1
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
|
Review |
8 |
202 |
2
|
Varisli L, Cen O, Vlahopoulos S. Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology 2020; 159:257-278. [PMID: 31782148 PMCID: PMC7011648 DOI: 10.1111/imm.13160] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
Collapse
|
Review |
5 |
42 |
3
|
Debelec-Butuner B, Alapinar C, Varisli L, Erbaykent-Tepedelen B, Hamid SM, Gonen-Korkmaz C, Korkmaz KS. Inflammation-mediated abrogation of androgen signaling: an in vitro model of prostate cell inflammation. Mol Carcinog 2012; 53:85-97. [PMID: 22911881 DOI: 10.1002/mc.21948] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/05/2012] [Accepted: 07/24/2012] [Indexed: 11/08/2022]
Abstract
As a link between inflammation and cancer has been reported in many studies, we established an in vitro model of prostatic inflammation to investigate the loss of androgen receptor (AR)-mediated signaling in androgen responsive prostate cell lines. First, the U937 monocyte cell line was differentiated into macrophages using phorbol acetate (PMA), and cells were induced with lipopolysaccharide (LPS) for cytokine secretion. Next, the cytokine levels (TNFα, IL-6, and IL1β) in conditioned media (CM) were analyzed. Prostate cells were then fed with CM containing varying concentrations of TNFα, and IkB degradation, nuclear factor kappa B (NFκB) translocation and transactivation, and the expression of matrix metalloproteinase-8 (MMP8) and matrix metalloproteinase-9 (MMP9) were then assessed. As a result of CM treatment, ubiquitin-mediated AR degradation, which was restored using anti-TNFα antibody neutralization, led to both a decrease in KLK4, PSA, and NKX3.1 expression levels and the upregulation of GPX2. In addition to the loss of AR, acute and chronic CM exposure resulted in p53 degradation and consequent p21 downregulation, which was also restored by either androgen administration or ectopic NKX3.1 expression via the stabilization of MDM2 levels in LNCaP cells. Additionally, CM treatment enhanced H2AX((S139)) phosphorylation (a hallmark of DNA damage) and genetic heterogeneity in the absence of androgens in prostate cells without activating mitochondrial apoptosis. Thus, the data suggest that inflammatory cytokine exposure results in the loss of AR and p53 signaling in prostate cells and facilitates genetic heterogeneity via ROS accumulation to promote prostate carcinogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
37 |
4
|
Varisli L, Ozturk BE, Akyuz GK, Korkmaz KS. HN1 negatively influences the β-catenin/E-cadherin interaction, and contributes to migration in prostate cells. J Cell Biochem 2016; 116:170-8. [PMID: 25169422 DOI: 10.1002/jcb.24956] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022]
Abstract
Previously, it has been reported that HN1 is involved in cytoplasmic retention and degradation of androgen receptor in an AKT dependent manner. As HN1 is a hormone inducible gene, and has been shown that it is upregulated in various cancers, we studied the importance of HN1 function in β-catenin signaling in prostate cancer cell line, PC-3 and mammary cancer cell line MDA-MB231. Here, we demonstrated that HN1 physically associates with GSK3β/β-catenin destruction complex and abundantly localizes to cytoplasm, especially when the GSK3β is phosphorylated on S9 residue. Further, ectopic HN1 expression results an increase in the β-catenin degradation leading to loss of E-cadherin interaction, concurrently contributing to actin re-organization, colony formation and migration in cancer cell lines. Thus, we report that HN1 is an essential factor for β-catenin turnover and signaling, augments cell growth and migration in prostate cancer cells.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
32 |
5
|
Varisli L. Identification of new genes downregulated in prostate cancer and investigation of their effects on prognosis. Genet Test Mol Biomarkers 2013; 17:562-6. [PMID: 23621580 DOI: 10.1089/gtmb.2012.0524] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most common noncutaneous malignant neoplasm in men in the Western countries. It is well established that genetic and epigenetic alterations are common events in prostate cancer, which may lead to aberrant expression of critical genes. Most of the studies are focused on the overexpressed or duplicated genes in prostate cancer. However, it is known that some of the differentially expressed genes in prostate cancer are downregulated. Since the inventory of downregulated genes is incomplete, we performed in silico approaches to reveal the novel prostate cancer downregulated genes. Moreover, we also investigated for a possible link between the expression of the downregulated genes and tumor grade, recurrence, metastasis, or survival status in prostate cancer. Our results showed that the expression of GSTP1 and AOX1 are downregulated in prostate cancer, in concordance with previous reports. Moreover, we showed that TPM2, CLU, and COL4A6 mRNA levels are downregulated in prostate cancer. Further, we found a significant negative correlation between the expression of the above-mentioned genes and the prognosis of prostate cancer.
