1
|
Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 1992; 298:431-7. [PMID: 1416974 DOI: 10.1016/0003-9861(92)90431-u] [Citation(s) in RCA: 1088] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peroxynitrite (ONOO-), the reaction product of superoxide (O2-) and nitric oxide (NO), may be a major cytotoxic agent produced during inflammation, sepsis, and ischemia/reperfusion. Bovine Cu,Zn superoxide dismutase reacted with peroxynitrite to form a stable yellow protein-bound adduct identified as nitrotyrosine. The uv-visible spectrum of the peroxynitrite-modified superoxide dismutase was highly pH dependent, exhibiting a peak at 438 nm at alkaline pH that shifts to 356 nm at acidic pH. An equivalent uv-visible spectrum was obtained by Cu,Zn superoxide dismutase treated with tetranitromethane. The Raman spectrum of authentic nitrotyrosine was contained in the spectrum of peroxynitrite-modified Cu,Zn superoxide dismutase. The reaction was specific for peroxynitrite because no significant amounts of nitrotyrosine were formed with nitric oxide (NO), nitrogen dioxide (NO2), nitrite (NO2-), or nitrate (NO3-). Removal of the copper from the Cu,Zn superoxide dismutase prevented formation of nitrotyrosine by peroxynitrite. The mechanism appears to involve peroxynitrite initially reacting with the active site copper to form an intermediate with the reactivity of nitronium ion (NO2+), which then nitrates tyrosine on a second molecule of superoxide dismutase. In the absence of exogenous phenolics, the rate of nitration of tyrosine followed second-order kinetics with respect to Cu,Zn superoxide dismutase concentration, proceeding at a rate of 1.0 +/- 0.1 M-1.s-1. Peroxynitrite-mediated nitration of tyrosine was also observed with the Mn and Fe superoxide dismutases as well as other copper-containing proteins.
Collapse
|
|
33 |
1088 |
2
|
Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 1992; 298:446-51. [PMID: 1329657 DOI: 10.1016/0003-9861(92)90433-w] [Citation(s) in RCA: 822] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peroxynitrite formation by rat alveolar macrophages activated with phorbol 12-myristate 13-acetate was assayed by the Cu,Zn superoxide dismutase-catalyzed nitration of 4-hydroxyphenylacetate. The inhibitor of nitric oxide synthesis N-methyl-L-arginine prevented the Cu,Zn superoxide dismutase-catalyzed nitration of 4-hydroxyphenylacetate by stimulated macrophages, while Cu-depleted Zn superoxide dismutase did not catalyze the formation of 3-nitro-4-hydroxyphenylacetate either in vitro or in the presence of activated macrophages. The rate of phenolic nitration by activated macrophages was 9 +/- 2 pmol x 10(6) cells-1 x min-1 (mean +/- STD). Only 8% of synthetic peroxynitrite was trapped by superoxide dismutase, which suggested that the rate of peroxynitrite formation may have been as high as 0.11 nmol x 10(6) cells-1 x min-1. This upper estimate was consistent with N-methyl-L-arginine increasing the amount of superoxide detected with cytochrome c by 0.12 nmol x 10(6) cells-1 x min-1. The rate of nitrite and nitrate accumulation was 0.10 +/- 0.001 nmol x 10(6) cells-1 x min-1, suggesting that the majority of nitric oxide produced by activated macrophages may have been converted to peroxynitrite. The formation of a relatively long lived, strong oxidant from the reaction of nitric oxide and superoxide in activated macrophages may contribute to inflammatory cell-mediated tissue injury.
