well as X-ray crystallography. The unprecedented stability of the Rh(IV) species is ascribed to the exceptional donor strength of the ligands, their oxidation resistance, and the meridional coordination geometry.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
26 |
11
|
Sharninghausen LS, Brooks AF, Winton WP, Makaravage KJ, Scott PJH, Sanford MS. NHC-Copper Mediated Ligand-Directed Radiofluorination of Aryl Halides. J Am Chem Soc 2020; 142:7362-7367. [PMID: 32250612 DOI: 10.1021/jacs.0c02637] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
[18F]-labeled aryl fluorides are widely used as radiotracers for positron emission tomography (PET) imaging. Aryl halides (ArX) are particularly attractive precursors to these radiotracers, as they are readily available, inexpensive, and stable. However, to date, the direct preparation of [18F]-aryl fluorides from aryl halides remains limited to SNAr reactions between highly activated ArX substrates and K18F. This report describes an aryl halide radiofluorination reaction in which the C(sp2)-18F bond is formed via a copper-mediated pathway. Copper N-heterocyclic carbene complexes serve as mediators for this transformation, using aryl halide substrates with directing groups at the ortho position. This reaction is applied to the radiofluorination of electronically diverse aryl halide derivatives, including the bioactive molecules vismodegib and PH089.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
26 |
12
|
Wright JS, Sharninghausen LS, Preshlock S, Brooks AF, Sanford MS, Scott PJH. Sequential Ir/Cu-Mediated Method for the Meta-Selective C-H Radiofluorination of (Hetero)Arenes. J Am Chem Soc 2021; 143:6915-6921. [PMID: 33914521 PMCID: PMC8832069 DOI: 10.1021/jacs.1c00523] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article describes a sequential Ir/Cu-mediated process for the meta-selective C-H radiofluorination of (hetero)arene substrates. In the first step, Ir-catalyzed C(sp2)-H borylation affords (hetero)aryl pinacolboronate (BPin) esters. The intermediate organoboronates are then directly subjected to copper-mediated radiofluorination with [18F]tetrabutylammonium fluoride to afford fluorine-18 labeled (hetero)arenes in high radiochemical yield and radiochemical purity. This entire process is performed on a benchtop without Schlenk or glovebox techniques and circumvents the need to isolate (hetero)aryl boronate esters. The reaction was automated on a TracerLab FXFN module with 1,3-dimethoxybenzene and a meta-tyrosine derivative. The products, [18F]1-fluoro-3,5-dimethoxybenzene and an 18F-labeled meta-tyrosine derivative, were obtained in 37 ± 5% isolated radiochemical yield and >99% radiochemical purity and 25% isolated radiochemical yield and 99% radiochemical purity, and 0.52 Ci/μmol (19.24 GBq/μmol) molar activity (Am), respectively.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
22 |
13
|
Sharninghausen LS, Sinha SB, Shopov DY, Mercado BQ, Balcells D, Brudvig GW, Crabtree RH. Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,O-Donor Organic Ligand. Angew Chem Int Ed Engl 2017; 56:13047-13051. [PMID: 28815915 DOI: 10.1002/anie.201707593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Indexed: 11/09/2022]
Abstract
We have prepared and fully characterized two isomers of [IrIV (dpyp)2 ] (dpyp=meso-2,4-di(2-pyridinyl)-2,4-pentanediolate). These complexes can cleanly oxidize to [IrV (dpyp)2 ]+ , which to our knowledge represent the first mononuclear coordination complexes of IrV in an N,O-donor environment. One isomer has been fully characterized in the IrV state, including by X-ray crystallography, XPS, and DFT calculations, all of which confirm metal-centered oxidation. The unprecedented stability of these IrV complexes is ascribed to the exceptional donor strength of the ligands, their resistance to oxidative degradation, and the presence of four highly donor alkoxide groups in a plane, which breaks the degeneracy of the d-orbitals and favors oxidation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
19 |
14
|
Sharninghausen LS, Mercado BQ, Crabtree RH, Balcells D, Campos J. Gel-assisted crystallization of [Ir4(IMe)7(CO)H10]2+ and [Ir4(IMe)8H9]3+ clusters derived from catalytic glycerol dehydrogenation. Dalton Trans 2015; 44:18403-10. [DOI: 10.1039/c5dt03302k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two unique Ir4 clusters isolated during catalytic glycerol dehydrogenation, crystallized using aqueous and organic gel matrices and displaying remarkable structural features are described.