Collapse
|
Journal Article |
12 |
26 |
6
|
Varisli L, Gonen-Korkmaz C, Syed HM, Bogurcu N, Debelec-Butuner B, Erbaykent-Tepedelen B, Korkmaz KS. Androgen regulated HN1 leads proteosomal degradation of androgen receptor (AR) and negatively influences AR mediated transactivation in prostate cells. Mol Cell Endocrinol 2012; 350:107-17. [PMID: 22155408 DOI: 10.1016/j.mce.2011.11.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 11/05/2011] [Accepted: 11/26/2011] [Indexed: 11/25/2022]
Abstract
We recently reported that hematological and neurological expressed 1 (HN1) is a ubiquitously expressed, EGF-regulated gene. Expression of HN1 in prostate cell lines down-regulates PI3K-dependent Akt activation. Here, we investigate whether HN1 is regulated by androgens through the putative androgen response elements (AREs) found in its promoter. Knockdown of HN1 expression by siRNA silencing leads to an increase in Akt((S473)) phosphorylation, resulting in the translocation of androgen receptor (AR) to the nucleus; these effects can be abrogated by the non-specific Akt inhibitor LY294002 but not by the ERK inhibitor PD98059. Furthermore, HN1 overexpression correlates with an increase in ubiquitination-mediated degradation (a consequence of the decrease in S213/210 phosphorylation of AR), ultimately resulting in the down-regulation of AR-mediated expression of the KLK3, KLK4, NKX3.1 and STAMP2 genes. We also found that HN1 overexpression suppresses colony formation as well as R1881-mediated growth in LNCaP cells, while it has the opposite effect (increasing colony formation but not proliferation) in PC-3 and DU145 cells. Therefore, we suggest that HN1 maintains a balance between the androgen-regulated nuclear translocation of AR and steady-state Akt phosphorylation, predominantly in the absence of androgens. If so, the balance between cell growth and EGF- and AR-signaling must be tightly regulated by HN1. This work has important implications for prostate cancer research, as AR, EGFR and HN1 are known to be highly expressed in prostate adenocarcinomas.
Collapse
|
|
13 |
25 |
7
|
Varisli L, Gonen-Korkmaz C, Debelec-Butuner B, Erbaykent-Tepedelen B, Muhammed HS, Bogurcu N, Saatcioglu F, Korkmaz KS. Ubiquitously expressed hematological and neurological expressed 1 downregulates Akt-mediated GSK3β signaling, and its knockdown results in deregulated G2/M transition in prostate cells. DNA Cell Biol 2011; 30:419-29. [PMID: 21323578 DOI: 10.1089/dna.2010.1128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As the molecular mechanism of β-catenin deregulation is not well understood, and stabilized β-catenin is known to translocate into the nucleus and activate genes for proliferation, a novel regulatory factor, hematological and neurological expressed 1 (HN1), for Akt-GSK3β-β-catenin axis is reported here. In our studies, HN1 gene structure was characterized. HN1 expression was found to be epidermal growth factor-responsive in PC-3 cells, and protein expression was also upregulated in PC-3 and LNCaP but not in DU145 cells. Additionally, HN1 was found to be downregulated by the specific AKT inhibitor wortmannin but not with PI3K or MAPK inhibitors, LY294002 and PD98059, respectively, in PC-3 and MCF-7 cells. Further, siRNA-mediated knockdown of HN1 resulted in considerable increase in Akt((S473)) and GSK3β((S9),(Y216)) phosphorylations; moreover, subsequent accumulation of β-catenin, increase in c-myc expression, and nuclear accumulation of cyclin D1 were observed in PC-3 cells. Knockdown of HN1 also resulted in prolongation of G(1) phase in cell cycle, increasing tetraploidy, presumably because of cells escaping