1
|
Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, Umemoto N, Kuroyanagi J, Nishimura N, Tanaka T. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC PHYSIOLOGY 2010; 10:21. [PMID: 20961460 PMCID: PMC2972245 DOI: 10.1186/1472-6793-10-21] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/21/2010] [Indexed: 02/07/2023]
Abstract
Background Obesity is a multifactorial disorder influenced by genetic and environmental factors. Animal models of obesity are required to help us understand the signaling pathways underlying this condition. Zebrafish possess many structural and functional similarities with humans and have been used to model various human diseases, including a genetic model of obesity. The purpose of this study was to establish a zebrafish model of diet-induced obesity (DIO). Results Zebrafish were assigned into two dietary groups. One group of zebrafish was overfed with Artemia (60 mg dry weight/day/fish), a living prey consisting of a relatively high amount of fat. The other group of zebrafish was fed with Artemia sufficient to meet their energy requirements (5 mg dry weight/day/fish). Zebrafish were fed under these dietary protocols for 8 weeks. The zebrafish overfed with Artemia exhibited increased body mass index, which was calculated by dividing the body weight by the square of the body length, hypertriglyceridemia and hepatosteatosis, unlike the control zebrafish. Calorie restriction for 2 weeks was applied to zebrafish after the 8-week overfeeding period. The increased body weight and plasma triglyceride level were improved by calorie restriction. We also performed comparative transcriptome analysis of visceral adipose tissue from DIO zebrafish, DIO rats, DIO mice and obese humans. This analysis revealed that obese zebrafish and mammals share common pathophysiological pathways related to the coagulation cascade and lipid metabolism. Furthermore, several regulators were identified in zebrafish and mammals, including APOH, IL-6 and IL-1β in the coagulation cascade, and SREBF1, PPARα/γ, NR1H3 and LEP in lipid metabolism. Conclusion We established a zebrafish model of DIO that shared common pathophysiological pathways with mammalian obesity. The DIO zebrafish can be used to identify putative pharmacological targets and to test novel drugs for the treatment of human obesity.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
278 |
2
|
Bhagat J, Zang L, Nishimura N, Shimada Y. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138707. [PMID: 32361115 DOI: 10.1016/j.scitotenv.2020.138707] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have received global concern due to its widespread contamination, ingestion in aquatic organisms and the ability to cross the biological barrier. However, our understanding of its bioaccumulation, toxicity, and interaction with other environmental pollutants is limited. Zebrafish is increasingly used to study the bioaccumulation and toxicity of environmental contaminants because of their small size, ease of breed, short life cycle and inexpensive maintenance. The transparent nature of zebrafish embryo and larvae provides excellent experimental advantages over other model organisms in studying the localization of fluorescent-labeled MPs/NPs particles. Zebrafish outplays the traditional rodent models with the availability of transgenic lines, high-throughput sequencing and genetic similarities to humans. All these characteristics provide an unprecedented opportunity to investigate the toxicity of MPs/NPs and associated contaminants. This review summarizes the existing literature on MPs/NPs research in zebrafish and suggests a path forward for future research.
Collapse
|
Review |
5 |
256 |
3
|
Zang L, Maddison LA, Chen W. Zebrafish as a Model for Obesity and Diabetes. Front Cell Dev Biol 2018; 6:91. [PMID: 30177968 PMCID: PMC6110173 DOI: 10.3389/fcell.2018.00091] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity and diabetes now considered global epidemics. The prevalence rates of diabetes are increasing in parallel with the rates of obesity and the strong connection between these two diseases has been coined as “diabesity.” The health risks of overweight or obesity include Type 2 diabetes mellitus (T2DM), coronary heart disease and cancer of numerous organs. Both obesity and diabetes are complex diseases that involve the interaction of genetics and environmental factors. The underlying pathogenesis of obesity and diabetes are not well understood and further research is needed for pharmacological and surgical management. Consequently, the use of animal models of obesity and/or diabetes is important for both improving the understanding of these diseases and to identify and develop effective treatments. Zebrafish is an attractive model system for studying metabolic diseases because of the functional conservation in lipid metabolism, adipose biology, pancreas structure, and glucose homeostasis. It is also suited for identification of novel targets associated with the risk and treatment of obesity and diabetes in humans. In this review, we highlight studies using zebrafish to model metabolic diseases, and discuss the advantages and disadvantages of studying pathologies associated with obesity and diabetes in zebrafish.
