1
|
Watkins SJ, Mesyanzhinov VV, Kurochkina LP, Hawkins RE. The 'adenobody' approach to viral targeting: specific and enhanced adenoviral gene delivery. Gene Ther 1997; 4:1004-12. [PMID: 9415305 DOI: 10.1038/sj.gt.3300511] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recombinant adenoviruses have enormous potential as vectors for gene therapy. They have evolved an efficient method of infection and a wide host range but this leads to concerns about the specificity of gene delivery. In order to target an adenovirus type 5-based vector we have investigated an antibody approach. A virus neutralising scFv antibody fragment was isolated from a phage library and a C-terminal fusion protein with epidermal growth factor (EGF) constructed. This fusion protein, or 'adenobody', bound both to the fibre protein of the adenovirus and to the EGF receptor (EGFR) on human cells, and was able to direct adenoviral binding to the new receptor. Using this system the efficiency of viral infection was markedly enhanced and was targeted to the EGFR. The adenobody-directed infection correlated with the level of EGF receptor expressed on the cells and could be blocked by competition with pure EGF. Peptide inhibition experiments suggest that infection is mediated directly through attachment to the EGFR and does not require penton-integrin interactions. This work shows that the 'adenobody' approach can enhance the efficiency as well as target adenoviral infection and has numerous potential applications for gene therapy.
Collapse
|
|
28 |
118 |
2
|
Aksyuk AA, Leiman PG, Kurochkina LP, Shneider MM, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG. The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. EMBO J 2009; 28:821-9. [PMID: 19229296 DOI: 10.1038/emboj.2009.36] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/23/2009] [Indexed: 11/09/2022] Open
Abstract
The contractile tail of bacteriophage T4 is a molecular machine that facilitates very high viral infection efficiency. Its major component is a tail sheath, which contracts during infection to less than half of its initial length. The sheath consists of 138 copies of the tail sheath protein, gene product (gp) 18, which surrounds the central non-contractile tail tube. The contraction of the sheath drives the tail tube through the outer membrane, creating a channel for the viral genome delivery. A crystal structure of about three quarters of gp18 has been determined and was fitted into cryo-electron microscopy reconstructions of the tail sheath before and after contraction. It was shown that during contraction, gp18 subunits slide over each other with no apparent change in their structure.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
113 |
3
|
Lavigne R, Burkal'tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G. The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 2003; 312:49-59. [PMID: 12890620 DOI: 10.1016/s0042-6822(03)00123-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The complete DNA sequence of a new lytic T7-like bacteriophage phiKMV is presented. It is the first genome sequence of a member of the Podoviridae that infects Pseudomonas aeruginosa. The linear G + C-rich (62.3%) double-stranded DNA genome of 42,519 bp has direct terminal repeats of 414 bp and contains 48 open reading frames that are all transcribed from the same strand. Despite absence of homology at the DNA level, 11 of the 48 phiKMV-encoded putative proteins show sequence similarity to known T7-type phage proteins. Eighteen open reading frame products have been assigned, including an RNA polymerase, proteins involved in DNA replication, as well as structural, phage maturation, and lysis proteins. Surprisingly, the major capsid protein completely lacks sequence homology to any known protein. Also, the strong virulence toward many clinical P. aeruginosa isolates and a short replication time make phiKMV attractive for phage therapy or a potential source for antimicrobial proteins.
Collapse
|
|
22 |
104 |
4
|
Fokine A, Battisti AJ, Bowman VD, Efimov AV, Kurochkina LP, Chipman PR, Mesyanzhinov VV, Rossmann MG. Cryo-EM Study of the Pseudomonas Bacteriophage φKZ. Structure 2007; 15:1099-104. [PMID: 17850749 DOI: 10.1016/j.str.2007.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/29/2007] [Accepted: 07/03/2007] [Indexed: 10/22/2022]
Abstract
The phiKZ virus is one of the largest known bacteriophages. It infects Pseudomonas aeruginosa, which is frequently pathogenic in humans, and, therefore, has potential for phage therapy. The phiKZ virion consists of an approximately 1450 A diameter icosahedral head and an approximately 2000 A long contractile tail. The structure of the phiKZ tail has been determined using cryo-electron microscopy. The phiKZ tail is much longer than that of bacteriophage T4. However, the helical parameters of their contractile sheaths, surrounding their tail tubes, are comparable. Although there is no recognizable sequence similarity between the phiKZ and T4 tail sheath proteins, they are similar in size and shape, suggesting that they evolved from a common ancestor. The phiKZ baseplate is significantly larger than that of T4 and has a flatter shape. Nevertheless, phiKZ, similar to T4, has a cell-puncturing device in the middle of its baseplate.
