1
|
Šimoliūnas E, Kaliniene L, Truncaitė L, Zajančkauskaitė A, Staniulis J, Kaupinis A, Ger M, Valius M, Meškys R. Klebsiella phage vB_KleM-RaK2 - a giant singleton virus of the family Myoviridae. PLoS One 2013; 8:e60717. [PMID: 23593293 PMCID: PMC3622015 DOI: 10.1371/journal.pone.0060717] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/01/2013] [Indexed: 11/19/2022] Open
Abstract
At 346 kbp in size, the genome of a jumbo bacteriophage vB_KleM-RaK2 (RaK2) is the largest Klebsiella infecting myovirus genome sequenced to date. In total, 272 out of 534 RaK2 ORFs lack detectable database homologues. Based on the similarity to biologically defined proteins and/or MS/MS analysis, 117 of RaK2 ORFs were given a functional annotation, including 28 RaK2 ORFs coding for structural proteins that have no reliable homologues to annotated structural proteins in other organisms. The electron micrographs revealed elaborate spike-like structures on the tail fibers of Rak2, suggesting that this phage is an atypical myovirus. While head and tail proteins of RaK2 are mostly myoviridae-related, the bioinformatics analysis indicate that tail fibers/spikes of this phage are formed from podovirus-like peptides predominantly. Overall, these results provide evidence that bacteriophage RaK2 differs profoundly from previously studied viruses of the Myoviridae family.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
47 |
2
|
Šimoliūnas E, Kaliniene L, Stasilo M, Truncaitė L, Zajančkauskaitė A, Staniulis J, Nainys J, Kaupinis A, Valius M, Meškys R. Isolation and characterization of vB_ArS-ArV2 - first Arthrobacter sp. infecting bacteriophage with completely sequenced genome. PLoS One 2014; 9:e111230. [PMID: 25333962 PMCID: PMC4205034 DOI: 10.1371/journal.pone.0111230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/26/2014] [Indexed: 02/05/2023] Open
Abstract
This is the first report on a complete genome sequence and biological characterization of the phage that infects Arthrobacter. A novel virus vB_ArS-ArV2 (ArV2) was isolated from soil using Arthrobacter sp. 68b strain for phage propagation. Based on transmission electron microscopy, ArV2 belongs to the family Siphoviridae and has an isometric head (∼63 nm in diameter) with a non-contractile flexible tail (∼194×10 nm) and six short tail fibers. ArV2 possesses a linear, double-stranded DNA genome (37,372 bp) with a G+C content of 62.73%. The genome contains 68 ORFs yet encodes no tRNA genes. A total of 28 ArV2 ORFs have no known functions and lack any reliable database matches. Proteomic analysis led to the experimental identification of 14 virion proteins, including 9 that were predicted by bioinformatics approaches. Comparative phylogenetic analysis, based on the amino acid sequence alignment of conserved proteins, set ArV2 apart from other siphoviruses. The data presented here will help to advance our understanding of Arthrobacter phage population and will extend our knowledge about the interaction between this particular host and its phages.
Collapse
|
research-article |
11 |
14 |
3
|
Šimoliūnas E, Šimoliūnienė M, Kaliniene L, Zajančkauskaitė A, Skapas M, Meškys R, Kaupinis A, Valius M, Truncaitė L. Pantoea Bacteriophage vB_PagS_Vid5: A Low-Temperature Siphovirus That Harbors a Cluster of Genes Involved in the Biosynthesis of Archaeosine. Viruses 2018; 10:v10110583. [PMID: 30366363 PMCID: PMC6266253 DOI: 10.3390/v10110583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
A novel low-temperature siphovirus, vB_PagS_Vid5 (Vid5), was isolated in Lithuania using Pantoea agglomerans isolate for the phage propagation. The 61,437 bp genome of Vid5 has a G–C content of 48.8% and contains 99 probable protein encoding genes and one gene for tRNASer. A comparative sequence analysis revealed that 46 out of 99 Vid5 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 33 Vid5 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a cluster of genes possibly involved in the biosynthesis of 7-deazaguanine derivatives was identified. Notably, one of these genes encodes a putative preQ0/preQ1 transporter, which has never been detected in bacteriophages to date. A proteomic analysis led to the experimental identification of 11 virion proteins, including nine that were predicted by bioinformatics approaches. Based on the phylogenetic analysis, Vid5 cannot be assigned to any genus currently recognized by ICTV, and may represent a new one within the family of Siphoviridae.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
