1
|
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, Wang Q, Crouch PJ, Ganio K, Wang XC, Pei L, Adlard PA, Lu YM, Cappai R, Wang JZ, Liu R, Bush AI. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 2017; 22:1520-1530. [PMID: 28886009 DOI: 10.1038/mp.2017.171] [Citation(s) in RCA: 493] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 02/05/2023]
Abstract
Functional failure of tau contributes to age-dependent, iron-mediated neurotoxicity, and as iron accumulates in ischemic stroke tissue, we hypothesized that tau failure may exaggerate ischemia-reperfusion-related toxicity. Indeed, unilateral, transient middle cerebral artery occlusion (MCAO) suppressed hemispheric tau and increased iron levels in young (3-month-old) mice and rats. Wild-type mice were protected by iron-targeted interventions: ceruloplasmin and amyloid precursor protein ectodomain, as well as ferroptosis inhibitors. At this age, tau-knockout mice did not express elevated brain iron and were protected against hemispheric reperfusion injury following MCAO, indicating that tau suppression may prevent ferroptosis. However, the accelerated age-dependent brain iron accumulation that occurs in tau-knockout mice at 12 months of age negated the protective benefit of tau suppression against MCAO-induced focal cerebral ischemia-reperfusion injury. The protective benefit of tau knockout was revived in older mice by iron-targeting interventions. These findings introduce tau-iron interaction as a pleiotropic modulator of ferroptosis and ischemic stroke outcome.
Collapse
|
|
8 |
493 |
2
|
Lee FJS, Xue S, Pei L, Vukusic B, Chéry N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002; 111:219-30. [PMID: 12408866 DOI: 10.1016/s0092-8674(02)00962-5] [Citation(s) in RCA: 402] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dopamine D1-like receptors, composed of D1 and D5 receptors, have been documented to modulate glutamate-mediated fast excitatory synaptic neurotransmission. Here, we report that dopamine D1 receptors modulate NMDA glutamate receptor-mediated functions through direct protein-protein interactions. Two regions in the D1 receptor carboxyl tail can directly and selectively couple to NMDA glutamate receptor subunits NR1-1a and NR2A. While one interaction is involved in the inhibition of NMDA receptor-gated currents, the other is implicated in the attenuation of NMDA receptor-mediated excitotoxicity through a PI-3 kinase-dependent pathway.
Collapse
|
|
23 |
402 |
3
|
Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1997; 11:433-41. [PMID: 9092795 DOI: 10.1210/mend.11.4.9911] [Citation(s) in RCA: 338] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pathogenesis of tumor formation in the anterior pituitary has been intensively studied, but the common mechanism involved in pituitary cell transformation and tumorigenesis remains elusive. In this study, we used mRNA differential display PCR to identify mRNAs that are differentially expressed in rat pituitary tumor cells compared with normal pituitary tissue. An mRNA exclusively expressed in pituitary tumor but not in normal pituitary was characterized. Using this pituitary tumor-specific PCR product as a probe to screen a cDNA library constructed from rat pituitary tumor GH4 cells, a cDNA of 974 bp was isolated. This cDNA encodes a novel protein of 199 amino acids, which contains no well characterized functional motifs. The mRNA of this cDNA is detected in normal adult testis and in embryonic liver, where the transcript is about 300 bp shorter and expressed at a much lower level than that detected from pituitary tumor cells. Overexpression of this protein in mouse 3T3 fibroblasts shows that it inhibits cell proliferation and induces cell transformation in vitro. Injection of transfected 3T3 cells into athymic nude mice resulted in tumor formation within 3 weeks in all animals. These results indicate that pituitary tumor cells express a unique and potent transforming gene (PTTG), which may play a role in pituitary tumorigenesis.
Collapse
|
|
28 |
338 |
4
|
Man HY, Wang Q, Lu WY, Ju W, Ahmadian G, Liu L, D'Souza S, Wong TP, Taghibiglou C, Lu J, Becker LE, Pei L, Liu F, Wymann MP, MacDonald JF, Wang YT. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 2003; 38:611-24. [PMID: 12765612 DOI: 10.1016/s0896-6273(03)00228-9] [Citation(s) in RCA: 272] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hippocampal CA1 homosynaptic long-term potentiation (LTP) is expressed specifically at activated synapses. Increased insertion of postsynaptic alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) appears to be crucial for CA1 LTP. However, the mechanism underlying AMPAR insertion during LTP remains largely unknown. We now report that phosphatidylinositol 3-kinase (PI3K) is complexed with AMPARs at synapses and activated by selective stimulation of synaptic N-methyl-D-aspartate (NMDA) receptors. Activation of the AMPAR-associated PI3K is required for the increased cell surface expression of AMPARs and LTP. Thus, our results strongly suggest that the AMPAR-PI3K complex may constitute a critical molecular signal responsible for AMPAR insertion at activated CA1 synapses during LTP, and consequently, this lipid kinase may serve to determine the polarity of NMDA receptor-dependent synaptic plasticity.