Collapse
|
|
33 |
822 |
3
|
Beckman JS, Ischiropoulos H, Zhu L, van der Woerd M, Smith C, Chen J, Harrison J, Martin JC, Tsai M. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 1992; 298:438-45. [PMID: 1416975 DOI: 10.1016/0003-9861(92)90432-v] [Citation(s) in RCA: 608] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Superoxide dismutase and Fe3+EDTA catalyzed the nitration by peroxynitrite (ONOO-) of a wide range of phenolics including tyrosine in proteins. Nitration was not mediated by a free radical mechanism because hydroxyl radical scavengers did not reduce either superoxide dismutase or Fe3+EDTA-catalyzed nitration and nitrogen dioxide was not a significant product from either catalyst. Rather, metal ions appear to catalyze the heterolytic cleavage of peroxynitrite to form a nitronium-like species (NO2+). The calculated energy for separating peroxynitrous acid into hydroxide ion and nitronium ion is 13 kcal.mol-1 at pH 7.0. Fe3+EDTA catalyzed nitration with an activation energy of 12 kcal.mol-1 at a rate of 5700 M-1.s-1 at 37 degrees C and pH 7.5. The reaction rate of peroxynitrite with bovine Cu,Zn superoxide dismutase was 10(5) M-1.s-1 at low superoxide dismutase concentrations, but the rate of nitration became independent of superoxide dismutase concentration above 10 microM with only 9% of added peroxynitrite yielding nitrophenol. We propose that peroxynitrite anion is more stable in the cis conformation, whereas only a higher energy species in the trans conformation can fit in the active site of Cu,Zn superoxide dismutase. At high superoxide dismutase concentrations, phenolic nitration may be limited by the rate of isomerization from the cis to trans conformations of peroxynitrite as well as by competing pathways for peroxynitrite decomposition. In contrast, Fe3+EDTA appears to react directly with the cis anion, resulting in greater nitration yields.
Collapse
|
|
33 |
608 |
4
|
Zhu L, van den Heuvel S, Helin K, Fattaey A, Ewen M, Livingston D, Dyson N, Harlow E. Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev 1993; 7:1111-25. [PMID: 8319904 DOI: 10.1101/gad.7.7a.1111] [Citation(s) in RCA: 406] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cellular protein p107 shares many structural and biochemical features with the retinoblastoma gene product, pRB. We have isolated a full-length cDNA for human p107 and have used this clone to study the function of p107. We show that, like pRB, p107 is a potent inhibitor of E2F-mediated trans-activation, and overexpression of p107 can inhibit proliferation in certain cell types, arresting sensitive cells in G1. Several experiments, however, showed that growth inhibition by pRB and p107 did not occur through the same mechanism. First, in the cervical carcinoma cell line C33A, p107 was able to block cell proliferation, whereas pRB could not, even though both proteins were potent inhibitors of E2F-mediated transcription in this cell line. Second, growth arrest by pRB and p107 was rescued differentially by various cell cycle regulators. Third, some mutants of p107 that cannot associate with adenovirus E1A were still able to inhibit cell proliferation, whereas analogous mutants in pRB are known to be unable to block cell growth. Together, these results suggest a biological role of p107 that is related, but not identical, to that of pRB.
Collapse
|
|
32 |
406 |
5
|
Finck-Barbançon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, Fleiszig SM, Wu C, Mende-Mueller L, Frank DW. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 1997; 25:547-57. [PMID: 9302017 DOI: 10.1046/j.1365-2958.1997.4891851.x] [Citation(s) in RCA: 401] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The production of exoenzyme S is correlated with the ability of Pseudomonas aeruginosa to disseminate from epithelial colonization sites and cause a fatal sepsis in burn injury and acute lung infection models. Exoenzyme S is purified from culture supernatants as a non-covalent aggregate of two polypeptides, ExoS and ExoT. ExoS and ExoT are encoded by separate but highly similar genes, exoS and exoT. Clinical isolates that injure lung epithelium in vivo and that are cytotoxic in vitro possess exoT but lack exoS, suggesting that ExoS is not the cytotoxin responsible for the pathology and cell death measured in these assays. We constructed a specific mutation in exoT and showed that this strain, PA103 exoT::Tc, was cytotoxic in vitro and caused epithelial injury in vivo, indicating that another cytotoxin was responsible for the observed pathology. To identify the protein associated with acute cytotoxicity, we compared extracellular protein profiles of PA103, its isogenic non-cytotoxic derivative PA103 exsA::omega and several cytotoxic and non-cytotoxic P. aeruginosa clinical isolates. This analysis indicated that, in addition to expression of ExoT, expression of a 70-kDa protein correlated with the cytotoxic phenotype. Specific antibodies to the 70-kDa protein bound to extracellular proteins from cytotoxic isolates but failed to bind to similar antigen preparations from non-cytotoxic strains or PA103 exsA::omega. To clone the gene encoding this potential cytotoxin we used Tn5Tc mutagenesis and immunoblot screening to isolate an insertional mutant, PA103exoU:: Tn5Tc, which no longer expressed the 70-kDa extracellular protein but maintained expression of ExoT. PA103 exoU::Tn5Tc was non-cytotoxic and failed to injure the epithelium in an acute lung infection model. Complementation of PA103exoU::Tn5Tc with exoU restored cytotoxicity and epithelial injury. ExoU, ExoS and ExoT share similar promoter structures and an identical binding site for the transcriptional activator, ExsA, data consistent with their co-ordinate regulation. In addition, all three proteins are nearly identical in the first six amino acids, suggesting a common amino terminal motif that may be involved in the recognition of the type III secretory apparatus of P. aeruginosa.