Collapse
|
|
18 |
59 |
5
|
Fokine A, Kostyuchenko VA, Efimov AV, Kurochkina LP, Sykilinda NN, Robben J, Volckaert G, Hoenger A, Chipman PR, Battisti AJ, Rossmann MG, Mesyanzhinov VV. A three-dimensional cryo-electron microscopy structure of the bacteriophage phiKZ head. J Mol Biol 2005; 352:117-24. [PMID: 16081102 DOI: 10.1016/j.jmb.2005.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 06/17/2005] [Accepted: 07/07/2005] [Indexed: 11/29/2022]
Abstract
The three-dimensional structure of the Pseudomonas aeruginosa bacteriophage phiKZ head has been determined by cryo-electron microscopy and image reconstruction to 18A resolution. The head has icosahedral symmetry measuring 1455 A in diameter along 5-fold axes and a unique portal vertex to which is attached an approximately 1800 A-long contractile tail. The 65 kDa major capsid protein, gp120, is organized into a surface lattice of hexamers, with T = 27 triangulation. The shape and size of the hexamers is similar to the hexameric building blocks of the bacteriophages T4, phi29, P22, and HK97. Pentameric vertices of the capsid are occupied by complexes composed of several special vertex proteins. The double-stranded genomic DNA is packaged into a highly condensed series of layers, separated by 24 A, that follow the contour of the inner wall of the capsid.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
53 |
6
|
Kostyuchenko VA, Navruzbekov GA, Kurochkina LP, Strelkov SV, Mesyanzhinov VV, Rossmann MG. The structure of bacteriophage T4 gene product 9: the trigger for tail contraction. Structure 1999; 7:1213-22. [PMID: 10545330 DOI: 10.1016/s0969-2126(00)80055-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The T4 bacteriophage consists of a head, filled with double-stranded DNA, and a complex contractile tail required for the ejection of the viral genome into the Escherichia coli host. The tail has a baseplate to whïch are attached six long and six short tail fibers. These fibers are the sensing devices for recognizing the host. When activated by attachment to cell receptors, the fibers cause a conformational transition in the baseplate and subsequently in the tail sheath, which initiates DNA ejection. The baseplate is a multisubunit complex of proteins encoded by 15 genes. Gene product 9 (gp9) is the protein that connects the long tail fibers to the baseplate and triggers the tail contraction after virus attachment to a host cell. RESULTS The crystal structure of recombinant gp9, determined to 2.3 A resolution, shows that the protein of 288 amino acid residues assembles as a homotrimer. The monomer consists of three domains: the N-terminal domain generates a triple coiled coil; the middle domain is a mixed, seven-stranded beta sandwich with a topology not previously observed; and the C-terminal domain is an eight-stranded, antiparallel beta sandwich having some resemblance to 'jelly-roll' viral capsid protein structures. CONCLUSIONS The biologically active form of gp9 is a trimer. The protein contains flexible interdomain hinges, which are presumably required to facilitate signal transmission between the long tail fibers and the baseplate. Structural and genetic analyses show that the C-terminal domain is bound to the baseplate, and the N-terminal coiled-coil domain is associated with the long tail fibers.