12 |
4
|
Kaliniene L, Šimoliūnas E, Truncaitė L, Zajančkauskaitė A, Nainys J, Kaupinis A, Valius M, Meškys R. Molecular Analysis of Arthrobacter Myovirus vB_ArtM-ArV1: We Blame It on the Tail. J Virol 2017; 91:e00023-17. [PMID: 28122988 PMCID: PMC5375659 DOI: 10.1128/jvi.00023-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 11/20/2022] Open
Abstract
This is the first report on a myophage that infects Arthrobacter A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil using Arthrobacter sp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the family Myoviridae: ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the family Siphoviridae than it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only in Arthrobacter phages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed that Arthrobacter myophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the order CaudoviralesIMPORTANCE Bacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families: Podoviridae (with short tails), Siphoviridae (with long noncontractile tails), and Myoviridae (with contractile tails). Based on the current hypothesis, myophages, which may have evolved from siphophages, are thought to have first emerged among Gram-negative bacteria, whereas they emerged only later among Gram-positive bacteria. The results of the molecular characterization of myophage vB_ArtM-ArV1 presented here conform to the aforementioned hypothesis, since, at a glance, bacteriophage vB_ArtM-ArV1 appears to be a siphovirus that possesses a seemingly functional contractile tail. Our work demonstrates that such "chimeric" myophages are of cosmopolitan nature and are likely characteristic of the ecologically important soil bacterial genus Arthrobacter.
Collapse
|
research-article |
8 |
6 |
5
|
Kaliniene L, Zajančkauskaitė A, Šimoliūnas E, Truncaitė L, Meškys R. Low-temperature bacterial viruses VR - a small but diverse group of E. coli phages. Arch Virol 2015; 160:1367-70. [PMID: 25753428 DOI: 10.1007/s00705-015-2388-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/28/2015] [Indexed: 11/28/2022]
Abstract
The complete genome sequences of four low-temperature Escherichia coli-specific tevenviruses, vb_EcoM-VR5, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26, were determined. Genomic comparisons including recently described genomes of vb_EcoM-VR7 and JS98 as well as phage T4 allowed the identification of two genetic groups that were consistent with defined host-range phenotypes. Group A included the broad-host-range phages vb_EcoM-VR5 and JS98, while group B included vb_EcoM-VR7, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26, which all had somewhat limited host ranges. All four sequenced phages had genomes that were similar in length (~170 kb) and GC content (~40 %), and, with the exception of vb_EcoM-VR5, at the nucleotide level, they were much more closely related to each other than either was to any other tevenvirus currently characterized. Nevertheless, the overall genome organization of vb_EcoM-VR5, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26 was comparable to that seen in tevenviruses.
Collapse
|
|
10 |
5 |
6
|
Žukauskienė E, Šimoliūnienė M, Truncaitė L, Skapas M, Kaupinis A, Valius M, Meškys R, Šimoliūnas E. Pantoea Bacteriophage vB_PagS_AAS23: A Singleton of the Genus Sauletekiovirus. Microorganisms 2021; 9:668. [PMID: 33807116 PMCID: PMC8004638 DOI: 10.3390/microorganisms9030668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
A cold-adapted siphovirus, vB_PagS_AAS23 (AAS23) was isolated in Lithuania using the Pantoea agglomerans strain AUR for the phage propagation. The double-stranded DNA genome of AAS23 (51,170 bp) contains 92 probable protein encoding genes, and no genes for tRNA. A comparative sequence analysis revealed that 25 of all AAS23 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. Based on the phylogenetic analysis, AAS23 has no close relationship to other viruses publicly available to date and represents a single species of the genus Sauletekiovirus within the family Drexlerviridae. The phage is able to form plaques in bacterial lawns even at 4 °C and demonstrates a depolymerase activity. Thus, the data presented in this study not only provides the information on Pantoea-infecting bacteriophages, but also offers novel insights into the diversity of cold-adapted viruses and their potential to be used as biocontrol agents.