Collapse
|
Review |
7 |
165 |
4
|
Zang L, Shimada Y, Nishimura N. Development of a Novel Zebrafish Model for Type 2 Diabetes Mellitus. Sci Rep 2017; 7:1461. [PMID: 28469250 PMCID: PMC5431185 DOI: 10.1038/s41598-017-01432-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/30/2017] [Indexed: 02/02/2023] Open
Abstract
Obesity is a major cause of type 2 diabetes mellitus (T2DM) in mammals. We have previously established a zebrafish model of diet-induced obesity (DIO zebrafish) by overfeeding Artemia. Here we created DIO zebrafish using a different method to induce T2DM. Zebrafish were overfed a commercially available fish food using an automated feeding system. We monitored the fasting blood glucose levels in the normal-fed group (one feed/day) and overfed group (six feeds/day) over an 8-week period. The fasting blood glucose level was significantly increased in DIO zebrafish compared with that of normal-fed zebrafish. Intraperitoneal and oral glucose tolerance tests showed impaired glucose tolerance by overfeeding. Insulin production, which was determined indirectly by measuring the EGFP signal strength in overfed Tg(−1.0ins:EGFP)sc1 zebrafish, was increased in DIO zebrafish. The anti-diabetic drugs metformin and glimepiride ameliorated hyperglycaemia in the overfed group, suggesting that this zebrafish can be used as a model of human T2DM. Finally, we conducted RNA deep sequencing and found that the gene expression profiling of liver-pancreas revealed pathways common to human T2DM. In summary, we developed a zebrafish model of T2DM that shows promise as a platform for mechanistic and therapeutic studies of diet-induced glucose intolerance and insulin resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
99 |
5
|
Zang L, Macyk W, Lange C, Maier WF, Antonius C, Meissner D, Kisch H. Visible-light detoxification and charge generation by transition metal chloride modified titania. Chemistry 2000; 6:379-84. [PMID: 11931119 DOI: 10.1002/(sici)1521-3765(20000117)6:2<379::aid-chem379>3.0.co;2-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amorphous microporous metal oxides of titanium (AMM-Ti) modified with chlorides of PtIV, IrIV, RhIII, AuIII, PdII, CoII, and NiII have been prepared by the sol-gel method and characterized by various surface analytical methods. These hybrid AMM-Ti powders are catalysts for the photodegradation of 4-chlorophenol (4-CP) in aqueous solution when illuminated with visible (lambda > or = 400 or 455 nm) or UV (lambda > or = 335 nm) light. The initial rate depends on the dopant level and is highest at 3.0% Pt in the case of PtIV/AMM-Ti. When employed in a photoelectrochemical cell, the activity spectrum of the photocurrent extends downward to about 600 nm, as does the photodegradation of 4-CP. It is suggested that the metal salt acts as a redox-active chromophore, transmitting the photogenerated charges to the amorphous matrix.
Collapse
|
|
25 |
96 |
6
|
Tainaka T, Shimada Y, Kuroyanagi J, Zang L, Oka T, Nishimura Y, Nishimura N, Tanaka T. Transcriptome analysis of anti-fatty liver action by Campari tomato using a zebrafish diet-induced obesity model. Nutr Metab (Lond) 2011; 8:88. [PMID: 22152339 PMCID: PMC3275548 DOI: 10.1186/1743-7075-8-88] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/13/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND High dietary intake of vegetable products is beneficial against obesity and its related diseases such as dyslipidemia, nonalcoholic fatty liver disease, and cancer. We previously developed a diet-induced obesity model of zebrafish (DIO-zebrafish) that develops visceral adiposity, dyslipidemia, and liver steatosis. Zebrafish is a polyphagous animal; thus we hypothesized that DIO-zebrafish could be used for transcriptome analysis of anti-obesity effects of vegetables. RESULTS Each vegetable exhibited different effects against obesity. We focused on "Campari" tomato, which suppressed increase of body weight, plasma TG, and lipid droplets in livers of DIO-zebrafish. Campari tomato decreased srebf1 mRNA by increase of foxo1 gene expression, which may depend on high contents of β-carotene in this strain. CONCLUSIONS Campari tomato ameliorates diet-induced obesity, especially dyslipidemia and liver steatosis via downregulation of gene expression related to lipogenesis. DIO-zebrafish can discriminate the anti-obesity effects of different strains of vegetables, and will become a powerful tool to assess outcomes and find novel mechanisms of anti-obesity effects of natural products.
Collapse
|
Journal Article |
14 |
56 |
7
|
Zang L, Shimada Y, Nishimura Y, Tanaka T, Nishimura N. A novel, reliable method for repeated blood collection from aquarium fish. Zebrafish 2013; 10:425-32. [PMID: 23668933 DOI: 10.1089/zeb.2012.0862] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Collecting blood from laboratory animals is necessary for a wide variety of scientific studies, but the small size of the zebrafish makes this common procedure challenging. We developed a novel, minimally invasive method to collect repeated blood samples from adult zebrafish. This method minimizes trauma to the zebrafish and yields a low mortality rate of 2.3%. The maximum volume of blood that can be collected using this technique is approximately 2% of body weight. To avoid blood loss anemia and hemorrhagic death, we recommend that the total blood sample volume collected over repeat bleeds should be ≤0.4% of body weight per week, and ≤1% of body weight per 2 weeks. Additionally, we applied this method to the study of zebrafish glycolipid metabolism by measuring blood glucose and plasma triacylglyceride levels weekly over a 5-week period in both control and overfed zebrafish. The overfed fish developed significantly increased fasting blood glucose levels compared with normally fed fish. This new method of blood collection is essential for zebrafish or other small aquarium fish research requiring repeated blood samples, and increases the utility of the zebrafish as a model animal in hematological studies of human diseases.