Collapse
|
|
22 |
272 |
5
|
Laffitte BA, Joseph SB, Walczak R, Pei L, Wilpitz DC, Collins JL, Tontonoz P. Autoregulation of the human liver X receptor alpha promoter. Mol Cell Biol 2001; 21:7558-68. [PMID: 11604492 PMCID: PMC99927 DOI: 10.1128/mcb.21.22.7558-7568.2001] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous work has implicated the nuclear receptors liver X receptor alpha (LXR alpha) and LXR beta in the regulation of macrophage gene expression in response to oxidized lipids. Macrophage lipid loading leads to ligand activation of LXRs and to induction of a pathway for cholesterol efflux involving the LXR target genes ABCA1 and apoE. We demonstrate here that autoregulation of the LXR alpha gene is an important component of this lipid-inducible efflux pathway in human macrophages. Oxidized low-density lipoprotein, oxysterols, and synthetic LXR ligands induce expression of LXR alpha mRNA in human monocyte-derived macrophages and human macrophage cell lines but not in murine peritoneal macrophages or cell lines. This is in contrast to peroxisome proliferator-activated receptor gamma (PPAR gamma)-specific ligands, which stimulate LXR alpha expression in both human and murine macrophages. We further demonstrate that LXR and PPAR gamma ligands cooperate to induce LXR alpha expression in human but not murine macrophages. Analysis of the human LXR alpha promoter led to the identification of multiple LXR response elements. Interestingly, the previously identified PPAR response element (PPRE) in the murine LXR alpha gene is not conserved in humans; however, a different PPRE is present in the human LXR 5'-flanking region. These results have implications for cholesterol metabolism in human macrophages and its potential to be regulated by synthetic LXR and/or PPAR gamma ligands. The ability of LXR alpha to regulate its own promoter is likely to be an integral part of the macrophage physiologic response to lipid loading.
Collapse
|
research-article |
24 |
255 |
6
|
Wang Q, Liu L, Pei L, Ju W, Ahmadian G, Lu J, Wang Y, Liu F, Wang YT. Control of synaptic strength, a novel function of Akt. Neuron 2003; 38:915-28. [PMID: 12818177 DOI: 10.1016/s0896-6273(03)00356-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Akt (also known as PKB), a serine/threonine kinase involved in diverse signal-transduction pathways, is highly expressed in the brain. Akt is known to have a strong antiapoptotic action and thereby to be critically involved in neuronal survival, but its potential role in the dynamic modulation of synaptic transmission is unknown. Here we report that Akt phosphorylates, both in vitro and in vivo, the type A gamma-aminobutyric acid receptor (GABA(A)R), the principal receptor mediating fast inhibitory synaptic transmission in the mammalian brain. Akt-mediated phosphorylation increases the number of GABA(A)Rs on the plasma membrane surface, thereby increasing the receptor-mediated synaptic transmission in neurons. These results identify the GABA(A)R as a novel substrate of Akt, thereby linking Akt to the regulation of synaptic strength. This work also provides evidence for the rapid regulation of neurotransmitter receptor numbers in the postsynaptic domain by direct receptor phosphorylation as an important means of producing synaptic plasticity.
