1
|
|
|
36 |
194 |
2
|
Yam KY, Naninck EFG, Abbink MR, la Fleur SE, Schipper L, van den Beukel JC, Grefhorst A, Oosting A, van der Beek EM, Lucassen PJ, Korosi A. Exposure to chronic early-life stress lastingly alters the adipose tissue, the leptin system and changes the vulnerability to western-style diet later in life in mice. Psychoneuroendocrinology 2017; 77:186-195. [PMID: 28088658 DOI: 10.1016/j.psyneuen.2016.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Early-life stress (ES) increases the vulnerability to develop psychopathologies and cognitive decline in adulthood. Interestingly, this is often comorbid with metabolic disorders, such as obesity. However, it is unclear whether ES leads to lasting metabolic changes and to what extent this is associated with the ES-induced cognitive impairments. Here, we used an established chronic ES mouse model (from postnatal day (P) 2 to P9) to investigate the short- and long-term effects of ES exposure on parameters of the adipose tissue and the leptin system (i.e. circulating levels and gene expression of leptin and its receptor) in both sexes. Immediately following ES, the offspring exhibited reductions in white adipose tissue (WAT) mass, plasma leptin levels and in leptin mRNA expression in WAT. Furthermore, ES exposure led to increased brown adipose tissue and browning of WAT, which was evident by a drastic increase in uncoupling protein 1 mRNA expression in the inguinal WAT at P9. Notably, the ES-induced reductions in WAT mass, plasma leptin and leptin expression in WAT were sustained into adulthood and were accompanied by changes in body fat distribution, such as a higher ratio between mesenteric WAT and other WATs. Interestingly, while ES exposure increased leptin receptor mRNA expression in the choroid plexus, it was unaltered in the hippocampus. This suggests an adaptation to maintain central leptin homeostasis following ES exposure. In addition, chronic ES exposure resulted in the well-established cognitive impairment in object recognition performance during adulthood, which correlated positively with reductions in WAT mass observed in male, but not in female mice. Finally, to assess if ES leads to a different metabolic phenotype in a moderate obesogenic environment, we measured body fat accumulation of control and ES-exposed mice in response to a moderate western-style diet (WSD) that was provided during adulthood. ES-exposed mice subjected to WSD exhibit a higher increase in adiposity when compared to controls, suggesting that ES exposure might result in a higher vulnerability to develop obesity in a moderate obesogenic environment. To conclude, chronic ES exposure alters parameters of the adipose tissue, leads to central adaptations in leptin regulation and results in higher fat accumulations when exposed to a WSD challenge later in life. A better understanding of these metabolic effects induced by ES might open up new avenues for therapeutic (e.g. nutritional) interventions.
Collapse
|
|
8 |
61 |
3
|
Bosch FH, Werre JM, Schipper L, Roerdinkholder-Stoelwinder B, Huls T, Willekens FL, Wichers G, Halie MR. Determinants of red blood cell deformability in relation to cell age. Eur J Haematol 1994; 52:35-41. [PMID: 8299768 DOI: 10.1111/j.1600-0609.1994.tb01282.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Red blood cell (RBC) deformability was determined with an ektacytometer in fractions separated on the basis of differences in cell volume or density. Deformability was measured with ektacytometry (rpm-scan and osmo-scan). We studied three groups of RBC fractions:1. By counterflow centrifugation we obtained fractions of different cell age which showed a slight decrease in mean corpuscular haemoglobin concentration (MCHC) and an increase in surface-to-volume (S/V) ratio in fractions with older cells. 2. By Percoll fractionation fractions were obtained which showed a pronounced increase in (MCHC) but no change in S/V ratio. 3. By a combination of both fractionation techniques, fractions were obtained which showed an increased MCHC and an increase in S/V ratio. Deformability in group 1,2 and 3 showed respectively no change, a moderate decrease and a pronounced decrease in fractions of older cells. A decline in deformability occurs during the aging process of the red blood cell. This decline in deformability in old red cells is greater than originally thought. This decline is the result of an increase in haemoglobin concentration and a second factor, probably a decrease in membrane elasticity.