from abnormal mitosis in PC-3 cells. Consistently, overexpression of HN1 reversed the cell-cycle-specific observations, resulted in accumulation of cells in G(2)/M, and reduced the proliferation rate, which were investigated using flow cytometry and methylthiazol tetrazolium assays. As activating mutations of β-catenin have been demonstrated in late-stage tumors, and β-catenin stabilization was correlated with poor prognosis in previous reports, epidermal growth factor-upregulated HN1 expression might have a role in deregulating the AKT-GSK3β((S9))-mediated signaling as a novel compensating mechanism.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
23 |
8
|
Hamid SM, Cicek S, Karamil S, Ozturk MB, Debelec-Butuner B, Erbaykent-Tepedelen B, Varisli L, Gonen-Korkmaz C, Yorukoglu K, Korkmaz KS. HOXB13 contributes to G1/S and G2/M checkpoint controls in prostate. Mol Cell Endocrinol 2014; 383:38-47. [PMID: 24325868 DOI: 10.1016/j.mce.2013.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023]
Abstract
HOXB13 is a homeobox protein that is expressed in normal adult prostate and colon tissues; however, its deregulated expression was evidenced in various malignancies. To characterize the putative role of HOXB13 in cell cycle progression, we performed overexpression and siRNA-mediated knockdown studies in PC-3 and LNCaP cells. Immunohistochemistry (IHC) analyses were also performed using formalin-fixed, paraffin-embedded tissues containing normal, H-PIN and PCa sections from 20 radical prostatectomy specimens. Furthermore, when the role of HOXB13 during cell cycle progression, association with cyclins, cell growth and colony formation using real-time cell proliferation were assessed, we observed that ectopic expression of HOXB13 accumulated cells at G1 through decreasing the cyclin D1 level by promoting its ubiquitination and degradation. This loss slowed S phase entry in both cell lines examined, with an associated decrease in pRb((S780) and (S795)) phosphorylations. Contrary, siRNA-mediated depletion of HOXB13 expression noticeably increased cyclin levels, stabilized E2F1 and CDC25C, subsequent to increased pRb phosphorylations. This increase in Cyclin B1 and CDC25C both together facilitated activation of cyclin B complex via dephosphorylating CDK1((T14Y15)), and resumed the G2/M transition after nocodazole synchronization. Despite an increase in the total expression level and cytoplasmic retention of HOXB13 in H-PIN and PCa samples that were observed via IHC evaluation of prostate tissues, HOXB13 depletion facilitated to an increase in PC-3 and LNCaP cell proliferation. Thus, we suggest that HOXB13 expression is required for cell cycle regulation, and increases by an unknown mechanism consequent to its functional loss in cancer.
Collapse
|
|
11 |
18 |
9
|
Abstract
The family with sequence similarity 83, member D (Fam83D) encodes a mitotic spindle-associated protein. Its knockdown results in shorter spindles that fail to organize a correct metaphase plate. In this study, we demonstrated that Fam83D is coexpressed with well-known mitotic genes. Pathway analysis results also showed that cell cycle- and mitosis-related pathways are enriched with Fam83D-coexpressed genes. Furthermore, Fam83D is differentially expressed in various types of cancers. The results presented in this study suggest that Fam83D may be an important molecule for mitotic progression and equal segregation of chromosomes. Since the molecules that are involved in these mechanisms are crucial for mitosis as well as carcinogenesis, Fam83D should be considered as a novel regulator of mitosis and a putative carcinogenesis-related gene.