Collapse
|
|
22 |
201 |
7
|
Nilsson M, Frykberg L, Flock JI, Pei L, Lindberg M, Guss B. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect Immun 1998; 66:2666-73. [PMID: 9596732 PMCID: PMC108254 DOI: 10.1128/iai.66.6.2666-2673.1998] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The present study reports on fibrinogen (Fg) binding of Staphylococcus epidermidis. Adhesion of different S. epidermidis strains to immobilized Fg was found to vary significantly between different strains, and the component responsible was found to be proteinaceous in nature. To further characterize the Fg-binding activity, a shotgun phage display library covering the S. epidermidis chromosome was constructed. By affinity selection (panning) against immobilized Fg, a phagemid clone, pSEFG1, was isolated, which harbors an insert with an open reading frame of approximately 1.7 kilobases. Results from binding and inhibition experiments demonstrated that the insert of pSEFG1 encodes a specific Fg-binding protein. Furthermore, affinity-purified protein encoded by pSEFG1 completely inhibited adhesion of S. epidermidis to immobilized Fg. By additional cloning and DNA sequence analyses, the complete gene, termed fbe, was found to consist of an open reading frame of 3,276 nucleotides encoding a protein, called Fbe, with a deduced molecular mass of approximately 119 kDa. With a second phage display library made from another clinical isolate of S. epidermidis, it was possible to localize the Fg-binding region to a 331-amino-acid-long fragment. PCR analysis showed that the fbe gene was found in 40 of 43 clinical isolates of S. epidermidis. The overall organization of Fbe resembles those of other extracellular surface proteins of staphylococci and streptococci. Sequence comparisons with earlier known proteins revealed that this protein is related to an Fg-binding protein of Staphylococcus aureus called clumping factor.
Collapse
|
research-article |
27 |
185 |
8
|
Mu D, Chen L, Zhang X, See LH, Koch CM, Yen C, Tong JJ, Spiegel L, Nguyen KCQ, Servoss A, Peng Y, Pei L, Marks JR, Lowe S, Hoey T, Jan LY, McCombie WR, Wigler MH, Powers S. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 2003; 3:297-302. [PMID: 12676587 DOI: 10.1016/s1535-6108(03)00054-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Representational difference analysis (RDA) of human breast cancer was used to discover a novel amplicon located at chromosomal region 8q24.3. We examined a series of breast cancer samples harboring amplification of this region and determined that KCNK9 is the sole overexpressed gene within the amplification epicenter. KCNK9 encodes a potassium channel that is amplified from 3-fold to 10-fold in 10% of breast tumors and overexpressed from 5-fold to over 100-fold in 44% of breast tumors. Overexpression of KCNK9 in cell lines promotes tumor formation and confers resistance to both hypoxia and serum deprivation, suggesting that its amplification and overexpression plays a physiologically important role in human breast cancer.
Collapse
|
|
22 |
183 |
9
|
Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D, Weimer R, Wu Y, Pei L. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene 2010; 29:5254-64. [PMID: 20603615 DOI: 10.1038/onc.2010.268] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Axl is expressed in various types of cancer and is involved in multiple processes of tumorigenesis, including promoting tumor cell growth, migration, invasion, metastasis as well as angiogenesis. To evaluate further the mechanisms involved in the expression/activation of Axl in various aspects of tumorigenesis, especially its roles in modulating tumor stromal functions, we have developed a phage-derived mAb (YW327.6S2) that recognizes both human and murine Axl. YW327.6S2 binds to both human and murine Axl with high affinity. It blocks the ligand Gas6 binding to the receptor, downregulates receptor expression, inhibits receptor activation and downstream signaling. In A549 non-small-cell lung cancer (NSCLC) and MDA-MB-231 breast cancer models, YW327.6S2 attenuates xenograft tumor growth and potentiates the effect of anti-VEGF treatment. In NSCLC models, YW327.6S2 also enhances the effect of erlotinib and chemotherapy in reducing tumor growth. Furthermore, YW327.6S2 reduces the metastasis of MDA-MB-231 breast cancer cells to distant organs. YW327.6S2 induces tumor cell apoptosis in NSCLC, reduces tumor-associated vascular density and inhibits the secretion of inflammatory cytokines and chemokines from tumor-associated macrophages in the breast cancer model. In conclusion, anti-Axl mAb can enhance the therapeutic efficacy of anti-VEGF, EGFR small-molecule inhibitors as well as chemotherapy. Axl mAb affects not only tumor cells but also tumor stroma through its modulation of tumor-associated vasculature and immune cell functions.