Collapse
|
|
28 |
401 |
6
|
Mahadev K, Zilbering A, Zhu L, Goldstein BJ. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem 2001; 276:21938-42. [PMID: 11297536 DOI: 10.1074/jbc.c100109200] [Citation(s) in RCA: 387] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin signaling pathway is activated by tyrosine phosphorylation of the insulin receptor and key post-receptor substrate proteins and balanced by the action of specific protein-tyrosine phosphatases (PTPases). PTPase activity, in turn, is highly regulated in vivo by oxidation/reduction reactions involving the cysteine thiol moiety required for catalysis. Here we show that insulin stimulation generates a burst of intracellular H(2)O(2) in insulin-sensitive hepatoma and adipose cells that is associated with reversible oxidative inhibition of up to 62% of overall cellular PTPase activity, as measured by a novel method using strictly anaerobic conditions. The specific activity of immunoprecipitated PTP1B, a PTPase homolog implicated in the regulation of insulin signaling, was also strongly inhibited by up to 88% following insulin stimulation. Catalase pretreatment abolished the insulin-stimulated production of H(2)O(2) as well as the inhibition of cellular PTPases, including PTP1B, and was associated with reduced insulin-stimulated tyrosine phosphorylation of its receptor and high M(r) insulin receptor substrate (IRS) proteins. These data provide compelling new evidence for a redox signal that enhances the early insulin-stimulated cascade of tyrosine phosphorylation by oxidative inactivation of PTP1B and possibly other tyrosine phosphatases.
Collapse
|
|
24 |
387 |
7
|
Stolina M, Sharma S, Lin Y, Dohadwala M, Gardner B, Luo J, Zhu L, Kronenberg M, Miller PW, Portanova J, Lee JC, Dubinett SM. Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:361-70. [PMID: 10605031 DOI: 10.4049/jimmunol.164.1.361] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclooxygenase-2 (COX-2), the enzyme at the rate-limiting step of prostanoid production, has been found to be overexpressed in human lung cancer. To evaluate lung tumor COX-2 modulation of antitumor immunity, we studied the antitumor effect of specific genetic or pharmacological inhibition of COX-2 in a murine Lewis lung carcinoma (3LL) model. Inhibition of COX-2 led to marked lymphocytic infiltration of the tumor and reduced tumor growth. Treatment of mice with anti-PGE2 mAb replicated the growth reduction seen in tumor-bearing mice treated with COX-2 inhibitors. COX-2 inhibition was accompanied by a significant decrement in IL-10 and a concomitant restoration of IL-12 production by APCs. Because the COX-2 metabolite PGE2 is a potent inducer of IL-10, it was hypothesized that COX-2 inhibition led to antitumor responses by down-regulating production of this potent immunosuppressive cytokine. In support of this concept, transfer of IL-10 transgenic T lymphocytes that overexpress IL-10 under control of the IL-2 promoter reversed the COX-2 inhibitor-induced antitumor response. We conclude that abrogation of COX-2 expression promotes antitumor reactivity by restoring the balance of IL-10 and IL-12 in vivo.
Collapse
|
|
25 |
334 |
8
|
Han J, Flemington C, Houghton AB, Gu Z, Zambetti GP, Lutz RJ, Zhu L, Chittenden T. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci U S A 2001; 98:11318-23. [PMID: 11572983 PMCID: PMC58727 DOI: 10.1073/pnas.201208798] [Citation(s) in RCA: 331] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BH3-only proteins function at a proximal point in a conserved cell death pathway by binding, through their BH3 domains, to other Bcl-2 family members and triggering mitochondrial events associated with apoptosis. Here, we describe a strongly pro-apoptotic BH3-only protein, designated Bbc3, whose expression increases in response to diverse apoptotic stimuli. bbc3 mRNA levels were induced by exposure to DNA-damaging agents and by wild-type p53, which mediates DNA damage-induced apoptosis. p53 transactivated bbc3 through consensus p53 binding sites within the bbc3 promoter region, indicating that bbc3 is a direct target of p53. Additionally, bbc3 mRNA was induced by p53-independent apoptotic stimuli, including dexamethasone treatment of thymocytes, and serum deprivation of tumor cells. Insulin-like growth factor-1 and epidermal growth factor, growth factors with broad anti-apoptotic activity, were each sufficient to suppress Bbc3 expression in serum-starved tumor cells. These results suggest that the transcriptional regulation of bbc3 contributes to the transduction of diverse cell death and survival signals.