Collapse
|
|
31 |
57 |
4
|
|
|
49 |
50 |
5
|
Schipper L, Harvey L, van der Beek EM, van Dijk G. Home alone: a systematic review and meta-analysis on the effects of individual housing on body weight, food intake and visceral fat mass in rodents. Obes Rev 2018; 19:614-637. [PMID: 29334694 DOI: 10.1111/obr.12663] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/11/2017] [Accepted: 11/21/2017] [Indexed: 12/09/2022]
Abstract
Rats and mice are widely used to study environmental effects on psychological and metabolic health. Study designs differ widely and are often characterized by varying (social) housing conditions. In itself, housing has a profound influence on physiology and behaviour of rodents, affecting energy balance and sustainable metabolic health. However, evidence for potential long-term consequences of individual versus social housing on body weight and metabolic phenotype is inconsistent. We conducted a systematic literature review and meta-analyses assessing effects of individual versus social housing of rats and mice, living under well-accepted laboratory conditions, on measures of metabolic health, including body weight, food intake and visceral adipose tissue mass. Seventy-one studies were included in this review; 59 were included in the meta-analysis. Whilst housing did not affect body weight, both food intake and visceral adipose tissue mass were significantly higher in individually compared with socially housed animals. A combination of emotional stress and lack of social thermoregulation likely contributed to these effects. Increased awareness of consequences and improved specifications of housing conditions are necessary to accurately evaluate efficacy of drugs, diets or other interventions on metabolic and other health outcomes because housing conditions are rarely considered as possible moderators of reported outcomes.
Collapse
|
Meta-Analysis |
7 |
47 |
6
|
Schipper L, Ketoff A, Kahane A. Explaining Residential Energy use by International Bottom-Up Comparisons. ACTA ACUST UNITED AC 1985. [DOI: 10.1146/annurev.eg.10.110185.002013] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
40 |
41 |
7
|
Van Tienhoven EAE, Korbee D, Schipper L, Verharen HW, De Jong WH. In vitro andin vivo (cyto)toxicity assays using PVC and LDPE as model materials. J Biomed Mater Res A 2006; 78:175-82. [PMID: 16628708 DOI: 10.1002/jbm.a.30679] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The choice for a biomaterial is partly based on the outcome of (cyto)toxicity assays. The rationales behind the selection of certain parameters, such as cell lines, controls, and animals, were evaluated using a positive and a negative control, and one experimental sample designed to induce intermediate toxicity. Extraction and direct contact assays were performed using human epidermal keratinocytes and mouse fibroblasts and mouse epithelial cells. Cell survival was measured with the tetrazolium salt (MTT) reduction assay. In addition, local implantation studies were performed in mice and rats. The positive control induced a high degree of toxicity in all in vitro tests performed, indicating that the toxicity observed in the direct contact assay was due to in situ extraction of toxic components. In the direct contact assay the negative control tested on the mouse fibroblasts resulted in a significant reduction of cell survival. No decrease in cell survival was found using the experimental sample. Subcutaneous implantation studies in mice showed that the positive control material induced a severe degeneration in mice. However, in rats just minimal alterations were noted. The experimental material induced moderate responses only in mice. Our results indicate that the direct contact assay provides limited additional information on the cytotoxicity of materials if certain limitations are not taken into account. For the in vivo implantation assay mice were superior to rats in detecting local toxic responses.