Collapse
|
|
10 |
18 |
15
|
Michaelos TK, Lant HMC, Sharninghausen LS, Craig SM, Menges FS, Mercado BQ, Brudvig GW, Crabtree RH. Catalytic Oxygen Evolution from Manganese Complexes with an Oxidation‐Resistant N,N,O‐Donor Ligand. Chempluschem 2016; 81:1129-1132. [DOI: 10.1002/cplu.201600353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Indexed: 11/08/2022]
|
|
9 |
15 |
16
|
Shopov DY, Sharninghausen LS, Sinha SB, Mercado BQ, Balcells D, Brudvig GW, Crabtree RH. A Dinuclear Iridium(V,V) Oxo-Bridged Complex Characterized Using a Bulk Electrolysis Technique for Crystallizing Highly Oxidizing Compounds. Inorg Chem 2018; 57:5684-5691. [DOI: 10.1021/acs.inorgchem.8b00757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
7 |
14 |
17
|
Sharninghausen LS, Sinha SB, Shopov DY, Mercado BQ, Balcells D, Brudvig GW, Crabtree RH. Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,O‐Donor Organic Ligand. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
8 |
11 |
18
|
Sharninghausen LS, Preshlock S, Joy ST, Horikawa M, Shao X, Winton WP, Stauff J, Kaur T, Koeppe RA, Mapp AK, Scott PJH, Sanford MS. Copper-Mediated Radiocyanation of Unprotected Amino Acids and Peptides. J Am Chem Soc 2022; 144:7422-7429. [PMID: 35437016 PMCID: PMC9887455 DOI: 10.1021/jacs.2c01959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This report describes a copper-mediated radiocyanation of aryl halides that is applicable to complex molecules. This transformation tolerates an exceptionally wide range of functional groups, including unprotected amino acids. As such, it enables the site-specific introduction of [11C]CN into peptides at an iodophenylalanine residue. The use of a diamine-ligated copper(I) mediator is crucial for achieving high radiochemical yield under relatively mild conditions, thus limiting racemization and competing side reactions of other amino acid side chains. The reaction has been scaled and automated to deliver radiolabeled peptides, including analogues of adrenocorticotropic hormone 1-27 (ACTH) and nociceptin (NOP). For instance, this Cu-mediated radiocyanation was leveraged to prepare >40 mCi of [11C]cyano-NOP to evaluate biodistribution in a primate using positron emission tomography. This investigation provides preliminary evidence that nociceptin crosses the blood-brain barrier and shows uptake across all brain regions (SUV > 1 at 60 min post injection), consistent with the known distribution of NOP receptors in the rhesus brain.
Collapse
|
research-article |
3 |
10 |
19
|
Sharninghausen LS, Crabtree RH. Activation, Deactivation and Reversibility in a Series of Homogeneous Iridium Dehydrogenation Catalysts. Isr J Chem 2017. [DOI: 10.1002/ijch.201700048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
|
8 |
10 |
20
|
Shopov DY, Sharninghausen LS, Sinha SB, Borowski JE, Mercado BQ, Brudvig GW, Crabtree RH. Synthesis of pyridine-alkoxide ligands for formation of polynuclear complexes. NEW J CHEM 2017. [DOI: 10.1039/c7nj01845b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel polydentate N,O-donor ligands strongly favour formation of polynuclear complexes.
Collapse
|
|
8 |
9 |
21
|
Campos J, Sharninghausen LS, Crabtree RH, Balcells D. A Carbene-Rich but Carbonyl-Poor [Ir6(IMe)8(CO)2H14]2+Polyhydride Cluster as a Deactivation Product from Catalytic Glycerol Dehydrogenation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
11 |
9 |
22
|
Hu G, Troiano JL, Tayvah UT, Sharninghausen LS, Sinha SB, Shopov DY, Mercado BQ, Crabtree RH, Brudvig GW. Accessing Molecular Dimeric Ir Water Oxidation Catalysts from Coordination Precursors. Inorg Chem 2021; 60:14349-14356. [PMID: 34478282 DOI: 10.1021/acs.inorgchem.1c02025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One ongoing challenge in the field of iridium-based water oxidation catalysts is to develop a molecular precatalyst affording well-defined homogeneous active species for catalysis. Our previous work by using organometallic precatalysts Cp*Ir(pyalk)OH and Ir(pyalk)(CO)2 (pyalk = (2-pyridyl)-2-propanolate) suggested a μ-oxo-bridged Ir dimer as the probable resting state, although the structure of the active species remained elusive. During the activation, the ligands Cp* and CO were found to oxidatively degrade into acetic acid or other products, which coordinate to Ir centers and affect the catalytic reaction. Two related dimers bearing two pyalk ligands on each iridium were crystallized for structural analysis. However, preliminary results indicated that these crystallographically characterized dimers are not active catalysts. In this work, we accessed a mixture of dinuclear iridium species from a coordination precursor, Na[Ir(pyalk)Cl4], and assayed their catalytic activity for oxygen evolution by using NaIO4 as the oxidant. This catalyst showed comparable oxygen-evolution activity to the ones previously reported from organometallic precursors without demanding oxidative activation to remove sacrificial ligands. Future research along this direction is expected to provide insights and design principles toward a well-defined active species.
Collapse
|
|
4 |
7 |
23
|
Sharninghausen LS, Mercado BQ, Hoffmann C, Wang X, Campos J, Crabtree RH, Balcells D. The neutron diffraction structure of [Ir4(IMe)8H10]2+ polyhydride cluster: Testing the computational hydride positional assignments. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
8 |
6 |
24
|
Sharninghausen LS, Sinha SB, Shopov DY, Brudvig GW, Crabtree RH. Some crystal growth strategies for diffraction structure studies of iridium complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
7 |
1 |
25
|
Morales M, Preshlock S, Sharninghausen LS, Wright JS, Brooks AF, Sanford MS, Scott PJH. Tandem Iridium-Catalyzed C-H Borylation/Copper-Mediated Radiofluorination of Aromatic C-H Bonds with [ 18F]TBAF. Methods Mol Biol 2024; 2729:45-53. [PMID: 38006490 PMCID: PMC10867631 DOI: 10.1007/978-1-0716-3499-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Direct C-H functionalization of (hetero)aromatic C-H bonds with iridium-catalyzed borylation followed by copper-mediated radiofluorination of the in situ generated organoboronates affords fluorine-18 labeled aromatics in high radiochemical conversions and meta-selectivities. This protocol describes the benchtop reaction assembly of the C-H borylation and radiofluorination steps, which can be utilized for the fluorine-18 labeling of densely functionalized bioactive scaffolds.
Collapse
|
research-article |
1 |
|