Collapse
|
research-article |
24 |
331 |
9
|
Abstract
Peroxynitrite is a strong oxidant formed by macrophages and potentially by other cells that produce nitric oxide and superoxide. Peroxynitrite was highly bactericidal, killing Escherichia coli in direct proportion to its concentration with an LD50 of 250 microM at 37 degrees C in potassium phosphate, pH 7.4. The apparent bactericidal activity of a given concentration peroxynitrite at acidic pH was less than that at neutral and alkaline pH. However, after taking the rapid pH-dependent decomposition of peroxynitrite into account, the rate of the killing was not significantly different at pH 5 compared to pH 7.4. Metal chelators did not decrease peroxynitrite-mediated killing, indicating that exogenous transition metals were not required for toxicity. The hydroxyl radical scavengers mannitol, ethanol, and benzoate did not significantly affect toxicity while dimethyl sulfoxide enhanced peroxynitrite-mediated killing. Dimethyl sulfoxide is a more efficient hydroxyl radical scavenger than the other three scavengers and increased the formation of nitrogen dioxide from peroxynitrite. In the presence of 100 mM dimethyl sulfoxide, 60.0 +/- 0.3 microM nitrogen dioxide was formed from 250 microM peroxynitrite as compared to 2.0 +/- 0.1 microM in buffer alone. Thus, formation of nitrogen dioxide may have enhanced the toxicity of peroxynitrite decomposing in the presence of dimethyl sulfoxide.
Collapse
|
|
33 |
321 |
10
|
Schneider JW, Gu W, Zhu L, Mahdavi V, Nadal-Ginard B. Reversal of terminal differentiation mediated by p107 in Rb-/- muscle cells. Science 1994; 264:1467-71. [PMID: 8197461 DOI: 10.1126/science.8197461] [Citation(s) in RCA: 312] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The terminal differentiation of mammalian muscle cells requires the tumor suppressor retinoblastoma protein (Rb). Unlike their wild-type counterparts, multinucleated myotubes from mouse cells deficient in Rb (Rb-/-) were induced by serum to re-enter the cell cycle. Development of the myogenic phenotype in Rb-/- cells correlated with increased expression of p107, which interacted with myogenic transcription factors. Serum-induced cell cycle reentry, on the other hand, correlated with decreased p107 expression. Thus, although p107 could substitute for Rb as a cofactor for differentiation, it could not maintain the terminally differentiated state in Rb-/- myotubes.
Collapse
|
|
31 |
312 |
11
|
Zhang Z, Han Y, Xiao FS, Qiu S, Zhu L, Wang R, Yu Y, Zhang Z, Zou B, Wang Y, Sun H, Zhao D, Wei Y. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. J Am Chem Soc 2001; 123:5014-21. [PMID: 11457329 DOI: 10.1021/ja004138t] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly ordered hexagonal mesoporous aluminosilicates (MAS-5) with uniform pore sizes have been successfully synthesized from assembly of preformed aluminosilcate precursors with cetyltrimethylammonium bromide (CTAB) surfactant. The aluminosilicate precursors were obtained by heating, at 100--140 degrees C for 2--10 h, aluminasilica gels at the Al(2)O(3)/SiO(2)/TEAOH/H(2)O molar ratios of 1.0/7.0--350/10.0--33.0/500--2000. Mesoporous MAS-5 shows extraordinary stability both in boiling water (over 300 h) and in steam (800 degrees C for 2 h). Temperature-programmed desorption of ammonia shows that the acidic strength of MAS-5 is much higher than that of MCM-41 and is comparable to that of microporous Beta zeolite. In catalytic cracking of 1,3,5-triisopropylbenzene and alkylation of isobutane with butene, MAS-5 exhibits greater catalytic activity and selectivity, as compared with MCM-41 and HZSM-5. The MAS-5 samples were characterized with infrared, UV--Raman, and NMR spectroscopy and numerous other techniques. The results suggest that MAS-5 consists of both mesopores and micropores and that the pore walls of MAS-5 contain primary and secondary structural building units, similar to those of microporous zeolites. Such unique structural features might be responsible for the observed strong acidity and high thermal stability of the mesoporous aluminosilicates with well-ordered hexagonal symmetry.