Collapse
|
|
19 |
39 |
8
|
Schipper L, Howarth RB, Geller H. United States Energy Use from 1973 to 1987: The Impacts of Improved Efficiency. ACTA ACUST UNITED AC 1990. [DOI: 10.1146/annurev.eg.15.110190.002323] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
35 |
36 |
9
|
Schipper L, van Dijk G, Broersen LM, Loos M, Bartke N, Scheurink AJ, van der Beek EM. A Postnatal Diet Containing Phospholipids, Processed to Yield Large, Phospholipid-Coated Lipid Droplets, Affects Specific Cognitive Behaviors in Healthy Male Mice. J Nutr 2016; 146:1155-61. [PMID: 27146919 DOI: 10.3945/jn.115.224998] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/06/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Infant cognitive development can be positively influenced by breastfeeding rather than formula feeding. The composition of breast milk, especially lipid quality, and the duration of breastfeeding have been linked to this effect. OBJECTIVE We investigated whether the physical properties and composition of lipid droplets in milk may contribute to cognitive development. METHODS From postnatal day (P) 16 to P44, healthy male C57BL/6JOlaHsd mice were fed either a control or a concept rodent diet, in which the dietary lipid droplets were large and coated with milk phospholipids, resembling more closely the physical properties and composition of breast milk lipids. Thereafter, all mice were fed an AIN-93M semisynthetic rodent diet. The mice were subjected to various cognitive tests during adolescence (P35-P44) and adulthood (P70-P101). On P102, mice were killed and brain phospholipids were analyzed. RESULTS The concept diet improved performance in short-term memory tasks that rely on novelty exploration during adolescence (T-maze; spontaneous alternation 87% in concept-fed mice compared with 74% in mice fed control diet; P < 0.05) and adulthood (novel object recognition; preference index 0.48 in concept-fed mice compared with 0.05 in control-fed mice; P < 0.05). Cognitive performance in long-term memory tasks, however, was unaffected by diet. Brain phospholipid composition at P102 was not different between diet groups. CONCLUSIONS Exposure to a diet with lipids mimicking more closely the structure and composition of lipids in breast milk improved specific cognitive behaviors in mice. These data suggest that lipid structure should be considered as a relevant target to improve dietary lipid quality in infant milk formulas.
Collapse
|
|
9 |
32 |
10
|
Yam K, Schipper L, Reemst K, Ruigrok SR, Abbink MR, Hoeijmakers L, Naninck EFG, Zarekiani P, Oosting A, Van Der Beek EM, Lucassen PJ, Korosi A. Increasing availability of ω‐3 fatty acid in the early‐life diet prevents the early‐life stress‐induced cognitive impairments without affecting metabolic alterations. FASEB J 2019; 33:5729-5740. [DOI: 10.1096/fj.201802297r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
|
6 |
23 |
11
|
|
|
30 |
20 |
12
|
Schipper L, Bouyer K, Oosting A, Simerly RB, van der Beek EM. Postnatal dietary fatty acid composition permanently affects the structure of hypothalamic pathways controlling energy balance in mice. Am J Clin Nutr 2013; 98:1395-401. [PMID: 24108786 PMCID: PMC6546223 DOI: 10.3945/ajcn.113.069229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND We previously reported that dietary lipid quality during early life can have long-lasting effects on metabolic health and adiposity. Exposure to a postnatal diet with low dietary omega-6 (n-6) or high omega-3 (n-3) fatty acid (FA) content resulted in reduced body fat accumulation when challenged with a moderate Western-style diet (WSD) beginning in adolescence. OBJECTIVE We determined whether this programming effect is accompanied by changes in hypothalamic neural projections or modifications in the postnatal leptin surge, which would indicate the altered development of hypothalamic circuits that control energy balance. DESIGN Neonatal mice were subjected to a control diet (CTR) or experimental diet with altered relative n-6 and n-3 FA contents [ie, a diet with a relative reduction in n-6 fatty acid (LOW n-6) or a diet with a relative increase in n-3 fatty acid (HIGH n-3) compared with the CTR from postnatal day (PN) 2 to 42]. RESULTS Compared with CTR mice, mice fed a LOW n-6 or HIGH n-3 during postnatal life showed significant reductions in the density of both orexigenic and anorexigenic neural projections to the paraventricular nucleus of the hypothalamus at PN 28. These impairments persisted into adulthood and were still apparent after the WSD challenge between PNs 42 and 98. However, the neuroanatomical changes were not associated with changes in the postnatal leptin surge. CONCLUSION Although the exact mechanism remains to be elucidated, our data indicate that the quality of dietary FA during postnatal life affects the development of the central regulatory circuits that control energy balance and may do so through a leptin-independent mechanism.
