Bestion E, Jilkova ZM, Mège JL, Novello M, Kurma K, Pour STA, Lalmanach G, Vanderlynden L, Fizanne L, Bassissi F, Rachid M, Tracz J, Boursier J, Courcambeck J, Serdjebi C, Ansaldi C, Decaens T, Halfon P, Brun S. GNS561 acts as a potent anti-fibrotic and pro-fibrolytic agent in liver fibrosis through TGF-β1 inhibition.
Ther Adv Chronic Dis 2020;
11:2040622320942042. [PMID:
32728410 PMCID:
PMC7366401 DOI:
10.1177/2040622320942042]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background:
Hepatic fibrosis is the result of chronic liver injury that can progress to
cirrhosis and lead to liver failure. Nevertheless, there are no
anti-fibrotic drugs licensed for human use. Here, we investigated the
anti-fibrotic activity of GNS561, a new lysosomotropic molecule with high
liver tropism.
Methods:
The anti-fibrotic effect of GNS561 was determined in vitro
using LX-2 hepatic stellate cells (HSCs) and primary human HSCs by studying
cell viability, activity of caspases 3/7, autophagic flux, cathepsin
maturation and activity, HSC activation and transforming growth factor-β1
(TGF-β1) maturation and signaling. The contribution of GNS561
lysosomotropism to its anti-fibrotic activity was assessed by increasing
lysosomal pH. The potency of GNS561 on fibrosis was evaluated in
vivo in a rat model of diethylnitrosamine-induced liver
fibrosis.
Results:
GNS561 significantly decreased cell viability and promoted apoptosis.
Disrupting the lysosomal pH gradient impaired its pharmacological effects,
suggesting that GNS561 lysosomotropism mediated cell death. GNS561 impaired
cathepsin activity, leading to defective TGF-β1 maturation and autophagic
processes. Moreover, GNS561 decreased HSC activation and extracellular
matrix deposition by downregulating TGF-β1/Smad and mitogen-activated
proteine kinase signaling and inducing fibrolysis. Finally, oral
administration of GNS561 (15 mg/kg per day) was well tolerated and
attenuated diethylnitrosamine-induced liver fibrosis in this rat model
(decrease of collagen deposition and of pro-fibrotic markers and increase of
fibrolysis).
Conclusion:
GNS561 is a new potent lysosomotropic compound that could represent a valid
medicinal option for hepatic fibrosis treatment through both its
anti-fibrotic and its pro-fibrolytic effects. In addition, this study
provides a rationale for targeting lysosomes as a promising therapeutic
strategy in liver fibrosis.
Collapse