Collapse
|
Journal Article |
12 |
56 |
8
|
Shi X, Ding M, Ye J, Wang S, Leonard SS, Zang L, Castranova V, Vallyathan V, Chiu A, Dalal N, Liu K. Cr(IV) causes activation of nuclear transcription factor-kappa B, DNA strand breaks and dG hydroxylation via free radical reactions. J Inorg Biochem 1999; 75:37-44. [PMID: 10402675 DOI: 10.1016/s0162-0134(99)00030-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Electrophoretic mobility shift, DNA strand breakage assays and electron spin resonance (ESR) spin trapping were used to investigate the activation of nuclear transcription factor (NF)-kappa B, DNA strand breakage and 2'-deoxyguanosine hydroxylation induced by Cr(IV), as well the role of free radical reactions in these processes. Incubation of synthesized Cr(IV)-glutathione complex with cultured Jurkat cells resulted in activation of DNA binding activity of NF-kappa B. Cr(VI) is also able to induce NF-kappa B activation through Cr(V) and Cr(IV) intermediates generated during the reduction of Cr(VI) by the cells. Cr(III) did not cause observable NF-kappa B activation due to its inability to cross cell membranes. Cr(IV)-induced NF-kappa B activation is dose-dependent. Catalase inhibited the activation while superoxide dismutase enhanced it. The metal chelator, deferoxamine, and hydroxyl (.OH) radical scavengers, sodium formate and aspirin, also inhibited the NF-kappa B activation. Electrophoretic assays using lambda Hind III linear DNA showed that, in the presence of H2O2, Cr(IV) is capable of causing DNA strand breaks. Deferoxamine, sodium formate and aspirin inhibited the DNA strand breaks. HPLC measurements also show that .OH radical generated by the Cr(IV)-mediated reaction with H2O2 was capable of causing 2'-deoxyguanosine (dG) hydroxylation to generate 8-hydroxyguanosine (8-OHdG). The relative magnitude of 8-OHdG formation correlated with the generation of .OH radicals. ESR spin trapping measurements showed that reaction of Cr(IV) with H2O2 generated .OH radicals, which were inhibited by deferoxamine, sodium formate and aspirin. The results show that Cr(IV) can cause NF-kappa B activation, DNA strand breaks and dG hydroxylation through .OH radical-initiated reactions. This reactive chromium intermediate may play an important role in the mechanism of Cr(VI)-induced carcinogenesis. The results also suggest that the Cr(IV)-glutathione complex may be used as a model compound to study the role of Cr(IV) in Cr(VI) carcinogenicity.
Collapse
|
|
26 |
54 |
9
|
Bhagat J, Zang L, Nakayama H, Nishimura N, Shimada Y. Effects of nanoplastic on toxicity of azole fungicides (ketoconazole and fluconazole) in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149463. [PMID: 34399343 DOI: 10.1016/j.scitotenv.2021.149463] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/17/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The ubiquity of nanoplastics (NPs) raises concerns about their interactions and combined toxicity with other common contaminants. Although azoles are present throughout the natural environment, their interactions with NP are not well known. We investigated the effects of polystyrene (PS) NP on the toxicity of ketoconazole (KCZ) and fluconazole (FCZ) in zebrafish embryos using the developmental toxicity, oxidative-stress-related biochemical parameters, and expression of genes related to neurotoxicity (ache), cardiotoxicity (gata4, bmp4), inflammation (il1b), oxidative stress (sod1, sod2, cyp1a), and apoptosis (bax, bcl2). Co-exposure to NP (1 mg/L) and KCZ/FCZ (1 mg/L) for 96 h reduced the hatching rate, survival rate, and heart rate and increased the malformation rate and catalase activity. The bax/bcl2 ratio, an apoptosis indicator, was higher after NP, KCZ, or FCZ treatment. However, the bax/bcl2 ratio after exposure to NP + KCZ or NP + FCZ was much higher than that after single exposure. Overall, the results indicated that NP aggravated the toxicity of azole by significantly increasing the reactive oxygen species, lipid peroxidation and altering the expression of oxidative-stress- and apoptosis-related genes. The interactive toxicity of PS NP with KCZ/FCZ reported in this study emphasises the need for caution in the release of azole fungicides in the environment.
Collapse
|
|
4 |
42 |
10
|
Zang L, Shimada Y, Nishimura Y, Tanaka T, Nishimura N. Repeated Blood Collection for Blood Tests in Adult Zebrafish. J Vis Exp 2015:e53272. [PMID: 26383512 DOI: 10.3791/53272] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Repeated blood collection is one of the most common techniques performed on laboratory animals. However, a non-lethal protocol for blood collection from zebrafish has not been established. The previous methods for blood collection from zebrafish are lethal, such as lateral incision, decapitation and tail ablation. Thus we have developed a novel "repeated" blood collection method, and present here a detailed protocol outlining this procedure. This method is minimally invasive and results in a very low mortality rate (2.3%) for zebrafish, thus enabling repeated blood sampling from the same individual. The maximum volume of blood sampling is dependent on body weight of the fish. The volume for repeated blood sampling at intervals should be ≤0.4% of body weight every week or ≤1% every 2 weeks, which were evaluated by measurements of blood hemoglobin. Additionally, hemoglobin, fasting blood glucose, plasma triacylglycerol (TG) and total cholesterol levels in male and female adult zebrafish were measured. We also applied this method to investigate the dysregulation of glucose metabolism in diet-induced obesity. This blood collection method will allow many applications, including glucose and lipid metabolism and hematological studies, which will increase the use of zebrafish as a human disease model organism.