Collapse
|
Comparative Study |
12 |
17 |
13
|
Kong D, Schipper L, van Dijk G. Distinct Effects of Short Chain Fatty Acids on Host Energy Balance and Fuel Homeostasis With Focus on Route of Administration and Host Species. Front Neurosci 2021; 15:755845. [PMID: 34744617 PMCID: PMC8569404 DOI: 10.3389/fnins.2021.755845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence implicates gut-microbiota-derived metabolites as important regulators of host energy balance and fuel homeostasis, the underlying mechanisms are currently subject to intense research. In this review, the most important executors, short chain fatty acids, which both directly and indirectly fulfill the interactions between gut microbiota and host will be discussed. Distinct roles of individual short chain fatty acids and the different effects they exert on host metabolism have long been overlooked, which compromises the process of clarifying the sophisticated crosstalk between gut microbiota and its host. Moreover, recent findings suggest that exogenously administered short chain fatty acids affect host metabolism via different mechanisms depending on the routes they enter the host. Although these exogenous routes are often artificial, they may help to comprehend the roles of the short-chain-fatty-acid mechanisms and signaling sites, that would normally occur after intestinal absorption of short chain fatty acids. Cautions should be addressed of generalizing findings, since different results have appeared in different host species, which may imply a host species-specific response to short chain fatty acids.
Collapse
|
Review |
4 |
12 |
14
|
Schipper L, van Heijningen S, Karapetsas G, van der Beek EM, van Dijk G. Individual housing of male C57BL/6J mice after weaning impairs growth and predisposes for obesity. PLoS One 2020; 15:e0225488. [PMID: 32453751 PMCID: PMC7250426 DOI: 10.1371/journal.pone.0225488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/23/2020] [Indexed: 01/08/2023] Open
Abstract
For (metabolic) research models using mice, singly housing is widely used for practical purposes to study e.g. energy balance regulation and derangements herein. Mouse (social) housing practices could however influence study results by modulating (metabolic) health outcomes. To study the effects of the social housing condition, we assessed parameters for energy balance regulation and proneness to (diet induced) obesity in male C57Bl/6J mice that were housed individually or socially (in pairs) directly after weaning, both at standard ambient temperature of 21°C. During adolescence, individually housed mice had reduced growth rate, while energy intake and energy expenditure were increased compared to socially housed counterparts. At 6 weeks of age, these mice had reduced lean body mass, but significantly higher white adipose tissue mass compared to socially housed mice, and higher UCP-1 mRNA expression in brown adipose tissue. During adulthood, body weight gain of individually housed animals exceeded that of socially housed mice, with elevations in both energy intake and expenditure. At 18 weeks of age, individually housed mice showed higher adiposity and higher mRNA expression of UCP-1 in inguinal white but not in brown adipose tissue. Exposure to an obesogenic diet starting at 6 weeks of age further amplified body weight gain and adipose tissue deposition and caused strong suppression of inguinal white adipose tissue mRNA UCP-1 expression. This study shows that post-weaning individual housing of male mice impairs adolescent growth and results in higher susceptibility to obesity in adulthood with putative roles for thermoregulation and/or affectiveness.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
11 |
15
|