Collapse
|
Journal Article |
15 |
179 |
10
|
Edelson R, Gelbord JM, Horne K, McHardy IM, Peterson BM, Arévalo P, Breeveld AA, Rosa GD, Evans PA, Goad MR, Kriss GA, Brandt WN, Gehrels N, Grupe D, Kennea JA, Kochanek CS, Nousek JA, Papadakis I, Siegel M, Starkey D, Uttley P, Vaughan S, Young S, Barth AJ, Bentz MC, Brewer BJ, Crenshaw DM, Dalla Bontà E, Cáceres ADL, Denney KD, Dietrich M, Ely J, Fausnaugh MM, Grier CJ, Hall PB, Kaastra J, Kelly BC, Korista KT, Lira P, Mathur S, Netzer H, Pancoast A, Pei L, Pogge RW, Schimoia JS, Treu T, Vestergaard M, Villforth C, Yan H, Zu Y. SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. II.SWIFTANDHSTREVERBERATION MAPPING OF THE ACCRETION DISK OF NGC 5548. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/806/1/129] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
10 |
170 |
11
|
Lee FJS, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F. Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J 2007; 26:2127-36. [PMID: 17380124 PMCID: PMC1852782 DOI: 10.1038/sj.emboj.7601656] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 02/27/2007] [Indexed: 11/09/2022] Open
Abstract
Altered synaptic dopamine levels have been implicated in several neurological/neuropsychiatric disorders, including drug addiction and schizophrenia. However, it is unclear what precipitates these changes in synaptic dopamine levels. One of the key presynaptic components involved in regulating dopaminergic tone is the dopamine transporter (DAT). Here, we report that the DAT is also regulated by the dopamine D2 receptor through a direct protein-protein interaction involving the DAT amino-terminus and the third intracellular loop of the D2 receptor. This physical coupling facilitates the recruitment of intracellular DAT to the plasma membrane and leads to enhanced dopamine reuptake. Moreover, mice injected with peptides that disrupt D2-DAT interaction exhibit decreased synaptosomal dopamine uptake and significantly increased locomotor activity, reminiscent of DAT knockout mice. Our data highlight a novel mechanism through which neurotransmitter receptors can functionally modulate neurotransmitter transporters, an interaction that can affect the synaptic neurotransmitter levels in the brain.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
169 |
12
|
Lavine N, Ethier N, Oak JN, Pei L, Liu F, Trieu P, Rebois RV, Bouvier M, Hebert TE, Van Tol HHM. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 2002; 277:46010-9. [PMID: 12297500 DOI: 10.1074/jbc.m205035200] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large number of studies have demonstrated co-purification or co-immunoprecipitation of receptors with G proteins. We have begun to look for the presence of effector molecules in these receptor complexes. Co-expression of different channel and receptor permutations in COS-7 and HEK 293 cells in combination with co-immunoprecipitation experiments established that the dopamine D(2) and D(4), and beta(2)-adrenergic receptors (beta(2)-AR) form stable complexes with Kir3 channels. The D(4)/Kir3 and D(2) receptor/Kir3 interaction does not occur when the channel and receptor are expressed separately and mixed prior to immunoprecipitation, indicating that the interaction is not an artifact of the experimental protocol and reflects a biosynthetic event. The observed complexes are stable in that they are not disrupted by receptor activation or modulation of G protein alpha subunit function. However, using a peptide that binds Gbetagamma (betaARKct), we show that Gbetagamma is critical for dopamine receptor-Kir3 complex formation, but not for maintenance of the complex. We also provide evidence that Kir3 channels and another effector, adenylyl cyclase, are stably associated with the beta(2)-adrenergic receptor and can be co-immunoprecipitated by anti-receptor antibodies. Using bioluminescence resonance energy transfer, we have shown that in living cells under physiological conditions, beta(2)AR interacts directly with Kir3.1/3.4 and Kir3.1/3.2c heterotetramers as well as with adenylyl cyclase. All of these interactions are stable in the presence of receptor agonists, suggesting that these signaling complexes persist during signal transduction. In addition, we provide evidence that the receptor-effector complexes are also found in vivo. The observation that several G protein-coupled receptors form stable complexes with their effectors suggests that this arrangement might be a general feature of G protein-coupled signal transduction.