Collapse
|
Video-Audio Media |
10 |
39 |
11
|
Yang B, Maddison LA, Zaborska KE, Dai C, Yin L, Tang Z, Zang L, Jacobson DA, Powers AC, Chen W. RIPK3-mediated inflammation is a conserved β cell response to ER stress. SCIENCE ADVANCES 2020; 6:eabd7272. [PMID: 33355143 PMCID: PMC11206196 DOI: 10.1126/sciadv.abd7272] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Islet inflammation is an important etiopathology of type 2 diabetes; however, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered RIPK3-dependent IL1B induction in β cells as an instigator of islet inflammation. In cultured β cells, ER stress activated RIPK3, leading to NF-kB-mediated proinflammatory gene expression. In a zebrafish muscle insulin resistance model, overnutrition caused islet inflammation, β cell dysfunction, and loss in an ER stress-, ripk3-, and il1b-dependent manner. In mouse islets, high-fat diet triggered the IL1B expression in β cells before macrophage recruitment in vivo, and RIPK3 inhibition suppressed palmitate-induced β cell dysfunction and Il1b expression in vitro. Furthermore, in human islets grafted in hyperglycemic mice, a marked increase in ER stress, RIPK3, and NF-kB activation in β cells were accompanied with murine macrophage infiltration. Thus, RIPK3-mediated induction of proinflammatory mediators is a conserved, previously unrecognized β cell response to metabolic stress and a mediator of the ensuing islet inflammation.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
33 |
12
|
Han WD, Zhao YL, Meng YG, Zang L, Wu ZQ, Li Q, Si YL, Huang K, Ba JM, Morinaga H, Nomura M, Mu YM. Estrogenically regulated LRP16 interacts with estrogen receptor alpha and enhances the receptor's transcriptional activity. Endocr Relat Cancer 2007; 14:741-53. [PMID: 17914104 DOI: 10.1677/erc-06-0082] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that leukemia related protein 16 (LRP16) is estrogenically regulated and that it can stimulate the proliferation of MCF-7 breast cancer cells, but there are no data on the mechanism of this pathway. Here, we demonstrate that the LRP16 expression is estrogen dependent in several epithelium-derived tumor cells. In addition, the suppression of the endogenous LRP16 in estrogen receptor alpha (ERalpha)-positive MCF-7 cells not only inhibits cells growth, but also significantly attenuates the cell line's estrogen-responsive proliferation ability. However, ectopic expression of LRP16 in ERalpha-negative MDA-MB-231 cells has no effect on proliferation. These data suggest the involvement of LRP16 in estrogen signaling. We also provide novel evidence by both ectopic expression and small interfering RNA knockdown approaches that LRP16 enhances ERalpha-mediated transcription activity. In stably LRP16-inhibitory MCF-7 cells, the estrogen-induced upregulation of several well-known ERalpha target genes including cyclin D1 and c-myc is obviously impaired. Results from glutathione S-transferase pull-down and coimmunoprecipitation assays revealed that LRP16 physically interacts with ERalpha in a manner that is estrogen independent but is enhanced by estrogen. Furthermore, a mammalian two-hybrid assay indicated that the binding region of LRP16 localizes to the A/B activation function 1 domain of ERalpha. Taken together, these results present new data supporting a role for estrogenically regulated LRP16 as an ERalpha coactivator, providing a positive feedback regulatory loop for ERalpha signal transduction.
Collapse
|
|
18 |
33 |
13
|
Zang L, Morikane D, Shimada Y, Tanaka T, Nishimura N. A novel protocol for the oral administration of test chemicals to adult zebrafish. Zebrafish 2012; 8:203-10. [PMID: 22181663 DOI: 10.1089/zeb.2011.0726] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A novel protocol using gluten as a carrier material was developed to administer chemicals to adult zebrafish, per os (p.o.). To evaluate the capacity of gluten to retain chemicals, we prepared gluten granules containing eight types of chemicals with different Log P(ow) values and immersed them in water. Less than 5% of chemicals were eluted from gluten granules within 5 min, a standard feeding time for zebrafish. Although retention capability was dependent on the hydrophilicity and hydrophobicity of the chemicals, the gluten granules retained 62%-99% of the total amount of chemical, even after immersion in water for 60 min. Vital staining dyes, such as 4-Di-2-Asp and Nile red, administered p.o., were delivered into the gastrointestinal tract where they were digested and secreted. Subsequently, we conducted a pharmacokinetic study of oral administration of felbinac and confirmed that it was successfully delivered into the blood of zebrafish. This indicates that chemicals administered using gluten granules are satisfactorily absorbed from the digestive tract and delivered into the metabolic system. The absorption, distribution, and pharmacokinetics of chemicals given by oral administration were also compared with those of chemicals given by alternative administration routes such as intraperitoneal injection and exposure to chemical solution.