Collapse
|
|
26 |
52 |
7
|
Leiman PG, Kostyuchenko VA, Shneider MM, Kurochkina LP, Mesyanzhinov VV, Rossmann MG. Structure of bacteriophage T4 gene product 11, the interface between the baseplate and short tail fibers. J Mol Biol 2000; 301:975-85. [PMID: 10966799 DOI: 10.1006/jmbi.2000.3989] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage T4, like all other viruses, is required to be stable while being transmitted from host to host, but also is poised to eject efficiently and rapidly its double-stranded DNA genome to initiate infection. The latter is coordinated by the recognition of receptors on Escherichia coli cells by the long tail fibers and subsequent irreversible attachment by the short tail fibers. These fibers are attached to the baseplate, a multi-subunit assembly at the distal end of the tail. Recognition and attachment induce a conformational transition of the baseplate from a hexagonal to a star-shaped structure. The crystal structure of gene product 11 (gp11), a protein that connects the short tail fibers to the baseplate, has been determined to 2.0 A resolution using multiple wavelength anomalous dispersion with Se. This structure is compared to the trimeric structure of gp9, which connects the baseplate with the long tail fibers. The structure of gp11 is a trimer with each monomer consisting of 218 residues folded into three domains. The N-terminal domains form a central, trimeric, parallel coiled coil surrounded by the middle "finger" domains. The fingers emanate from the carboxy-terminal beta-annulus domain, which, by comparison with the T4 whisker "fibritin" protein, is probably responsible for trimerization. The events leading from recognition of the host to the ejection of viral DNA must be communicated along the assembled trimeric (gp9)(3) attached to the long tail fibers via the trimeric baseplate protein (gp10)(3) to the trimeric (gp11)(3) and the trimeric short tail fibers.
Collapse
|
|
25 |
46 |
8
|
Aksyuk AA, Kurochkina LP, Fokine A, Forouhar F, Mesyanzhinov VV, Tong L, Rossmann MG. Structural conservation of the myoviridae phage tail sheath protein fold. Structure 2011; 19:1885-94. [PMID: 22153511 PMCID: PMC3256926 DOI: 10.1016/j.str.2011.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/22/2011] [Accepted: 09/12/2011] [Indexed: 01/07/2023]
Abstract
Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450 Å diameter icosahedral head and a 2000 Å-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4 Å resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3 Å resolution. Despite low sequence identity between these proteins, all of these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.
Collapse
|
research-article |
14 |
38 |
9
|
Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnikov KA, Sykilinda NN, Shneider MM. Molecular architecture of bacteriophage T4. BIOCHEMISTRY (MOSCOW) 2005; 69:1190-202. [PMID: 15627372 DOI: 10.1007/s10541-005-0064-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In studying bacteriophage T4--one of the basic models of molecular biology for several decades--there has come a Renaissance, and this virus is now actively used as object of structural biology. The structures of six proteins of the phage particle have recently been determined at atomic resolution by X-ray crystallography. Three-dimensional reconstruction of the infection device--one of the most complex multiprotein components--has been developed on the basis of cryo-electron microscopy images. The further study of bacteriophage T4 structure will allow a better understanding of the regulation of protein folding, assembly of biological structures, and also mechanisms of functioning of the complex biological molecular machines.
Collapse
|
Review |
20 |
20 |
10
|
Strelkov SV, Tao Y, Rossmann MG, Kurochkina LP, Shneider MM, Mesyanzhinov VV. Preliminary crystallographic studies of bacteriophage T4 fibritin confirm a trimeric coiled-coil structure. Virology 1996; 219:190-4. [PMID: 8623529 DOI: 10.1006/viro.1996.0236] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibritin, a 52-kDa product of gene wac of bacteriophage T4, forms fibrous "whiskers" that connect to the phage tail and facilitate the later stages of phage assembly. Preliminary experiments suggest that fibritin is a trimer, and its predominant central part has a parallel alpha-helical coiled-coil structure. To investigate the oligomerization and function of fibritin, we have designed and studied two related deletion mutants, denoted M and E, that consist of its last 75 and 120 amino acids, respectively. Both proteins contain part of the coiled-coil region and the 29 amino acid carboxy-terminal domain essential for the trimerization of fibritin. The proteins are expressed as a soluble product in an Escherichia coli system. We have obtained crystals of fibritins M and E. Complete native X-ray diffraction data sets have been collected to 1.85 and 2.7 A resolution, respectively. The crystals have space group P3 with a=44.3 A, c=91.3 A (fibritin M) and R32 with a=41.2 A, b=358.7 A (fibritin E) in the hexagonal setting. Symmetry and packing considerations show that fibritin is a triple coiled coil.