Collapse
|
Research Support, Non-U.S. Gov't |
23 |
164 |
13
|
Ning K, Pei L, Liao M, Liu B, Zhang Y, Jiang W, Mielke JG, Li L, Chen Y, El-Hayek YH, Fehlings MG, Zhang X, Liu F, Eubanks J, Wan Q. Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN. J Neurosci 2004; 24:4052-60. [PMID: 15102920 PMCID: PMC6729419 DOI: 10.1523/jneurosci.5449-03.2004] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a lipid and protein phosphatase. We report here that PTEN physically associates with the NR1 and NR2B subunits of NMDA receptors (NMDARs) in rat hippocampus. Downregulating the protein expression of PTEN inhibits the function of extrasynaptic NMDARs and decreases NMDAR surface expression, suggesting a crucial role for endogenous PTEN in the modulation of NMDAR-mediated neuronal function. Reducing PTEN expression also enhances Akt/Bad phosphorylation in hippocampal neurons. Importantly, suppressing lipid and protein phosphatase activity of PTEN, respectively, activates Akt and inhibits extrasynaptic NMDAR activity and thereby protects against ischemic neuronal death in vitro and in vivo. Thus, our study reveals a dual neuroprotective mechanism by which Akt/Bad and extrasynaptic NMDARs are regulated via downregulation of two distinct PTEN phosphatase activities and present the possibility of PTEN as a potential therapeutic target for stroke treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
141 |
14
|
Pei L, Lee FJS, Moszczynska A, Vukusic B, Liu F. Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 2004; 24:1149-58. [PMID: 14762133 PMCID: PMC6793575 DOI: 10.1523/jneurosci.3922-03.2004] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional interactions between dopamine D1-like receptors and NMDA subtype glutamate receptors have been implicated in the maintenance of normal brain activity and neurological dysfunction. Although modulation of NMDA receptor functions by D1 receptor activation has been the subject of extensive investigation, little is known as to how the activation of NMDA receptors alters D1 function. Here we report that NMDA receptors regulate D1 receptor function via a direct protein-protein interaction mediated by the carboxyl tail regions of both receptors. In both cotransfected cells and cultured hippocampal neurons the activation of NMDA receptors increases the number of D1 receptors on the plasma membrane surface and enhances D1 receptor-mediated cAMP accumulation via a SNARE-dependent mechanism. Furthermore, overexpression of mini-genes encoding either NR1 or D1 carboxyl tail fragments disrupts the D1-NR1 direct protein-protein interaction and abolishes NMDA-induced changes in both D1 cell surface expression and D1-mediated cAMP accumulation. Our results demonstrate that the D1-NR1 physical interaction enables NMDA receptors to increase plasma membrane insertion of D1 receptors and provides a novel mechanism by which the activation of NMDA receptors upregulates D1 receptor function. Understanding the molecular mechanisms by which D1 and NMDA receptors functionally interact may provide insight toward elucidating the molecular neurobiological mechanisms involved in many neuropsychiatric illnesses, such as schizophrenia.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
140 |
15
|
Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, Hoey T. Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci U S A 2003; 100:7803-7. [PMID: 12782791 PMCID: PMC164668 DOI: 10.1073/pnas.1232448100] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
TASK3 gene (Kcnk9) is amplified and overexpressed in several types of human carcinomas. In this report, we demonstrate that a point mutation (G95E) within the consensus K+ filter of TASK3 not only abolished TASK3 potassium channel activity but also abrogated its oncogenic functions, including proliferation in low serum, resistance to apoptosis, and promotion of tumor growth. Furthermore, we provide evidence that TASK3G95E is a dominant-negative mutation, because coexpression of the wild-type and the mutant TASK3 resulted in inhibition of K+ current of wild-type TASK3 and its tumorigenicity in nude mice. These results establish a direct link between the potassium channel activity of TASK3 and its oncogenic functions and imply that blockers for this potassium channel may have therapeutic potential for the treatment of cancers.
Collapse
|
research-article |
22 |
128 |
16
|
Pei L. Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J Biol Chem 2001; 276:8484-91. [PMID: 11115508 DOI: 10.1074/jbc.m009654200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pituitary tumor-transforming gene (PTTG) encodes a protein implicated in cellular transformation and transcriptional regulation. To identify downstream target genes, I established cell lines with tightly regulated inducible expression of PTTG. DNA arrays were used to analyze gene expression profiles after PTTG induction. I identified c-myc oncogene as a major PTTG target. Induction of PTTG resulted in increased cell proliferation through activation of c-myc. I showed that PTTG activates c-myc transcription in transfected cells. PTTG binds to c-myc promoter near the transcription initiation site in a protein complex containing the upstream stimulatory factor (USF1). I have defined the PTTG DNA-binding site and mapped PTTG DNA binding domain to a region between amino acids 61 and 118. Furthermore, I demonstrated that PTTG DNA binding is required for its transcriptional activation function. These results definitively established the role of PTTG as a transcription activator and indicate that PTTG is involved in cellular transformation and tumorigenesis through activation of c-myc oncogene.