Collapse
|
Journal Article |
13 |
32 |
14
|
Hirano M, Zang L, Oka T, Ito Y, Shimada Y, Nishimura Y, Tanaka T. Novel reciprocal regulation of cAMP signaling and apoptosis by orphan G-protein-coupled receptor GPRC5A gene expression. Biochem Biophys Res Commun 2006; 351:185-91. [PMID: 17055459 DOI: 10.1016/j.bbrc.2006.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 10/05/2006] [Indexed: 11/24/2022]
Abstract
GPRC5A is a member of G-protein-coupled receptors, which was originally identified as an all-trans-retinoic acid-induced gene. Although recent studies reported that this gene was highly expressed in the cancer cell lines and that GPRC5A might positively regulate cell proliferation, its mechanism remains unknown. We investigated the upstream and downstream signaling of GPRC5A and its biological function, and found that cAMP signaling is the novel GPRC5A induction pathway. When GPRC5A gene was overexpressed, intracellular cAMP concentration was decreased, and Gsalpha gene expression was downregulated. On the other hand, RNA interference of GPRC5A increased mRNA levels of Gsalpha and intracellular cAMP, reduced cell number, and induced apoptosis. Conversely, cell number was increased by GPRC5A overexpression. We first report the novel negative feedback model of cAMP signaling through GPRC5A gene expression. This evidence explains one of the mechanisms of the GPRC5A-regulated cell growth in some cancer cell lines.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
30 |
15
|
Zang L, Shimada Y, Kawajiri J, Tanaka T, Nishimura N. Effects of Yuzu (Citrus junos Siebold ex Tanaka) peel on the diet-induced obesity in a zebrafish model. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
|
11 |
27 |
16
|
Nakayama H, Shimada Y, Zang L, Terasawa M, Nishiura K, Matsuda K, Toombs C, Langdon C, Nishimura N. Novel Anti-Obesity Properties of Palmaria mollis in Zebrafish and Mouse Models. Nutrients 2018; 10:nu10101401. [PMID: 30279329 PMCID: PMC6213011 DOI: 10.3390/nu10101401] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
(1) Background: The red seaweed Palmaria mollis (PM), which has a bacon-like taste, is increasingly being included in Western diets. In this study, we evaluate anti-obesity effects of PM using diet-induced obese (DIO) zebrafish and mice models. (2) Methods: We fed PM-containing feed to DIO-zebrafish and mice, and evaluated the anti-obesity effects We also analyzed gene expression changes in their liver and visceral adipose tissues (VAT). (3) Results: PM ameliorated several anti-obesity traits in both animals, including dyslipidaemia, hepatic steatosis, and visceral adiposity. In liver tissues of DIO-zebrafish and mice, PM upregulated gene expressions involved in peroxisome proliferator-activated receptor alpha (PPARA) pathways, and downregulated peroxisome proliferator-activated receptor gamma (PPARG) pathways, suggesting that the lipid-lowering effect of PM might be caused by activation of beta-oxidation and inhibition of lipogenesis. In VAT, PM downregulated genes involved in early and late adipocyte differentiation in zebrafish, but not in mice. (4) Conclusions: We have demonstrated that PM can prevent hepatic steatosis and visceral adiposity for the first time. Dietary supplementation of PM as a functional food may be suitable for obesity prevention and reduction in the prevalence of obesity-related diseases.
Collapse
|
Journal Article |
7 |
23 |
17
|
Okazaki F, Zang L, Nakayama H, Chen Z, Gao ZJ, Chiba H, Hui SP, Aoki T, Nishimura N, Shimada Y. Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish. Sci Rep 2019; 9:867. [PMID: 30696861 PMCID: PMC6351536 DOI: 10.1038/s41598-018-37242-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
Understanding the gut microbiota in metabolic disorders, including type 2 diabetes mellitus (T2DM), is now gaining importance due to its potential role in disease risk and progression. We previously established a zebrafish model of T2DM, which shows glucose intolerance with insulin resistance and responds to anti-diabetic drugs. In this study, we analysed the gut microbiota of T2DM zebrafish by deep sequencing the 16S rRNA V3-V4 hypervariable regions, and imputed a functional profile using predictive metagenomic tools. While control and T2DM zebrafish were fed with the same kind of feed, the gut microbiota in T2DM group was less diverse than that of the control. Predictive metagenomics profiling using PICRUSt revealed functional alternation of the KEGG pathways in T2DM zebrafish. Several amino acid metabolism pathways (arginine, proline, and phenylalanine) were downregulated in the T2DM group, similar to what has been previously reported in humans. In summary, we profiled the gut microbiome in T2DM zebrafish, which revealed functional similarities in gut bacterial environments between these zebrafish and T2DM affected humans. T2DM zebrafish can become an alternative model organism to study host-bacterial interactions in human obesity and related diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
21 |
18
|
Zang L, Shimada Y, Nakayama H, Kim Y, Chu DC, Juneja LR, Kuroyanagi J, Nishimura N. RNA-seq Based Transcriptome Analysis of the Anti-Obesity Effect of Green Tea Extract Using Zebrafish Obesity Models. Molecules 2019; 24:molecules24183256. [PMID: 31500159 PMCID: PMC6767142 DOI: 10.3390/molecules24183256] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
Green tea is a popular beverage that is rich in polyphenolic compounds such as catechins. Its major content, (-)-epigallocatechin-3-gallate, has been shown to have beneficial effects on several diseases including cancer, metabolic syndrome, cardiovascular diseases, and neurodegenerative diseases. The aim of this study was to assess the anti-obesity effects and the underlying molecular mechanisms of green tea extract (GTE) using zebrafish larva and adult obesity models. We administered 100 μg/mL GTE to zebrafish larvae and performed a short-term obesogenic test. GTE significantly decreased the visceral adipose tissue volume induced by a high-fat diet. Oral administration (250 µg/g body weight/day) of GTE to adult diet-induced obese zebrafish also significantly reduced their visceral adipose tissue volume, with a reduction of plasma triglyceride and total cholesterol levels. To investigate the molecular mechanism underlying the GTE effects, we conducted RNA sequencing using liver tissues of adult zebrafish and found that GTE may ameliorate the obese phenotypes via the activation of Wnt/β-catenin and adenosine monophosphate-activated protein kinase (AMPK) pathway signaling. In addition, the comparative transcriptome analysis revealed that zebrafish and mammals may share a common molecular response to GTE. Our findings suggest that daily consumption of green tea may be beneficial for the prevention and treatment of obesity.