Juncker HG, Naninck EFG, Schipper L, Lucassen PJ, van Goudoever JB, de Rooij SR, Korosi A. Maternal stress in the postpartum period is associated with altered human milk fatty acid composition. Clin Nutr 2022; 41:2517-2528. [PMID: 36223713 DOI: 10.1016/j.clnu.2022.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Maternal stress in the postpartum period affects not only the mother, but also her newborn child who is at increased risk for a wide range of disorders later in life. The mechanisms underlying transmission of maternal stress to the child remain elusive. Human milk (HM) is a potential candidate and is an important source of fatty acid (FA), which are crucial for child (neuro)development. This study aims to investigate whether maternal psychological and biological stress influences HM FA composition over the first month postpartum. METHODS The Amsterdam Mother's Milk study is a prospective cohort study. We included lactating women who delivered at term with a large range of stress levels: a high stress (HS) group, women whose child was hospitalized for a minimum of 2 days (n=23) and a control (CTL) group, women who gave birth to a healthy child (n=73). HM was collected three times a day at postpartum days 10, 17 and 24. Perceived psychological stress was measured using multiple validated questionnaires, while biological stress measures were based on cortisol in hair, saliva and HM. HM FAs were analyzed by gas-chromatography and compared between groups. RESULTS Maternal perceived stress scores were significantly higher in the HS group (p < 0.01), whereas cortisol measurements did not differ between groups. The absolute concentrations of total FA in HM (p=0.023), including the total amount of poly unsaturated fatty acids (PUFAs) (p=0.022) and omega-6 PUFAs (p=0.018), were lower in the HS group compared to the CTL group. Relative values of FAs did not differ between groups. CONCLUSION Maternal stress in the first month postpartum was associated with overall lower levels of FA in HM. This possibly indicates a route of transmission of maternal stress signals to the infant. Future research should investigate if these stress-induced changes in HM FAs have consequences for child development.
Collapse
|
|
3 |
11 |
16
|
Schipper L, Spee B, Rothuizen J, Woutersen-van Nijnanten F, Fink-Gremmels J. Characterisation of 11β-hydroxysteroid dehydrogenases in feline kidney and liver. Biochim Biophys Acta Mol Basis Dis 2004; 1688:68-77. [PMID: 14732482 DOI: 10.1016/j.bbadis.2003.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
11 Beta-hydroxysteroid dehydrogenases type 1 and 2 (11 beta-HSD1 and 11 beta-HSD2) are microsomal enzymes responsible for the interconversion of cortisol into the inactive form cortisone and vice versa. 11 beta-HSD1 is mainly present in the liver, and has predominantly reductase activity although its function has not yet been elucidated. 11 beta-HSD2, present in mineralocorticoid target tissues such as the kidney, converts cortisol into cortisone. Reduced activity due to inhibition or mutations of 11 beta-HSD2 leads to hypertension and hypokalemia resulting in the Apparent Mineralocorticoid Excess Syndrome (AMES). Like humans, cats are highly susceptible for hypertension. As large species differences exist with respect to the kinetic parameters (K(m) and V(max)) and amino acid sequences of both enzymes, we determined these characteristics in the cat. Both enzyme types were found in the kidneys. 11 beta-HSD1 in the feline kidney showed bidirectional activity with predominantly dehydrogenase activity (dehydrogenase: K(m) 1959+/-797 nM, V(max) 766+/-88 pmol/mg*min; reductase: K(m) 778+/-136 nM, V(max) 112+/-4 pmol/mg*min). 11 beta-HSD2 represents a unidirectional dehydrogenase with a higher substrate affinity (K(m) 184+/-24 nM, V(max) 74+/-3 pmol/mg*min). In the liver, only 11 beta-HSD1 is detected exerting reductase activity (K(m) 10462 nM, V(max) 840 pmol/mg*min). Sequence analysis of conserved parts of 11 beta-HSD1 and 11 beta-HSD2 revealed the highest homology of the feline enzymes with the correspondent enzymes found in man. This suggests that the cat may serve as a suitable model species for studies directed to the pathogenesis and treatment of human diseases like AMES and hypertension.