Collapse
|
research-article |
4 |
2 |
7
|
Šimoliūnienė M, Kazlauskas D, Zajančkauskaitė A, Meškys R, Truncaitė L. Escherichia coli trxAgene as a molecular marker for genome engineering of felixounoviruses. Biochim Biophys Acta Gen Subj 2021; 1865:129967. [PMID: 34324954 DOI: 10.1016/j.bbagen.2021.129967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bacterial viruses (bacteriophages or phages) have a lot of uncharacterized genes, which hinders the progress of their applied research. Functional characterization of these genes is often hampered by a lack of suitable methods for engineering of phage genomes. METHODS Phages vB_EcoM_Alf5 (Alf5) and VB_EcoM_VpaE1 (VpaE1) were used as the model phages of Felixounovirus genus. The phage-coded properties were predicted by bioinformatics analysis. The 'pull-down' assay was used for detection of protein-protein interactions. Primer extension analysis was used for the DNA polymerase (DNAP) activity testing. Bacteriophage lambda Redγβα-assisted homologous recombination was used for construction of phage mutants. RESULTS Bioinformatics analysis showed that felixounoviruses encode DNA polymerase, which is homologous to the T7 DNAP. We found that the Escherichia coli thioredoxin A (TrxA) in vitro interacts with the predicted DNAP of Alf5 phage (gp096) and enhances its activity. Phages Alf5 and VpaE1 do not grow on E. coli strains lacking trxA gene unless it is provided in trans. This feature was used for construction of the deletion/insertion mutants of non-essential genes of felixounoviruses. CONCLUSION DNA replication of phages from Felixonuvirus genus depends on the host trxA, which therefore may be used as a molecular marker for their genome engineering. GENERAL SIGNIFICANCE We present a proof-of-principle of a strategy for targeted engineering of bacteriophages of Felixounovirus genus. The method developed here will facilitate the basic and applied research of this unexplored phage group. Furthermore, detected functional interactions between the phage and host proteins will be significant for basic research of DNA replication.
Collapse
|
Journal Article |
4 |
2 |
8
|
Šimoliūnienė M, Truncaitė L, Petrauskaitė E, Zajančkauskaitė A, Meškys R, Skapas M, Kaupinis A, Valius M, Šimoliūnas E. Pantoeaagglomerans-Infecting Bacteriophage vB_PagS_AAS21: A Cold-Adapted Virus Representing a Novel Genus within the Family Siphoviridae. Viruses 2020; 12:E479. [PMID: 32340233 PMCID: PMC7232348 DOI: 10.3390/v12040479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
A novel cold-adapted siphovirus, vB_PagS_AAS21 (AAS21), was isolated in Lithuania using Pantoea agglomerans as the host for phage propagation. AAS21 has an isometric head (~85 nm in diameter) and a non-contractile flexible tail (~174 × 10 nm). With a genome size of 116,649 bp, bacteriophage AAS21 is the largest Pantoea-infecting siphovirus sequenced to date. The genome of AAS21 has a G+C content of 39.0% and contains 213 putative protein-encoding genes and 29 genes for tRNAs. A comparative sequence analysis revealed that 89 AAS21 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 63 AAS21 ORFs were functionally annotated, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. Proteomic analysis led to the experimental identification of 19 virion proteins, including 11 that were predicted by bioinformatics approaches. Based on comparative phylogenetic analysis, AAS21 cannot be assigned to any genus currently recognized by ICTV and may represents a new branch of viruses within the family Siphoviridae.
Collapse
|
research-article |
5 |
2 |
9
|
Šimoliūnienė M, Žukauskienė E, Truncaitė L, Cui L, Hutinet G, Kazlauskas D, Kaupinis A, Skapas M, de Crécy-Lagard V, Dedon PC, Valius M, Meškys R, Šimoliūnas E. Pantoea Bacteriophage vB_PagS_MED16-A Siphovirus Containing a 2'-Deoxy-7-amido-7-deazaguanosine-Modified DNA. Int J Mol Sci 2021; 22:7333. [PMID: 34298953 PMCID: PMC8306585 DOI: 10.3390/ijms22147333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using Pantoea agglomerans strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative sequence analysis revealed that 26 of these ORFs code for unique proteins that have no reliable identity when compared to database entries. Based on phylogenetic analysis, MED16 represents a new genus with siphovirus morphology. In total, 35 MED16 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a gene encoding a preQ0 DNA deoxyribosyltransferase (DpdA) is present in the genome of MED16 and the LC-MS/MS analysis indicates 2'-deoxy-7-amido-7-deazaguanosine (dADG)-modified phage DNA, which, to our knowledge, has never been experimentally validated in genomes of Pantoea phages. Thus, the data presented in this study provide new information on Pantoea-infecting viruses and offer novel insights into the diversity of DNA modifications in bacteriophages.
Collapse
|
research-article |
4 |
1 |