Collapse
|
Journal Article |
6 |
20 |
19
|
Zang L, Liu Y, Geng J, Luo Y, Bian F, Lv X, Yang J, Liu J, Peng Y, Li Y, Sun Y, Bosch-Traberg H, Mu Y. Efficacy and safety of liraglutide versus sitagliptin, both in combination with metformin, in Chinese patients with type 2 diabetes: a 26-week, open-label, randomized, active comparator clinical trial. Diabetes Obes Metab 2016; 18:803-11. [PMID: 27060930 PMCID: PMC5084818 DOI: 10.1111/dom.12674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 01/03/2023]
Abstract
AIMS To compare the efficacy and safety of liraglutide versus sitagliptin as add-on to metformin after 26 weeks of treatment in Chinese patients with type 2 diabetes mellitus (T2DM). METHODS This 26-week open-label, active comparator trial (NCT02008682) randomized patients (aged 18-80 years) with T2DM inadequately controlled with metformin [glycated haemoglobin (HbA1c) 7.0-10.0% (53-86 mmol/mol)] 1 : 1 to once-daily subcutaneously administered liraglutide 1.8 mg (n = 184) or once-daily oral sitagliptin 100 mg (n = 184), both as add-on to metformin. The primary endpoint was change in HbA1c from baseline to week 26. RESULTS Liraglutide was superior to sitagliptin in reducing HbA1c from baseline [8.1% (65 mmol/mol)] to 26 weeks, as evidenced by estimated mean HbA1c change of -1.65% (-18.07 mmol/mol) versus -0.98% (-10.72 mmol/mol), respectively [estimated treatment difference for liraglutide vs sitagliptin of -0.67% (95% CI -0.86, -0.48) or -7.35 mmol/mol (95% CI -9.43; -5.26); p < 0.0001]. More patients receiving liraglutide (76.5%) than sitagliptin (52.6%) achieved the HbA1c target of <7.0% (53 mmol/mol) at week 26 [odds ratio 3.65 (95% CI 2.18, 6.12); p < 0.0001]. Reductions in fasting plasma glucose, 7-point self-measured plasma glucose and body weight were greater with liraglutide than with sitagliptin (p < 0.0001 for all). More patients experienced nausea (14.8% vs 0.5%), diarrhoea (8.2% vs 2.2%) and decreased appetite (10.9% vs 0.5%) with liraglutide than sitagliptin. Two hypoglycaemic episodes were confirmed for liraglutide and one for sitagliptin; none were severe or nocturnal. CONCLUSIONS Liraglutide provided better glycaemic control and greater body weight reduction than sitagliptin when administered as add-on to metformin. More patients had nausea, diarrhoea and decreased appetite with liraglutide versus sitagliptin.