Collapse
|
|
29 |
15 |
11
|
Sykilinda NN, Bondar AA, Gorshkova AS, Kurochkina LP, Kulikov EE, Shneider MM, Kadykov VA, Solovjeva NV, Kabilov MR, Mesyanzhinov VV, Vlassov VV, Drukker VV, Miroshnikov KA. Complete Genome Sequence of the Novel Giant Pseudomonas Phage PaBG. GENOME ANNOUNCEMENTS 2014; 2:e00929-13. [PMID: 24407628 PMCID: PMC3886941 DOI: 10.1128/genomea.00929-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/07/2013] [Indexed: 11/20/2022]
Abstract
The novel giant Pseudomonas aeruginosa bacteriophage PaBG was isolated from a water sample of the ultrafreshwater Lake Baikal. We report the complete genome sequence of this Myoviridae bacteriophage, comprising 258,139 bp of double-stranded DNA containing 308 predicted open reading frames.
Collapse
|
brief-report |
11 |
15 |
12
|
Poglazov BF, Efimov AV, Marco S, Carrascosa J, Kuznetsova TA, Aijrich LG, Kurochkina LP, Mesyanzhinov VV. Polymerization of bacteriophage T4 tail sheath protein mutants truncated at the C-termini. J Struct Biol 1999; 127:224-30. [PMID: 10544047 DOI: 10.1006/jsbi.1999.4164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene 18 of bacteriophage T4 encodes the contractile protein of the tail sheath. Previous work has shown that the full-length recombinant gene product (gp) 18 of 658 amino acid residues assembles in Escherichia coli cells into a long polysheath structure. However, the gp18 mutants truncated at the N-termini form insoluble aggregates similar to inclusion bodies. In this study, six plasmid vectors expressing the recombinant gp18 proteins truncated at the C-termini have been constructed. The CDelta58, CDelta129, CDelta152, C[g1]72, CDelta248, and CDelta287 proteins contain 600, 529, 506, 486, 410, and 371 residues of the full-length gp18 molecule, respectively. All the recombinant proteins were soluble and, except for the CDelta287 mutant, were assembled into polysheath-related structures. Electron microscopy of negatively stained purified proteins was performed and the resulting images were analyzed by computing their Fourier transforms. The CDelta58 and CDelta129 mutants, in addition to forming common contracted-type polysheath structures, assembled into thinner filaments that we called "noncontracted polysheaths" (NCP). The CDelta152, CDelta172, and CDelta248 proteins assembled into the NCP type only. Image processing showed that the NCP filaments significantly differ from both extended sheaths of T4 particle and polysheaths. The structure of the NCP filaments might correspond to the transitional helices postulated by Moody (J. Mol. Biol., 1973, 80, 613-636) that appeared during the process of tail contraction. Our results suggest that a short region at the C-terminus of the CDelta129 protein determines the contractile properties of the gp18 molecule. The shortest, the CDelta287 protein, does not assemble into regular structures, thus indicating that a sequence's stretch at the C-end of the CDelta248 mutant might be responsible for polymerization of gp18.
Collapse
|
|
26 |
12 |
13
|
Semenyuk PI, Moiseenko AV, Sokolova OS, Muronetz VI, Kurochkina LP. Structural and functional diversity of novel and known bacteriophage-encoded chaperonins. Int J Biol Macromol 2020; 157:544-552. [PMID: 32344079 DOI: 10.1016/j.ijbiomac.2020.04.189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022]
Abstract
A bioinformatics analysis of the currently predicted GroEL-like proteins encoded by bacteriophage genomes was carried out in comparison with the phage double-ring EL and single-ring OBP chaperonins, previously described by us, as well as with the known chaperonins of group I and group II. A novel GroEL-like protein predicted in the genome of phage AR9 Bacillus subtilis was expressed in E. coli cells, purified and characterised by various physicochemical methods. As shown by native electrophoresis, analytical ultracentrifugation and single-particle electron microscopy analysis, the putative AR9 chaperonin is a single-ring heptamer. Like the EL and OBP chaperonins, the new AR9 chaperonin possesses chaperone activity and does not require co-chaperonin to function. It was shown to prevent aggregation and provide refolding of the denatured substrate protein, endolysin, in an ATP-dependent manner. A comparison of its structural and biochemical properties with those of the EL and OBP chaperonins suggests outstanding diversity in this group of phage chaperonins.