Collapse
|
|
24 |
108 |
17
|
Rosa GD, Peterson BM, Ely J, Kriss GA, Crenshaw DM, Horne K, Korista KT, Netzer H, Pogge RW, Arévalo P, Barth AJ, Bentz MC, Brandt WN, Breeveld AA, Brewer BJ, Dalla Bontà E, Lorenzo-Cáceres AD, Denney KD, Dietrich M, Edelson R, Evans PA, Fausnaugh MM, Gehrels N, Gelbord JM, Goad MR, Grier CJ, Grupe D, Hall PB, Kaastra J, Kelly BC, Kennea JA, Kochanek CS, Lira P, Mathur S, McHardy IM, Nousek JA, Pancoast A, Papadakis I, Pei L, Schimoia JS, Siegel M, Starkey D, Treu T, Uttley P, Vaughan S, Vestergaard M, Villforth C, Yan H, Young S, Zu Y. SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. I. ULTRAVIOLET OBSERVATIONS OF THE SEYFERT 1 GALAXY NGC 5548 WITH THE COSMIC ORIGINS SPECTROGRAPH ONHUBBLE SPACE TELESCOPE. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/806/1/128] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
|
10 |
95 |
18
|
Yang X, Yao C, Tian T, Li X, Yan H, Wu J, Li H, Pei L, Liu D, Tian Q, Zhu LQ, Lu Y. A novel mechanism of memory loss in Alzheimer's disease mice via the degeneration of entorhinal-CA1 synapses. Mol Psychiatry 2018; 23:199-210. [PMID: 27671476 PMCID: PMC5794875 DOI: 10.1038/mp.2016.151] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/16/2016] [Accepted: 07/13/2016] [Indexed: 12/13/2022]
Abstract
The entorhinal cortex (EC) is one of the most vulnerable brain regions that is attacked during the early stage of Alzheimer's disease (AD). Here, we report that the synaptic terminals of pyramidal neurons in the EC layer II (ECIIPN) directly innervate CA1 parvalbumin (PV) neurons (CA1PV) and are selectively degenerated in AD mice, which exhibit amyloid-β plaques similar to those observed in AD patients. A loss of ECIIPN-CA1PV synapses disables the excitatory and inhibitory balance in the CA1 circuit and impairs spatial learning and memory. Optogenetic activation of ECIIPN using a theta burst paradigm rescues ECIIPN-CA1PV synaptic defects and intercepts the decline in spatial learning and memory. These data reveal a novel mechanism of memory loss in AD mice via the selective degeneration of the ECIIPN-CA1PV pathway.
Collapse
|
research-article |
7 |
91 |
19
|
Pei L, Dodson R, Schoderbek WE, Maurer RA, Mayo KE. Regulation of the alpha inhibin gene by cyclic adenosine 3',5'-monophosphate after transfection into rat granulosa cells. Mol Endocrinol 1991; 5:521-34. [PMID: 1717833 DOI: 10.1210/mend-5-4-521] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Inhibin gene expression in the ovary is stimulated by FSH, which uses cAMP as an intracellular second messenger. To examine further the transcriptional regulation of the alpha inhibin gene by FSH and cAMP, we have isolated and characterized a genomic clone that contains the entire rat alpha inhibin gene. Sequence analysis of the alpha inhibin promoter region revealed several potential cAMP response elements (CREs) and transcription factor AP2-binding sites that might mediate cAMP regulation. To determine the functional importance of these sequences, fusion genes including the alpha inhibin 5' flanking region linked to a luciferase reporter gene were transiently transfected into primary granulosa cells isolated from immature rats. These fusion genes were both expressed and regulated by the adenylyl cyclase activator forskolin in transfected granulosa cells. Analysis of a series of 5' deletion mutants indicated that a construct containing as little as 170 basepairs up-stream of the alpha inhibin start site, which includes a single imperfect CRE and no AP2 sites, was regulated by forskolin. DNAse footprinting was used to demonstrate that bacterially expressed CRE-binding protein (CREB) binds to this CRE located 122 basepairs up-stream of the alpha inhibin gene transcriptional start site. To investigate further the role of this CRE in alpha inhibin gene expression, site-specific mutagenesis of the CRE was performed. The alpha inhibin promoter containing a mutated CRE was not regulated by forskolin in granulosa cells and did not bind the CREB protein. Interestingly, mutation of the CRE also substantially reduced basal expression of the alpha inhibin promoter. Lastly, a gel mobility shift assay was used to examine CRE-binding proteins from granulosa cell extracts. Granulosa cells contain a protein that specifically interacts with CRE-containing oligonucleotides or with the alpha inhibin promoter and that is recognized by antibodies against the CREB protein. Our results suggest that CREB or related transcription factors play an important role in both basal and cAMP-regulated expression of the alpha inhibin gene in ovarian granulosa cells.