Collapse
|
Comparative Study |
9 |
19 |
20
|
Ma W, Zhao P, Zang L, Zhang K, Liao H, Hu Z. CircTP53 promotes the proliferation of thyroid cancer via targeting miR-1233-3p/MDM2 axis. J Endocrinol Invest 2021; 44:353-362. [PMID: 32500444 DOI: 10.1007/s40618-020-01317-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Follicular cells give rise to thyroid cancer. Worldwide thyroid cancer incidence continues to rise in recent decades but the mortality rate remains at a stable level. The discovery of novel molecular mechanisms in the pathogenesis of thyroid cancer will promote new diagnostic or therapeutic strategies. Circular RNA (circRNA) is a type of noncoding RNA which is characterized by the covalently closed loop and non-protein coding capacity. The abnormal expression of circRNAs is an important part during the pathogenesis and development of thyroid cancer. CircTP53 is a novel circRNA, and we aimed to investigate its function in the pathogenesis of thyroid cancer and to further demonstrate the underlying molecular mechanism. METHODS The levels of circTP53, miR-1233-3p, and other relative mRNA were analyzed by qRT-PCR. Protein levels were shown by Western blot. RNA-pulldown assay and luciferase assay were employed to examine the interaction between circTP53 and miR-1233-3p. Cell proliferation was analyzed by the MTT assay. RESULTS CircTP53 was a circRNA highly expressed in thyroid cancer tissues. CircTP53 promoted cell proliferation and cell viability of TPC-1 cells. Knockdown of circTP53 inhibited the expression of Mouse double minute 2 (MDM2) and increased the protein level of p53. CircTP53 acted as a target of miR-1233-3p to increase MDM2 expression. p53 expression in thyroid cancer tissue exhibited a negative correlation with circTP53 expression. CONCLUSION In thyroid cancer, overexpressed circTP53 decreased the protein level of p53 via targeting miR-1233-3p/MDM2 axis and promoted cancer cell proliferation.
Collapse
|
|
4 |
17 |
21
|
Monma Y, Shimada Y, Nakayama H, Zang L, Nishimura N, Tanaka T. Aging-associated microstructural deterioration of vertebra in zebrafish. Bone Rep 2019; 11:100215. [PMID: 31388517 PMCID: PMC6676153 DOI: 10.1016/j.bonr.2019.100215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/07/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Zebrafish, a small teleost fish, is currently emerging as an animal model of local and systemic aging. In this study, we assessed age-related degenerative changes in the vertebral bone of zebrafish (3–12 month-post-fertilisation [mpf]) using micro-CT scanning. The bone volume (BV) of the trabecular bone in the male and female fish peaked at 6 mpf and reduced with age. In contrast to BV, bone mineral density and tissue volume did not change after 6 mpf, implying that the total mineral volume in the trabecular area remains unchanged, retaining the strength of vertebra. In addition, we performed micro-structural analysis of the trabecular thickness, trabecular number, and star volume of the tissue space and trabeculae, and found that the size of the trabecular bone reduced with age. Furthermore, aged zebrafish (45 mpf) exhibited ectopic ossification inside or outside of their vertebrae. In summary, we analysed bone structural parameters in adult zebrafish vertebra, which are also used in humans, and demonstrated that aged zebrafish have deteriorated microarchitecture (trabecular thickness and number, tissue space star volume and trabecular star volume) with reduction of trabecular bones, similar to that observed during aging in humans. Zebrafish can be utilised as an animal model to understand the pathology of human bone aging, and the discovery of new therapeutic agents against age-related osteoporosis.
We analysed bone structural parameters in adult zebrafish vertebrae. Microstructural changes in aged-zebrafish are similar to those in humans. Aged zebrafish exhibited ectopic ossification inside or outside of their vertebrae.
Collapse
Key Words
- Aging
- BMC, bone mineral content
- BMD, bone mineral density
- BV, bone volume
- CT, Computed Tomography
- FCV, first caudal vertebra
- Micro CT
- Osteoporosis
- TV, tissue volume
- Tb, trabecular bone
- Tb.N, trabecular number
- Tb.Th, trabecular thickness
- Teleost
- V*m, tissue space star volume
- V*tr, trabecular star volume
- mpf, month-post-fertilisation
Collapse
|
Journal Article |
6 |
16 |
22
|
Watcharanurak K, Zang L, Nishikawa M, Yoshinaga K, Yamamoto Y, Takahashi Y, Ando M, Saito K, Watanabe Y, Takakura Y. Effects of upregulated indoleamine 2, 3-dioxygenase 1 by interferon γ gene transfer on interferon γ-mediated antitumor activity. Gene Ther 2014; 21:794-801. [PMID: 24919418 DOI: 10.1038/gt.2014.54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 02/07/2023]
Abstract
Interferon γ (IFN-γ), an anticancer agent, is a strong inducer of indoleamine 2,3-dioxygenase 1 (IDO1), which is a tryptophan-metabolizing enzyme involved in the induction of tumor immune tolerance. In this study, we investigated the IDO1 expression in organs after IFN-γ gene transfer to mice. IFN-γ gene transfer greatly increased the mRNA expression of IDO1 in many tissues with the highest in the liver. This upregulation was associated with reduced L-tryptophan levels and increased L-kynurenine levels in serum, indicating that IFN-γ gene transfer increased the IDO activity. Then, Lewis lung carcinoma (LLC) tumor-bearing wild-type and IDO1-knockout (IDO1 KO) mice were used to investigate the effects of IDO1 on the antitumor activity of IFN-γ. IFN-γ gene transfer significantly retarded the tumor growth in both strains without any significant difference in tumor size between the two groups. By contrast, the IDO1 activity was increased only in the wild-type mice by IFN-γ gene transfer, suggesting that cells other than LLC cells, such as tumor stromal cells, are the major contributors of IDO1 expression in LLC tumor. Taken together, these results imply that IFN-γ gene transfer mediated IDO1 upregulation in cells other than LLC cells has hardly any effect on the antitumor activity of IFN-γ.