Collapse
|
Journal Article |
5 |
11 |
14
|
Molugu SK, Hildenbrand ZL, Morgan DG, Sherman MB, He L, Georgopoulos C, Sernova NV, Kurochkina LP, Mesyanzhinov VV, Miroshnikov KA, Bernal RA. Ring Separation Highlights the Protein-Folding Mechanism Used by the Phage EL-Encoded Chaperonin. Structure 2016; 24:537-546. [PMID: 26996960 DOI: 10.1016/j.str.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Chaperonins are ubiquitous, ATP-dependent protein-folding molecular machines that are essential for all forms of life. Bacteriophage φEL encodes its own chaperonin to presumably fold exceedingly large viral proteins via profoundly different nucleotide-binding conformations. Our structural investigations indicate that ATP likely binds to both rings simultaneously and that a misfolded substrate acts as the trigger for ATP hydrolysis. More importantly, the φEL complex dissociates into two single rings resulting from an evolutionarily altered residue in the highly conserved ATP-binding pocket. Conformational changes also more than double the volume of the single-ring internal chamber such that larger viral proteins are accommodated. This is illustrated by the fact that φEL is capable of folding β-galactosidase, a 116-kDa protein. Collectively, the architecture and protein-folding mechanism of the φEL chaperonin are significantly different from those observed in group I and II chaperonins.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
10 |
15
|
Stanishneva-Konovalova TB, Semenyuk PI, Kurochkina LP, Pichkur EB, Vasilyev AL, Kovalchuk MV, Kirpichnikov MP, Sokolova OS. Cryo-EM reveals an asymmetry in a novel single-ring viral chaperonin. J Struct Biol 2019; 209:107439. [PMID: 31870903 DOI: 10.1016/j.jsb.2019.107439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Abstract
Chaperonins are ubiquitously present protein complexes, which assist the proper folding of newly synthesized proteins and prevent aggregation of denatured proteins in an ATP-dependent manner. They are classified into group I (bacterial, mitochondrial, chloroplast chaperonins) and group II (archaeal and eukaryotic cytosolic variants). However, both of these groups do not include recently discovered viral chaperonins. Here, we solved the symmetry-free cryo-EM structures of a single-ring chaperonin encoded by the gene 246 of bacteriophage OBP Pseudomonas fluorescens, in the nucleotide-free, ATPγS-, and ADP-bound states, with resolutions of 4.3 Å, 5.0 Å, and 6 Å, respectively. The structure of OBP chaperonin reveals a unique subunit arrangement, with three pairs of subunits and one unpaired subunit. Each pair combines subunits in two possible conformations, differing in nucleotide-binding affinity. The binding of nucleotides results in the increase of subunits' conformational variability. Due to its unique structural and functional features, OBP chaperonin can represent a new group.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
9 |
16
|
Efimov AV, Kurochkina LP, Mesyanzhinov VV. Engineering of bacteriophage T4 tail sheath protein. BIOCHEMISTRY. BIOKHIMIIA 2002; 67:1366-70. [PMID: 12600265 DOI: 10.1023/a:1021857926152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene product 18 (gp18, 659 amino acids) forms bacteriophage T4 contractile tail sheath. Recombinant protein assembles into different length polysheaths during expression in the cell, which complicates the preparation of protein crystals for its spatial structure determination. To design soluble monomeric gp18 mutants unable to form polysheaths and useful for crystallization, we have used Bal31 nuclease for generation deletions inside gene 18 encoding the Ile507-Gly530 region. Small deletions in the region of Ile507-Ile522 do not affect the protein assembly into polysheaths. Protein synthesis termination occurs because of reading frame failure in the location of deletions. Some fragments of gp18 containing short pseudo-accidental sequence in the C-terminal, while being soluble, have lost the ability for polysheath assembly. For the first time we succeeded in obtaining crystals of a soluble gp18 fragment containing 510 amino acids which, according to trypsin resistance, is similar to native protein monomer.