Collapse
|
|
21 |
10 |
17
|
Abbink MR, Schipper L, Naninck EF, de Vos CM, Meier R, van der Beek EM, Lucassen PJ, Korosi A. The Effects of Early Life Stress, Postnatal Diet Modulation, and Long-Term Western-Style Diet on Later-Life Metabolic and Cognitive Outcomes. Nutrients 2020; 12:nu12020570. [PMID: 32098348 PMCID: PMC7071477 DOI: 10.3390/nu12020570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Early life stress (ES) increases the risk to develop metabolic and brain disorders in adulthood. Breastfeeding (exclusivity and duration) is associated with improved metabolic and neurocognitive health outcomes, and the physical properties of the dietary lipids may contribute to this. Here, we tested whether early life exposure to dietary lipids mimicking some physical characteristics of breastmilk (i.e., large, phospholipid-coated lipid droplets; Concept Nuturis® infant milk formula (N-IMF)), could protect against ES-induced metabolic and brain abnormalities under standard circumstances, and in response to prolonged Western-style diet (WSD) in adulthood. ES was induced by exposing mice to limited nesting material from postnatal day (P) 2 to P9. From P16 to P42, male offspring were fed a standard IMF (S-IMF) or N-IMF, followed by either standard rodent diet (SD) or WSD until P230. We then assessed body composition development, fat mass, metabolic hormones, hippocampus-dependent cognitive function, and neurogenesis (proliferation and survival). Prolonged WSD resulted in an obesogenic phenotype at P230, which was not modulated by previous ES or N-IMF exposure. Nevertheless, ES and N-IMF modulated the effect of WSD on neurogenesis at P230, without affecting cognitive function, highlighting programming effects of the early life environment on the hippocampal response to later life challenges at a structural level.
Collapse
|
Journal Article |
5 |
10 |
18
|
Schipper L, Oosting A, Scheurink AJW, van Dijk G, van der Beek EM. Reducing dietary intake of linoleic acid of mouse dams during lactation increases offspring brain n-3 LCPUFA content. Prostaglandins Leukot Essent Fatty Acids 2016; 110:8-15. [PMID: 27255638 DOI: 10.1016/j.plefa.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/24/2016] [Accepted: 05/02/2016] [Indexed: 01/03/2023]
Abstract
Omega (n-)3 and n-6 long chain polyunsaturated fatty acids (LCPUFA) accumulation in the infant brain after birth is strongly driven by dietary supply of n-3 and n-6 LCPUFAs and their C18 precursors through breast milk or infant formula. n-3 LCPUFA accretion is associated with positive effects on neurodevelopmental outcome whereas high n-6 LCPUFA accumulation is considered disadvantageous. Maternal diet is crucial for breast milk fatty acid composition. Unfortunately, global increases in linoleic acid (C18:2n-6; LA) intake have dramatically increased n-6 LCPUFA and reduced n-3 LCPUFA availability for breastfed infants. We investigated the effects of reducing maternal dietary LA, or increasing n-3 LCPUFA, during lactation on milk and offspring brain fatty acids in mice. Offspring brain n-3 LCPUFA was higher following both interventions, although effects were mediated by different mechanisms. Because of competitive interactions between n-3 and n-6 fatty acids, lowering maternal LA intake may support neurodevelopment in breastfed infants.