Collapse
|
Journal Article |
11 |
15 |
23
|
Tanaka T, Oka T, Shimada Y, Umemoto N, Kuroyanagi J, Sakamoto C, Zang L, Wang Z, Nishimura Y. Pharmacogenomics of cardiovascular pharmacology: pharmacogenomic network of cardiovascular disease models. J Pharmacol Sci 2008; 107:8-14. [PMID: 18490853 DOI: 10.1254/jphs.08r03fm] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The most important strategies in pharmacogenomics are gene expression profiling and the network analysis of human disease models. We have previously discovered novel drug target candidates in cardiovascular diseases through investigations of these pharmacogenomics. The significant induction of S100C mRNA and protein expression was detected in the rat pulmonary hypertension and myocardial infarction model. We also found increased taurine in hypoxia, a calcium-associated cytoprotective compound, to suppress the hypoxia-induced S100C gene expression and vascular remodeling. These results suggest that S100C may be one of the potential novel drug targets in hypoxic or ischemic diseases. Delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage causes cerebral ischemia and infarction. Using a DNA microarray, a prominant upregulation of heme oxygenase-1 (HO-1) and heat shock protein (HSP) 72 mRNAs were observed in the basilar artery of a murine vasospasm model. Antisense HO-1 and HSP 72 oligodeoxynucleotide inhibited HO-1 and HSP 72 induction, respectively, and significantly aggravated cerebral vasospasm. Moreover, we have also developed a unique heart failure model in zebrafish and identified several candidate genes as novel drug targets. These results suggest that pharmacogenomic network analysis has the potential to bridge the gap between in vitro and in vivo studies and could define strategies for identifying novel drug targets in various cardiovascular diseases.
Collapse
|
Review |
17 |
15 |
24
|
Zang L, Baharlooeian M, Terasawa M, Shimada Y, Nishimura N. Beneficial effects of seaweed-derived components on metabolic syndrome via gut microbiota modulation. Front Nutr 2023; 10:1173225. [PMID: 37396125 PMCID: PMC10311452 DOI: 10.3389/fnut.2023.1173225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolic syndrome comprises a group of conditions that collectively increase the risk of abdominal obesity, diabetes, atherosclerosis, cardiovascular diseases, and cancer. Gut microbiota is involved in the pathogenesis of metabolic syndrome, and microbial diversity and function are strongly affected by diet. In recent years, epidemiological evidence has shown that the dietary intake of seaweed can prevent metabolic syndrome via gut microbiota modulation. In this review, we summarize the current in vivo studies that have reported the prevention and treatment of metabolic syndrome via seaweed-derived components by regulating the gut microbiota and the production of short-chain fatty acids. Among the surveyed related articles, animal studies revealed that these bioactive components mainly modulate the gut microbiota by reversing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria, such as Bacteroides, Akkermansia, Lactobacillus, or decreasing the abundance of harmful bacteria, such as Lachnospiraceae, Desulfovibrio, Lachnoclostridium. The regulated microbiota is thought to affect host health by improving gut barrier functions, reducing LPS-induced inflammation or oxidative stress, and increasing bile acid production. Furthermore, these compounds increase the production of short-chain fatty acids and influence glucose and lipid metabolism. Thus, the interaction between the gut microbiota and seaweed-derived bioactive components plays a critical regulatory role in human health, and these compounds have the potential to be used for drug development. However, further animal studies and human clinical trials are required to confirm the functional roles and mechanisms of these components in balancing the gut microbiota and managing host health.
Collapse
|
Review |
2 |
13 |
25
|
Bhagat J, Zang L, Kaneco S, Nishimura N, Shimada Y. Combined exposure to nanoplastics and metal oxide nanoparticles inhibits efflux pumps and causes oxidative stress in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155436. [PMID: 35461948 DOI: 10.1016/j.scitotenv.2022.155436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The ubiquity of microplastic/nanoplastics (MP/NPs) provides an opportunity for their interaction with other widely spread environmental contaminants. MP/NP and nanoparticles share a similar transport route from sources, production, and disposal. Metal oxide nanoparticles (nMOx) have varied industrial applications, and limited knowledge is available on their interaction with MP/NPs. The present study investigated the effect of NPs (1 mg/L) on the efflux of two nMOx, aluminium oxide nanoparticles (nAl2O3, 1 mg/L) and cerium oxide nanoparticles (nCeO2, 1 mg/L), and their combined toxicity to zebrafish embryos. The results illustrated increased accumulation of aluminium and cerium in the combined exposure group compared to the nMOx alone treatment. The presence of NPs exacerbated the oxidative stress caused by nAl2O3 and nCeO2, as evidenced by an increase in the concentration of reactive oxygen species (ROS), alteration of antioxidants, and lipid peroxidation. The integrated biomarker response (IBRv2) values showed the induction of an antioxidative response in NP + nAl2O3, whereas a decline in IBRv2 values was observed in NP + nCeO2. Our results indicate that NPs aggravated the accumulation of nMOx and their toxicity. The present work highlights that more attention should be paid to the discharge of these contaminants into the natural environment.
Collapse
|
|
3 |
12 |