Collapse
|
|
23 |
9 |
17
|
Kurochkina LP, Semenyuk PI, Sykilinda NN, Miroshnikov KA. The unique two-component tail sheath of giant Pseudomonas phage PaBG. Virology 2017; 515:46-51. [PMID: 29268081 DOI: 10.1016/j.virol.2017.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/24/2022]
Abstract
Myoviridae bacteriophages have a special contractile tail machine that facilitates high viral infection efficiency. The major component of this machine is a tail sheath that contracts during infection, allowing delivery of viral DNA into the host cell. Tail sheaths of Myoviridae phages are composed of multiple copies of individual proteins. The giant Pseudomonas aeruginosa phage PaBG is notable in its possession of two tail sheath proteins. These tail sheath proteins are encoded by orf 76 and 204, which were cloned and expressed individually and together in Escherichia coli. We demonstrate that only co-expression of both genes results in efficient assembly of thermostable and proteolytically resistant polysheaths composed of gp76 and gp204 with approximately 1:1 stoichiometry. Both gp76 and gp204 have been identified as structural components of the virion particle. We conclude that during PaBG morphogenesis in vivo two proteins, gp76 and gp204, assemble the tail sheath.
Collapse
|
Journal Article |
8 |
7 |
18
|
Kurochkina LP, Kolomijtseva GYa. Isolation of modified histone H3 from ultraviolet-irradiated deoxyribonucleoprotein by reversed-phase high-performance liquid chromatography. Anal Biochem 1989; 178:88-92. [PMID: 2729584 DOI: 10.1016/0003-2697(89)90361-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A rapid reversed-phase high-performance liquid chromatography procedure for the isolation of histone H3 and/or of thymine modified at the lysine residue histone H3 from uv-irradiated deoxyribonucleoprotein and DNA-protein complex is reported. The system utilizes a C8 Ultrasphere macroporous column and an acetonitrile "inverse or negative gradient."
Collapse
|
|
36 |
7 |
19
|
Kurochkina LP, Leiman PG, Venyaminov SY, Mesyanzhinov VV. Expression and properties of bacteriophage T4 gene product 11. BIOCHEMISTRY. BIOKHIMIIA 2001; 66:141-6. [PMID: 11255120 DOI: 10.1023/a:1002831212462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A plasmid vector for expression of bacteriophage T4 gene product 11 (gp11) in E. coli cells has been constructed. Gp11 is a baseplate protein that connects short tail fibers providing irreversible adsorption of the virus on a cell. A method based on chromatography on hydroxyapatite has been developed for purification of recombinant gp11. The protein is active in an in vitro complementation assay and transforms defective phage particles lacking gp11 into infective ones. Gel filtration data suggest that the biologically active protein is a trimer. According to CD spectroscopy and sequence analysis data, the polypeptide chain of gp11 contains not less than 20% alpha-helical segments, about 30% beta-structure, and belongs to the class of alpha/beta structural proteins.
Collapse
|
|
24 |
5 |
20
|
Semenyuk PI, Kurochkina LP, Mäkinen L, Muronetz VI, Hietala S. Thermocontrolled Reversible Enzyme Complexation-Inactivation-Protection by Poly( N-acryloyl glycinamide). Polymers (Basel) 2021; 13:3601. [PMID: 34685360 PMCID: PMC8540930 DOI: 10.3390/polym13203601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
A prospective technology for reversible enzyme complexation accompanied with its inactivation and protection followed by reactivation after a fast thermocontrolled release has been demonstrated. A thermoresponsive polymer with upper critical solution temperature, poly(N-acryloyl glycinamide) (PNAGA), which is soluble in water at elevated temperatures but phase separates at low temperatures, has been shown to bind lysozyme, chosen as a model enzyme, at a low temperature (10 °C and lower) but not at room temperature (around 25 °C). The cooling of the mixture of PNAGA and lysozyme solutions from room temperature resulted in the capturing of the protein and the formation of stable complexes; heating it back up was accompanied by dissolving the complexes and the release of the bound lysozyme. Captured by the polymer, lysozyme was inactive, but a temperature-mediated release from the complexes was accompanied by its reactivation. Complexation also partially protected lysozyme from proteolytic degradation by proteinase K, which is useful for biotechnological applications. The obtained results are relevant for important medicinal tasks associated with drug delivery such as the delivery and controlled release of enzyme-based drugs.