Collapse
|
|
24 |
311 |
12
|
Subedi R, Shneor R, Monaghan P, Anderson BD, Aniol K, Annand J, Arrington J, Benaoum H, Benmokhtar F, Boeglin W, Chen JP, Choi S, Cisbani E, Craver B, Frullani S, Garibaldi F, Gilad S, Gilman R, Glamazdin O, Hansen JO, Higinbotham DW, Holmstrom T, Ibrahim H, Igarashi R, de Jager CW, Jans E, Jiang X, Kaufman LJ, Kelleher A, Kolarkar A, Kumbartzki G, LeRose JJ, Lindgren R, Liyanage N, Margaziotis DJ, Markowitz P, Marrone S, Mazouz M, Meekins D, Michaels R, Moffit B, Perdrisat CF, Piasetzky E, Potokar M, Punjabi V, Qiang Y, Reinhold J, Ron G, Rosner G, Saha A, Sawatzky B, Shahinyan A, Sirca S, Slifer K, Solvignon P, Sulkosky V, Urciuoli GM, Voutier E, Watson JW, Weinstein LB, Wojtsekhowski B, Wood S, Zheng XC, Zhu L. Probing Cold Dense Nuclear Matter. Science 2008; 320:1476-8. [DOI: 10.1126/science.1156675] [Citation(s) in RCA: 310] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
17 |
310 |
13
|
MacPherson LJ, Bayburt EK, Capparelli MP, Carroll BJ, Goldstein R, Justice MR, Zhu L, Hu S, Melton RA, Fryer L, Goldberg RL, Doughty JR, Spirito S, Blancuzzi V, Wilson D, O'Byrne EM, Ganu V, Parker DT. Discovery of CGS 27023A, a non-peptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits. J Med Chem 1997; 40:2525-32. [PMID: 9258358 DOI: 10.1021/jm960871c] [Citation(s) in RCA: 276] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Structure-activity relationships of a lead hydroxamic acid inhibitor of recombinant human stromelysin were systematically defined by taking advantage of a concise synthesis that allowed diverse functionality to be explored at each position in a template. An ex vivo rat model and an in vivo rabbit model of stromelysin-induced cartilage degradation were used to further optimize these analogs for oral activity and duration of action. The culmination of these modifications resulted in CGS 27023A, a potent, orally active stromelysin inhibitor that blocks the erosion of cartilage matrix.
Collapse
|
|
28 |
276 |
14
|
Zhu L, Kleiman V, Li X, Lu SP, Trentelman K, Gordon RJ. Coherent Laser Control of the Product Distribution Obtained in the Photoexcitation of HI. Science 1995. [DOI: 10.1126/science.270.5233.77] [Citation(s) in RCA: 260] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
30 |
260 |
15
|
Beijersbergen RL, Kerkhoven RM, Zhu L, Carlée L, Voorhoeve PM, Bernards R. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. Genes Dev 1994; 8:2680-90. [PMID: 7958925 DOI: 10.1101/gad.8.22.2680] [Citation(s) in RCA: 260] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The E2F family of transcription factors controls the expression of genes that are involved in cell cycle regulation. E2F DNA-binding activity is found in complex with the retinoblastoma protein, pRb, and with the pRb-related p107 and p130. To date, cDNAs for three members of the E2F gene family have been isolated. However, all three E2Fs associate in vivo exclusively with pRb. We report here the cloning and functional analysis of a fourth E2F family member. E2F-4 encodes a 413-amino-acid protein with significant homology to E2F-1. E2F-4 antibodies recognize a 60-kD protein in anti-p107 immunoprecipitates, indicating that E2F-4 associates with p107 in vivo. Like the other E2Fs, E2F-4 requires DP-1 for efficient DNA binding and transcriptional activation of E2F site-containing promoters. Increased expression of E2F-4 and DP-1 in SaoS-2 osteosarcoma cells causes a shift from G1-phase cells to S and G2/M-phase cells, suggesting a role for E2F-4 in regulation of cell-cycle progression. We show that expression of E2F-4 and DP-1 together with an activated ras oncogene in rat embryo fibroblasts, causes transformation, indicating that E2F-4 has oncogenic activity.