Collapse
|
|
9 |
10 |
19
|
Kodde A, van der Beek EM, Phielix E, Engels E, Schipper L, Oosting A. Supramolecular structure of dietary fat in early life modulates expression of markers for mitochondrial content and capacity in adipose tissue of adult mice. Nutr Metab (Lond) 2017; 14:37. [PMID: 28616059 PMCID: PMC5469001 DOI: 10.1186/s12986-017-0191-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/31/2017] [Indexed: 01/26/2023] Open
Abstract
Background Previous studies have shown that early life nutrition can modulate the development of white adipose tissue and thereby affect the risk on obesity and metabolic disease later in life. For instance, postnatal feeding with a concept infant milk formula with large, phospholipid coated lipid droplets (Concept, Nuturis®), resulted in reduced adiposity in adult mice. The present study investigated whether differences in cell energy metabolism, using markers of mitochondrial content and capacity, may contribute to the observed effects. Methods C57Bl/6j male mice were exposed to a rodent diet containing the Concept (Concept) or standard (CTRL) infant milk formula from postnatal day 16 until postnatal day 42, followed by a western style diet challenge until postnatal day 98. Markers for mitochondrial content and capacity were analyzed in retroperitoneal white adipose tissue and gene expression of metabolic markers was measured in both retroperitoneal white adipose tissue and muscle tibialis (M. tibialis) at postnatal day 98. Results In retroperitoneal white adipose tissue, the Concept group showed higher citrate synthase activity and mitochondrial DNA expression compared to the CTRL group (p < 0.05). In addition, protein expression of mitochondrial cytochrome c oxidase subunit I of the oxidative phosphorylation pathway/cascade was increased in the Concept group compared to CTRL (p < 0.05). In the M. tibialis, gene expression of uncoupling protein 3 was higher in the Concept compared to the CTRL group. Other gene and protein expression markers for mitochondrial oxidative capacity were not different between groups. Conclusion Postnatal feeding with large, phospholipid coated lipid droplets generating a different supramolecular structure of dietary lipids enhances adult gene and protein expression of specific mitochondrial oxidative capacity markers, indicative of increased substrate oxidation in white adipose tissue and skeletal muscle. Although functional mitochondrial capacity was not measured, these results may suggest that adaptations in mitochondrial function via early feeding with a more physiological structure of dietary lipids, could underlie the observed beneficial effects on later life adiposity. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0191-5) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
8 |
9 |
20
|
Schipper L, Bartke N, Marintcheva-Petrova M, Schoen S, Vandenplas Y, Hokken-Koelega ACS. Infant formula containing large, milk phospholipid-coated lipid droplets and dairy lipids affects cognitive performance at school age. Front Nutr 2023; 10:1215199. [PMID: 37731397 PMCID: PMC10508340 DOI: 10.3389/fnut.2023.1215199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Background Breastfeeding has been positively associated with infant and child neurocognitive development and function. Contributing to this effect may be differences between human milk and infant formula in the milk lipid composition and milk fat globule structure. Objective To evaluate the effects of an infant formula mimicking human milk lipid composition and milk fat globule structure on childhood cognitive performance. Methods In a randomized, controlled trial, healthy term infants received until 4 months of age either a Standard infant formula (n = 108) or a Concept infant formula (n = 115) with large, milk phospholipid coated lipid droplets and containing dairy lipids. A breastfed reference group (n = 88) was included. Erythrocyte fatty acid composition was determined at 3 months of age. Neurocognitive function was assessed as exploratory follow-up outcome at 3, 4, and 5 years of age using the Flanker test, Dimensional Change Card Sort (DCCS) test and Picture Sequence Memory test from the National Institutes of Health Toolbox Cognition Battery. Mann-Whitney U test and Fisher exact test were used to compare groups. Results Erythrocyte omega-6 to -3 long-chain polyunsaturated fatty acid ratio appeared to be lower in the Concept compared to the Standard group (P = 0.025). At age 5, only the Concept group was comparable to the Breastfed group in the highest reached levels on the Flanker test, and the DCCS computed score was higher in the Concept compared to the Standard group (P = 0.021). Conclusion These outcomes suggest that exposure to an infant formula mimicking human milk lipid composition and milk fat globule structure positively affects child neurocognitive development. Underlying mechanisms may include a different omega-3 fatty acid status during the first months of life. Clinical trial registration https://onderzoekmetmensen.nl/en/trial/28614, identifier NTR3683 and NTR5538.