Collapse
|
research-article |
4 |
5 |
21
|
Kurochkina LP, Aksyuk AA, Sachkova MY, Sykilinda NN, Mesyanzhinov VV. Characterization of tail sheath protein of giant bacteriophage phiKZ Pseudomonas aeruginosa. Virology 2009; 395:312-7. [PMID: 19822340 DOI: 10.1016/j.virol.2009.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/12/2009] [Indexed: 11/25/2022]
Abstract
The tail sheath protein of giant bacteriophage phiKZ Pseudomonas aeruginosa encoded by gene 29 was identified and its expression system was developed. Localization of the protein on the virion was confirmed by immunoelectron microscopy. Properties of gene product (gp) 29 were studied by electron microscopy, immunoblotting and limited trypsinolysis. Recombinant gp29 assembles into the regular tubular structures (polysheaths) of variable length. Trypsin digestion of gp29 within polysheaths or extended sheath of virion results in specific cleavage of the peptide bond between Arg135 and Asp136. However, this cleavage does not affect polymeric structure of polysheaths, sheaths and viral infectivity. Digestion by trypsin of the C-truncated gp29 mutant, lacking the ability to self-assemble, results in formation of a stable protease-resistant fragment. Although there is no sequence homology of phiKZ proteins to proteins of other bacteriophages, some characteristic biochemical properties of gp29 revealed similarities to the tail sheath protein of bacteriophage T4.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
5 |
22
|
Kurochkina LP, Vishnevskiy AY, Zhemaeva LV, Sykilinda NN, Strelkov SV, Mesyanzhinov VV. Structure, stability, and biological activity of bacteriophage T4 gene product 9 probed with mutagenesis and monoclonal antibodies. J Struct Biol 2006; 154:122-9. [PMID: 16520061 DOI: 10.1016/j.jsb.2006.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 01/23/2006] [Accepted: 01/25/2006] [Indexed: 11/18/2022]
Abstract
Gene product (gp) 9 connects the long tail fibers and triggers the structural transition of T4 phage baseplate at the beginning of infection process. Gp9 is a parallel homotrimer with 288 amino acid residues per chain that forms three domains. To investigate the role of the gp9 amino terminus, we have engineered a set of mutants with deletions and random substitutions in this part. The structure of the mutants was probed using monoclonal antibodies that bind to either N-terminal, middle, or C-terminal domains. Deletions of up to 12 N-terminal residues as well as random substitutions of the second, third and fourth residues yielded trimers that failed to incorporate in vitro into the T4 9(-)-particles and were not able to convert them into infectious virions. As detected using monoclonal antibodies, these mutants undergo structural changes in both N-terminal and middle domains. Furthermore, deletion of the first twenty residues caused profound structural changes in all three gp9 domains. In addition, N-terminally truncated proteins and randomized mutants formed SDS-resistant "conformers" due to unwinding of the N-terminal region. Co-expression of the full-length gp9 and the mutant lacking first 20 residues clearly shows the assembly of heterotrimers, suggesting that the gp9 trimerization in vivo occurs post-translationally. Collectively, our data indicate that the aminoterminal sequence of gp9 is important to maintain a competent structure capable of incorporating into the baseplate, and may be also required at intermediate stages of gp9 folding and assembly.