Collapse
|
|
31 |
260 |
16
|
Byles V, Zhu L, Lovaas JD, Chmilewski LK, Wang J, Faller DV, Dai Y. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 2012; 31:4619-29. [PMID: 22249256 PMCID: PMC4157820 DOI: 10.1038/onc.2011.612] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/26/2011] [Accepted: 11/28/2011] [Indexed: 12/15/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a crucial program for the invasion and metastasis of epithelial tumors that involves loss of cell-cell adhesion and increased cell mobility; however, mechanisms underlying this transition are not fully elucidated. Here, we propose a novel mechanism through which the nicotinamide adenine dinucleotide-dependent histone deacetylase SIRT1 regulates EMT in prostate cancer cells through cooperation with the EMT inducing transcription factor ZEB1. We found that forced expression of SIRT1 in non-transformed PZ-HPV-7 prostate epithelial cells disrupts the epithelial morphology concomitant with decreased expression of the epithelial marker, E-cadherin, and increased expression of mesenchymal markers. In contrast, silencing SIRT1 in metastatic prostate tumor cells restores cell-cell adhesion and induces a shift toward an epithelial morphology concomitant with increased expression of E-cadherin and decreased expression of mesenchymal markers. We also found that SIRT1 has a physiologically relevant role in endogenous EMT induced by EGF signaling in prostate cancer cells. We propose that the regulation of EMT by SIRT1 involves modulation of, and cooperation with, the EMT inducing transcription factor ZEB1. Specifically, we show that SIRT1 silencing reduces expression of ZEB1 and that SIRT1 is recruited to the E-cadherin proximal promoter by ZEB1 to deacetylate histone H3 and to reduce binding of RNA polymerase II, ultimately suppressing E-cadherin transcription. We thus identify a necessary role for ZEB1 in SIRT1-mediated EMT. Finally, we show that reduction of SIRT1 decreases prostate cancer cell migration in vitro and metastasis in vivo in immunodeficient mice, which is largely independent of any general effects of SIRT1 on prostate cancer growth and survival. We therefore identify SIRT1 as a positive regulator of EMT and metastatic growth of prostate cancer cells and our findings implicate overexpressed SIRT1 as a potential therapeutic target to reverse EMT and to prevent prostate cancer progression.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
257 |
17
|
Mahadev K, Wu X, Zilbering A, Zhu L, Lawrence JT, Goldstein BJ. Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem 2001; 276:48662-9. [PMID: 11598110 DOI: 10.1074/jbc.m105061200] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a variety of cell types, insulin stimulation elicits the rapid production of H(2)O(2), which causes the oxidative inhibition of protein-tyrosine phosphatases and enhances the tyrosine phosphorylation of proteins in the early insulin action cascade (Mahadev, K., Zilbering, A., Zhu, L., and Goldstein, B. J. (2001) J. Biol. Chem. 276, 21938-21942). In the present work, we explored the potential role of insulin-induced H(2)O(2) generation on downstream insulin signaling using diphenyleneiodonium (DPI), an inhibitor of cellular NADPH oxidase that blocks insulin-stimulated cellular H(2)O(2) production. DPI completely inhibited the activation of phosphatidylinositol (PI) 3'-kinase activity by insulin and reduced the insulin-induced activation of the serine kinase Akt by up to 49%; these activities were restored when H(2)O(2) was added back to cells that had been pretreated with DPI. Interestingly, the H(2)O(2)-induced activation of Akt was entirely mediated by upstream stimulation of PI 3'-kinase activity, since treatment of 3T3-L1 adipocytes with the PI 3'-kinase inhibitors wortmannin or LY294002 completely blocked the subsequent activation of Akt by exogenous H(2)O(2). Preventing oxidant generation with DPI also blocked insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane, providing further evidence for an oxidant signal in the regulation of the distal insulin-signaling cascade. Finally, in contrast to the cellular mechanism of H(2)O(2) generation by other growth factors, such as platelet-derived growth factor, we also found that insulin-stimulated cellular production of H(2)O(2) may occur through a unique pathway, independent of cellular PI 3'-kinase activity. Overall, these data provide insight into the physiological role of insulin-dependent H(2)O(2) generation, which is not only involved in the regulation of tyrosine phosphorylation events in the early insulin signaling cascade but also has important effects on the regulation of downstream insulin signaling, involving the activation of PI 3'-kinase, Akt, and ultimately cellular glucose transport in response to insulin.