Collapse
|
|
34 |
85 |
20
|
Chien W, Pei L. A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product. J Biol Chem 2000; 275:19422-7. [PMID: 10781616 DOI: 10.1074/jbc.m910105199] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pituitary tumor-transforming gene (PTTG) is a recently characterized oncogene whose expression product contains a transcriptional activation domain at the C terminus. To understand the mechanisms involved in PTTG biological functions, we used yeast two-hybrid screening to identify proteins that interact with PTTG. This study reports the isolation and characterization of a novel PTTG-binding factor (PBF). PBF contains an open reading frame of 179 amino acids with a predicted molecular mass of 22 kDa. In Northern blot analyses, PBF mRNA was ubiquitously expressed in human tissues. Glutathione S-transferase pull-down and co-immunoprecipitation assays demonstrate that PBF interacts specifically with PTTG under both in vitro and in vivo conditions. The PTTG binding domain in PBF was located within the C-terminal 30-amino acid region that contain a nuclear localization signal. Immunofluorescence and subcellular fractionation studies showed that PTTG is predominantly expressed in the cytoplasm with partial nuclear localization, whereas PBF is localized both in the cytoplasm and the nucleus. The interaction between PBF and PTTG facilitated PTTG translocation from the cytoplasm to the nucleus. Furthermore, PBF is required for transcriptional activation of basic fibroblast growth factor by PTTG. In summary, we have characterized a novel PTTG-binding protein that facilitates PTTG nuclear translocation and potentiates its transcriptional activation function.
Collapse
|
|
25 |
77 |
21
|
Wang M, Pei L, Fletcher PJ, Kapur S, Seeman P, Liu F. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization. Mol Brain 2010; 3:25. [PMID: 20813060 PMCID: PMC2942879 DOI: 10.1186/1756-6606-3-25] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 09/02/2010] [Indexed: 01/06/2023] Open
Abstract
Background All antipsychotics work via dopamine D2 receptors (D2Rs), suggesting a critical role for D2Rs in psychosis; however, there is little evidence for a change in receptor number or pharmacological nature of D2Rs. Recent data suggest that D2Rs form dimers in-vitro and in-vivo, and we hypothesized that schizophrenia, as well as preclinical models of schizophrenia, would demonstrate altered dimerization of D2Rs, even though the overall number of D2Rs was unaltered. Methods We measured the expression of D2Rs dimers and monomers in patients with schizophrenia using Western blots, and then in striatal tissue from rats exhibiting the amphetamine-induced sensitized state (AISS). We further examined the interaction between D2Rs and the dopamine transporter (DAT) by co-immunoprecipitation, and measured the expression of dopamine D2High receptors with ligand binding assays in rat striatum slices with or without acute amphetamine pre-treatment. Results We observed significantly enhanced expression of D2Rs dimers (277.7 ± 33.6%) and decreased expression of D2Rs monomers in post-mortem striatal tissue of schizophrenia patients. We found that amphetamine facilitated D2Rs dimerization in both the striatum of AISS rats and in rat striatal neurons. Furthermore, amphetamine-induced D2Rs dimerization may be associated with the D2R-DAT protein-protein interaction as an interfering peptide that disrupts the D2R-DAT coupling, blocked amphetamine-induced up-regulation of D2Rs dimerization. Conclusions Given the fact that amphetamine induces psychosis and that the AISS rat is a widely accepted animal model of psychosis, our data suggest that D2R dimerization may be important in the pathophysiology of schizophrenia and may be a promising new target for novel antipsychotic drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
69 |
22
|
Zou S, Li L, Pei L, Vukusic B, Van Tol HHM, Lee FJS, Wan Q, Liu F. Protein-protein coupling/uncoupling enables dopamine D2 receptor regulation of AMPA receptor-mediated excitotoxicity. J Neurosci 2006; 25:4385-95. [PMID: 15858065 PMCID: PMC6725121 DOI: 10.1523/jneurosci.5099-04.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