Collapse
|
|
19 |
4 |
23
|
Larionova NI, Gladysheva IP, Polekhina OV, Kurochkina LP, Gorbatova EN. Synthesis and biodistribution of Bowman-Birk soybean protease inhibitor conjugate with amphiphilic polyester. Appl Biochem Biotechnol 1996; 61:139-48. [PMID: 9100351 DOI: 10.1007/bf02785696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The modification of Bowman-Birk soybean protease inhibitor (BBI) with the monoaldehyde derivative of block copolymer of ethylene oxide and propylene oxide (PE), M(r) 2,000 is described. The conjugate contains five covalently bound polymer chains per protein molecule, and retains the ability to inhibit trypsin and chymotrypsin-like proteinases. The distribution of native BBI and the BBI-PE conjugate was examined in mice. After i.v. injection of [125I]BBI and [125I]BBI-PE, both inhibitors distributed very rapidly to the liver, kidney, and lungs, and more slowly to the brain. At the same time-points (up to 24 h), radioactivity in the blood and organs of mice injected with modified inhibitor was higher than that of the native inhibitor. The blood concentration time profile following i.v. administration of two BBI preparations at a dose 3 mg/kg was reasonable well described by a two-compartment open model with first-order elimination kinetics. The total clearance of BBI-PE decreased by a factor of 8, body mean residence time increased by a factor of 5 in comparison with BBI. A physiological pharmacokinetic model was developed to describe the tissue-to-blood distribution of two inhibitors. One-compartment physiological organ model (flow limited) was used to describe of time-course profiles of BBI concentration in organs. A two-compartment physiological organ model (membrane limited) was used to predict tissue-to-blood distribution of conjugated BBI in some organs of mice (liver, lungs). The predicted concentration curves of BBI and BBI-PE in blood and organs in mice (with the exception of kidney) showed good agreement with the observed values.
Collapse
|
|
29 |
3 |
24
|
Aijrich LG, Kurochkina LP, Mesyanzhinov VV. Chaperonin-mediated folding of bacteriophage T4 major capsid protein. II. Production of gene product 23 deletion mutants. BIOCHEMISTRY. BIOKHIMIIA 2002; 67:815-21. [PMID: 12139482 DOI: 10.1023/a:1016361027033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Folding of bacteriophage T4 major capsid protein, gene product 23 (534 a.a.), is aided by two proteins: E. coli GroEL chaperonin and viral gp31 co-chaperonin. In the present work a set of mutants with extensive deletions inside gene 23 using controlled digestion with Bal31 nuclease has been constructed. Proteins with deletions were co-expressed from plasmid vectors with phage gp31 co-chaperonin. Deletions from 8 to 33 a.a. in the N-terminal region of the gp23 molecule covering the protein proteolytic cleavage site during capsid maturation have no influence on the mutants' ability to produce in E. coli cells proteins which form regular structures--polyheads. Deletions in other regions of the polypeptide chain (187-203 and 367-476 a.a.) disturb the correct folding and subsequent assembly of gp23 into polyheads.
Collapse
|
|
23 |
3 |
25
|
Prusov AN, Smirnova TA, Kurochkina LP, Kolomijtseva GY. Influence of distamycin, chromomycin, and UV-irradiation on extraction of histone H1 from rat liver nuclei by polyglutamic acid. BIOCHEMISTRY (MOSCOW) 2011; 75:1331-41. [PMID: 21314600 DOI: 10.1134/s0006297910110040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rat liver nucleus histone H1 was fractionated by polyglutamic acid (PG) in the presence of distamycin A (DM) or chromomycin A(3) (CM). In the absence of the antibiotics, PG extracts from the nuclei about half of the nuclear H1. DM or CM added to the nuclei in saturating concentrations weakens the binding potential of most of H1. Titration of nuclei with DM shows that the number of binding sites for DM in the nuclei is less than in isolated DNA by only 20-25%, and this difference disappears after treatment of nuclei with PG. The lower CD value of DM complexes with nuclei compared to that of DM complexes with free DNA is evidence of a change in the DM-DNA binding mode in nuclear chromatin. About 25% of total histone H1 is sensitive only to DM and ~5% is sensitive only to CM. Half of the DM-sensitive H1 fraction seems to have a different binding mode in condensed compared relaxed chromatin. A small part of H1 (~3%) remains tightly bound to the nuclear chromatin independent of the presence of the antibiotics. Subfraction H1A is more DM-sensitive and H1B is more CM-sensitive. UV irradiation of nuclei results in dose-dependent cross-linking of up to 50% of total H1, which is neither acid-extractable nor recovered during SDS electrophoresis. PG with DM extracts only about 3% of H1 from UV-stabilized chromatin. DM treatment of the nuclei before UV irradiation results in extraction of the whole DM-sensitive H1 fraction (~25%), which in this case is not stabilized in the nucleus. A hypothesis on possible roles of the found H1 fractions in chromatin structural organization is discussed.
Collapse
|
Journal Article |
14 |
3 |