Collapse
|
|
24 |
229 |
18
|
Galbiati F, Volonté D, Liu J, Capozza F, Frank PG, Zhu L, Pestell RG, Lisanti MP. Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell 2001; 12:2229-44. [PMID: 11514613 PMCID: PMC58591 DOI: 10.1091/mbc.12.8.2229] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Revised: 04/10/2001] [Accepted: 04/30/2001] [Indexed: 01/14/2023] Open
Abstract
Caveolin-1 is a principal component of caveolae membranes in vivo. Caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). However, it remains unknown whether caveolin-1 plays any role in regulating cell cycle progression. Here, we directly demonstrate that caveolin-1 expression arrests cells in the G(0)/G(1) phase of the cell cycle. We show that serum starvation induces up-regulation of endogenous caveolin-1 and arrests cells in the G(0)/G(1) phase of the cell cycle. Moreover, targeted down-regulation of caveolin-1 induces cells to exit the G(0)/G(1) phase. Next, we constructed a green fluorescent protein-tagged caveolin-1 (Cav-1-GFP) to examine the effect of caveolin-1 expression on cell cycle regulation. We directly demonstrate that recombinant expression of Cav-1-GFP induces arrest in the G(0)/G(1) phase of the cell cycle. To examine whether caveolin-1 expression is important for modulating cell cycle progression in vivo, we expressed wild-type caveolin-1 as a transgene in mice. Analysis of primary cultures of mouse embryonic fibroblasts from caveolin-1 transgenic mice reveals that caveolin-1 induces 1) cells to exit the S phase of the cell cycle with a concomitant increase in the G(0)/G(1) population, 2) a reduction in cellular proliferation, and 3) a reduction in the DNA replication rate. Finally, we demonstrate that caveolin-1-mediated cell cycle arrest occurs through a p53/p21-dependent pathway. Taken together, our results provide the first evidence that caveolin-1 expression plays a critical role in the modulation of cell cycle progression in vivo.
Collapse
|
research-article |
24 |
227 |
19
|
Huang H, Zhu L, Reid BR, Drobny GP, Hopkins PB. Solution structure of a cisplatin-induced DNA interstrand cross-link. Science 1995; 270:1842-5. [PMID: 8525382 DOI: 10.1126/science.270.5243.1842] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The widely used antitumor drug cis-diamminedichloroplatinum(II) (cisplatin or cis-DDP) reacts with DNA, cross-linking two purine residues through the N7 atoms, which reside in the major groove in B-form DNA. The solution structure of the short duplex [d(CAT-AGCTATG)]2 cross-linked at the GC:GC site was determined by nuclear magnetic resonance (NMR). The deoxyguanosine-bridging cis-diammineplatinum(II) lies in the minor groove, and the complementary deoxycytidines are extrahelical. The double helix is locally reversed to a left-handed form, and the helix is unwound and bent toward the minor groove. These findings were independently confirmed by results from a phase-sensitive gel electrophoresis bending assay. The NMR structure differs markedly from previously proposed models but accounts for the chemical reactivity, the unwinding, and the bending of cis-DDP interstrand cross-linked DNA and may be important in the formation and repair of these cross-links in chromatin.
Collapse
|
|
30 |
227 |
20
|
Zhu L, Harlow E, Dynlacht BD. p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev 1995; 9:1740-52. [PMID: 7622038 DOI: 10.1101/gad.9.14.1740] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The kinase activities of the cyclin/cdk complexes can be regulated in a number of ways. The most recently discovered mechanism of regulation is the association of cdk inhibitors (CKIs), such as p21, p27, and p57, with these complexes. In this report we demonstrate that the pRB-related protein p107, like the p21 family of cdk inhibitors, can inhibit the phosphorylation of target substrates by cyclin A/cdk2 and cyclin E/cdk2 complexes, and the associations of p107 and p21 with cyclin/cdk2 rely on a structurally and functionally related interaction domain. Furthermore, interactions between p107 or p21 with cyclin/cdk2 complexes are mutually exclusive. In cells treated with DNA-damaging agents elevated levels of p21 cause a dissociation of p107/cyclin/cdk2 complexes to yield p21/cyclin/cdk2 complexes. Finally, the consequences of cyclin/cdk2 interactions with p107 have been examined. The activation of the p107-bound cyclin/cdk kinases leads to dissociation of p107 from the transcription factor E2F. Together, these results suggest that cyclin/cdk complexes can be regulated by protein molecules from different families in a mutually exclusive manner in response to certain signals and that these inhibitory proteins may have a potential role in regulating macromolecular assembly.