here is considerable evidence that dopamine D2 receptors can modulate AMPA receptor-mediated neurotoxicity. However, the molecular mechanism underlying this process remains essentially unclear. Here we report that D2 receptors inhibit AMPA-mediated neurotoxicity through two pathways: the activation of phosphoinositide-3 kinase (PI-3K) and downregulation of AMPA receptor plasma membrane expression, both involving a series of protein-protein coupling/uncoupling events. Agonist stimulation of D2 receptors promotes the formation of the direct protein-protein interaction between the third intracellular loop of the D2 receptor and the ATPase N-ethylmaleimide-sensitive factor (NSF) while uncoupling the NSF interaction with the carboxyl tail (CT) of the glutamate receptor GluR2 subunit of AMPA receptors. Previous studies have shown that full-length NSF directly couples to the GluR2CT and facilitates AMPA receptor plasma membrane expression. Furthermore, the CT region of GluR2 subunit is also responsible for several other intracellular protein couplings, including p85 subunit of PI-3K. Therefore, the direct coupling of D2-NSF and concomitant decrease in the NSF-GluR2 interaction results in a decrease of AMPA receptor membrane expression and an increase in the interaction between GluR2 and the p85 and subsequent activation of PI-3K. Disruption of the D2-NSF interaction abolished the ability of D2 receptor to attenuate AMPA-mediated neurotoxicity by blocking the D2 activation-induced changes in PI-3K activity and AMPA receptor plasma membrane expression. Furthermore, the D2-NSF-GluR2-p85 interactions are also responsible for the D2 inhibition of ischemia-induced cell death. These data may provide a new avenue to identify specific targets for therapeutics to modulate glutamate receptor-governed diseases, such as stroke.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
61 |
23
|
Pei L, Palma M, Nilsson M, Guss B, Flock JI. Functional studies of a fibrinogen binding protein from Staphylococcus epidermidis. Infect Immun 1999; 67:4525-30. [PMID: 10456895 PMCID: PMC96773 DOI: 10.1128/iai.67.9.4525-4530.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene encoding a fibrinogen binding protein from Staphylococcus epidermidis was previously cloned, and the nucleotide sequence was determined. A portion of the gene encompassing the fibrinogen binding domain has now been subcloned in an expression-fusion vector. The fusion protein can bind to fibrinogen in a capture enzyme-linked immunosorbent assay and can be purified by fibrinogen affinity chromatography. This protein can completely inhibit the adherence of S. epidermidis to immobilized fibrinogen, suggesting that the adherence of S. epidermidis to fibrinogen is mainly due to this protein. Antibodies against this fibrinogen binding protein were also found to efficiently block the adherence of S. epidermidis to immobilized fibrinogen. Despite homology with clumping factors A and B from S. aureus (cell surface-associated proteins binding to fibrinogen), binding involved the beta chain of fibrinogen rather than the gamma chain, as in clumping factor A.
Collapse
|
research-article |
26 |
57 |
24
|
Su TF, Zhao YQ, Zhang LH, Peng M, Wu CH, Pei L, Tian B, Zhang J, Shi J, Pan HL, Li M. Electroacupuncture reduces the expression of proinflammatory cytokines in inflamed skin tissues through activation of cannabinoid CB2 receptors. Eur J Pain 2011; 16:624-35. [DOI: 10.1002/j.1532-2149.2011.00055.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2011] [Indexed: 01/19/2023]
|
|
14 |
57 |
25
|
Pei L. Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J Biol Chem 2000; 275:31191-8. [PMID: 10906323 DOI: 10.1074/jbc.m002451200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pituitary tumor-transforming gene (PTTG) is a recently characterized oncogene that can act as a transcriptional activator. In this study, we have characterized the transactivation domain of PTTG. Transient transfection of fusion constructs containing GAL4 DNA-binding domain and different parts of PTTG indicated the transactivation domain of PTTG is located between amino acids 119 and 164. Mitogen-activated protein (MAP) kinase cascade is important in the regulation of cell growth, apoptosis, and differentiation. Therefore, we have explored the possibility that this kinase cascade plays a role in regulating PTTG transactivation function. Activation of the MAP kinase cascade by epidermal growth factor or an expression vector for a constitutively active form of the MAP kinase kinase (MEK1) led to stimulation of PTTG transactivation activity. We showed that PTTG is phosphorylated in vitro on Ser(162) by MAP kinase and that this phosphorylation site plays an essential role in PTTG transactivation function. We demonstrated that PTTG interacts directly with MEK1 through a putative SH3 domain-binding site located between amino acids 51 and 54 and that this interaction is crucial for PTTG transactivation function. In addition, we showed that activation of MAP kinase phosphorylation cascade resulted in nuclear translocation of PTTG. Together, our data establish that a growth factor-stimulated MAP kinase plays an important role in modulating PTTG function.
Collapse
|
|
25 |
53 |