Collapse
|
research-article |
2 |
8 |
21
|
|
|
33 |
7 |
22
|
Ruigrok SR, Abbink MR, Geertsema J, Kuindersma JE, Stöberl N, van der Beek EM, Lucassen PJ, Schipper L, Korosi A. Effects of Early-Life Stress, Postnatal Diet Modulation and Long-Term Western-Style Diet on Peripheral and Central Inflammatory Markers. Nutrients 2021; 13:288. [PMID: 33498469 PMCID: PMC7909521 DOI: 10.3390/nu13020288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 01/06/2023] Open
Abstract
Early-life stress (ES) exposure increases the risk of developing obesity. Breastfeeding can markedly decrease this risk, and it is thought that the physical properties of the lipid droplets in human milk contribute to this benefit. A concept infant milk formula (IMF) has been developed that mimics these physical properties of human milk (Nuturis®, N-IMF). Previously, we have shown that N-IMF reduces, while ES increases, western-style diet (WSD)-induced fat accumulation in mice. Peripheral and central inflammation are considered to be important for obesity development. We therefore set out to test the effects of ES, Nuturis® and WSD on adipose tissue inflammatory gene expression and microglia in the arcuate nucleus of the hypothalamus. ES was induced in mice by limiting the nesting and bedding material from postnatal day (P) 2 to P9. Mice were fed a standard IMF (S-IMF) or N-IMF from P16 to P42, followed by a standard diet (STD) or WSD until P230. ES modulated adipose tissue inflammatory gene expression early in life, while N-IMF had lasting effects into adulthood. Centrally, ES led to a higher microglia density and more amoeboid microglia at P9. In adulthood, WSD increased the number of amoeboid microglia, and while ES exposure increased microglia coverage, Nuturis® reduced the numbers of amoeboid microglia upon the WSD challenge. These results highlight the impact of the early environment on central and peripheral inflammatory profiles, which may be key in the vulnerability to develop metabolic derangements later in life.
Collapse
|
research-article |
4 |
7 |
23
|
Carlson SE, Schipper L, Brenna JT, Agostoni C, Calder PC, Forsyth S, Legrand P, Abrahamse-Berkeveld M, van de Heijning BJM, van der Beek EM, Koletzko BV, Muhlhausler B. Perspective: Moving Toward Desirable Linoleic Acid Content in Infant Formula. Adv Nutr 2021; 12:2085-2098. [PMID: 34265035 PMCID: PMC8634410 DOI: 10.1093/advances/nmab076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Infant formula should provide the appropriate nutrients and adequate energy to facilitate healthy infant growth and development. If conclusive data on quantitative nutrient requirements are not available, the composition of human milk (HM) can provide some initial guidance on the infant formula composition. This paper provides a narrative review of the current knowledge, unresolved questions, and future research needs in the area of HM fatty acid (FA) composition, with a particular focus on exploring appropriate intake levels of the essential FA linoleic acid (LA) in infant formula. The paper highlights a clear gap in clinical evidence as to the impact of LA levels in HM or formula on infant outcomes, such as growth, development, and long-term health. The available preclinical information suggests potential disadvantages of high LA intake in the early postnatal period. We recommend performing well-designed clinical intervention trials to create clarity on optimal levels of LA to achieve positive impacts on both short-term growth and development and long-term functional health outcomes.
Collapse
|
research-article |
4 |
7 |
24
|
Abstract
In this article estimates are made of the permanent and reversible components of changes in heating oil use in major countries of the Organization for Economic Cooperation and Development. The components of the increase in oil use through the mid-1970's, and of the subsequent decline, are revealed. For seven countries, residential oil use decreased by 40 percent between 1972 and 1983, for a savings of about 1.2 million barrels per day (59 million metric tons of oil equivalent per year). One-third of this resulted from reductions in the number of homes heated with oil, the rest from reductions in oil use per oil-heated home. During that time, however, the size of these homes and the penetration of central heating increased significantly, so these figures underestimate the actual conservation achieved. Of the total oil savings, at least 46 percent are of a permanent nature, while the rest could be reversed with a continued slide in oil prices, although it seems likely that most of the savings will be maintained and may even increase.
Collapse
|
|
40 |
6 |
25
|
Monkhorst K, Samsom K, Schipper L, Roepman P, Bosch L, de Bruijn E, Hoes L, Riethorst I, Schoenmaker L, van der Kolk L, Buffart T, van der Hoeven K, Voest E, Cuppen E, Meijer G. 1189O Validation of whole genome sequencing in routine clinical practice. Ann Oncol 2020. [DOI: 10.1016/j.annonc.2020.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
|
5 |
5 |