Collapse
|
|
30 |
210 |
21
|
Parks EK, Zhu L, Ho J, Riley SJ. The structure of small nickel clusters. I. Ni3–Ni15. J Chem Phys 1994. [DOI: 10.1063/1.466868] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
31 |
198 |
22
|
Moses AV, Fish KN, Ruhl R, Smith PP, Strussenberg JG, Zhu L, Chandran B, Nelson JA. Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J Virol 1999; 73:6892-902. [PMID: 10400787 PMCID: PMC112774 DOI: 10.1128/jvi.73.8.6892-6902.1999] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV8) infects Kaposi's sarcoma (KS) spindle cells in situ, as well as the lesional endothelial cells considered to be spindle cell precursors. The HHV8 genome contains several oncogenes, suggesting that infection of endothelial and spindle cells could induce cellular transformation and tumorigenesis and promote the formation of KS lesions. To investigate the potential of HHV8 infection of endothelial cells to contribute to the development of KS, we have developed an in vitro model utilizing dermal microvascular endothelial cells that support significant HHV8 infection. In contrast to existing in vitro systems used to study HHV8 pathogenesis, the majority of dermal endothelial cells are infected with HHV8 and the viral genome is maintained indefinitely. Infection is predominantly latent, with a small percentage of cells supporting lytic replication, and latency is responsive to lytic induction stimuli. Infected endothelial cells develop a spindle shape resembling that of KS lesional cells and show characteristics of a transformed phenotype, including loss of contact inhibition and acquisition of anchorage-independent growth. These results describe a relevant model system in which to study virus-host interactions in vitro and demonstrate the ability of HHV8 to induce phenotypic changes in infected endothelial cells that resemble characteristics of KS spindle cells in vivo. Thus, our results are consistent with a direct role for HHV8 in the pathogenesis of KS.
Collapse
|
research-article |
26 |
196 |
23
|
Xu Y, Zhu L, Xiao J, Huang N, McCouch SR. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). MOLECULAR & GENERAL GENETICS : MGG 1997; 253:535-45. [PMID: 9065686 DOI: 10.1007/s004380050355] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chromosomal regions associated with marker segregation distortion in rice were compared based on six molecular linkage maps. Mapping populations were derived from one interspecific backcross and five inter-subspecific (indica/japonica) crosses, including two F2 populations, two doubled haploid (DH) populations, and one recombinant inbred (RI) population. Mapping data for each population consisted of 129-629 markers. Segregation distortion was determined based on chi-square analysis (P < 0.01) and was observed at 6.8-31.8%, of the mapped marker loci. Marker loci associated with skewed allele frequencies were distributed on all 12 chromosomes. Distortion in eight chromosomal regions bracketed previously identified gametophyte (ga) or sterility genes (S). Distortion in three other chromosomal regions was found only in DH populations, where japonica alleles were over-represented, suggesting that loci in these regions may be associated with preferential regeneration of japonica genotypes during anther culture. Three additional clusters of skewed markers were observed in more than one population in regions where no gametophytic or sterility loci have previously been reported. A total of 17 segregation distortion loci may be postulated based on this study and their locations in the rice genome were estimated.
Collapse
|
|
28 |
190 |
24
|
Abstract
Cell proliferation and differentiation are highly coordinated processes during development. Recent studies have revealed that this coordination may result from dual functions residing in the central regulators of proliferation, allowing them to also regulate differentiation. Studies have also shown that some terminally differentiated cells can be made to divide beyond their normal capacity.
Collapse
|
Review |
24 |
185 |
25
|
Abstract
Femtosecond laser pulses, resonant with Soret band of the nitric oxide complex of myoglobin (MbNO), were used to probe coherent, low-frequency nuclear motion of the heme group after photolysis. Distinct oscillations with periods of 430 and 150 femtoseconds were observed and are attributed to heme doming and iron-histidine motion, respectively. These results verify that the nuclear motion of the heme is strongly coupled to the ligand binding reaction and demonstrate that such motion is not determined by overdamped (diffusive) dynamics. The relative phases and frequencies of the nuclear motion of the photoproduct suggest that the coherence arises from impulsive electronic forces associated with the spin-state change of the heme iron atom and the depopulation of its dz2 orbital during the bond-breaking event.
Collapse
|
|
31 |
181 |