Collapse
|
Journal Article |
13 |
16 |
10
|
Erbaykent-Tepedelen B, Özmen B, Varisli L, Gonen-Korkmaz C, Debelec-Butuner B, Muhammed Syed H, Yilmazer-Cakmak O, Korkmaz KS. NKX3.1 contributes to S phase entry and regulates DNA damage response (DDR) in prostate cancer cell lines. Biochem Biophys Res Commun 2011; 414:123-8. [DOI: 10.1016/j.bbrc.2011.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/07/2011] [Indexed: 12/15/2022]
|
|
14 |
8 |
11
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. Corrigendum to "European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]. Redox Biol 2017; 14:694-696. [PMID: 29107648 PMCID: PMC5975209 DOI: 10.1016/j.redox.2017.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
Published Erratum |
8 |
8 |
12
|
Sertkaya S, Hamid SM, Dilsiz N, Varisli L. Decreased expression of EFS is correlated with the advanced prostate cancer. Tumour Biol 2014; 36:799-805. [PMID: 25296736 DOI: 10.1007/s13277-014-2703-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/01/2014] [Indexed: 01/17/2023] Open
Abstract
Prostate cancer is the most frequently diagnosed malignant neoplasm in men in the developed countries. Although the progression of prostate cancer and the processes of invasion and metastasis by tumor cells are comparatively well understood, the genes involved in these processes are not fully determined. Therefore, a common area of research interest is the identification of novel molecules that are involved in these processes. In the present study, we have used in silico and experimental approaches to compare the expression of embryonal Fyn-associated substrate (EFS) between normal prostate and prostate cancer. We showed that EFS expression is remarkably downregulated in prostate cancer cells, compared to normal prostate cells. We also found that decreased expression of EFS in prostate cancer cells is due to DNA methylation. In addition, we showed that high EFS expression is important to suppress a malignant behavior of prostate cancer cells. Therefore, we suggest that EFS should be considered as a novel tumor suppressor gene in prostate cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
7 |
13
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
|
Review |
2 |
3 |
14
|
Varisli L, Javed A, Ozturk BE, Akyuz GK, Takir G, Roumelioti FM, Gagos S, Yorukoglu K, Korkmaz KS. HN1 interacts with γ-tubulin to regulate centrosomes in advanced prostate cancer cells. Cell Cycle 2021; 20:1723-1744. [PMID: 34382911 DOI: 10.1080/15384101.2021.1962624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Prostate cancer is one of the most common cancer for men worldwide with advanced forms showing supernumerary or clustered centrosomes. Hematological and neurological expressed 1 (HN1) also known as Jupiter Microtubule Associated Homolog 1 (JPT1) belongs to a small poorly understood family of genes that are evolutionarily conserved across vertebrate species. The co-expression network of HN1 from the TCGA PRAD dataset indicates the putative role of HN1 in centrosome-related processes in the context of prostate cancer. HN1 expression is low in normal RWPE-1 cells as compared to cancerous androgen-responsive LNCaP and androgen insensitive PC-3 cells. HN1 overexpression resulted in differential response for cell proliferation and cell cycle changes in RWPE-1, LNCaP, and PC-3 cells. Since HN1 overexpression increased the proliferation rate in PC-3 cells, these cells were used for functional characterization of HN1 in advanced prostate carcinogenesis. Furthermore, alterations in HN expression led to an increase in abnormal to normal nuclei ratio and increased chromosomal aberrations in PC-3 cells. We observed the co-localization of HN1 with γ-tubulin foci in prostate cancer cells, further validated by immunoprecipitation. HN1 was observed as physically associated with γ-tubulin and its depletion led to increased γ-tubulin foci and disruption in microtubule spindle assembly. Higher HN1 expression was correlated with prostate cancer as compared to normal tissues. The restoration of HN1 expression after silencing suggested that it has a role in centrosome clustering, implicating a potential role of HN1 in cell division as well as in prostate carcinogenesis warranting further studies.
Collapse
|
Journal Article |
4 |
0 |
15
|
Dancik GM, Varisli L, Voutsas IF, Vlahopoulos S. Editorial: Acute leukemias: molecular characterization, leukemia-initiating cells, and influence of the microenvironment. Front Oncol 2023; 13:1199354. [PMID: 37234979 PMCID: PMC10206314 DOI: 10.3389/fonc.2023.1199354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
|
Editorial |
2 |
|
16
|
Varisli L. Decreased Expression of HN1 Sensitizes Prostate Cancer Cells to Apoptosis Induced by Docetaxel and 2-Methoxyestradiol. ANNALS OF CLINICAL AND LABORATORY SCIENCE 2022; 52:196-201. [PMID: 35414498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Prostate cancer is one of the most frequently diagnosed cancer in men and ranks as the second most common cause of cancer-related deaths in developed countries. HN1 is a highly expressed gene in prostate cancer and controls the levels of several cell cycle regulatory proteins including Cyclin B1. Cyclin B1 is a cell cycle control protein but is also involved in Docetaxel and 2-Methoxyestradiol induced apoptosis. Since Cyclin B1 level may affect chemotherapy success and HN1-Cyclin B1 negative correlation has already been shown, so in this study, we investigated the possible role of HN1 in chemotherapeutic resistance in prostate cancer cells. METHODS Androgen-dependent and independent prostate cancer cells were used in the study. A full-length human HN1 cDNA fragment was cloned to a mammalian expression vector and this construct was used for overexpression experiments. A siRNA that specifically targets HN1 was used for HN1 depletion experiments. Evaluation of apoptosis was performed by the level of PARP cleavage and an apoptosis kit that measure Caspase 3 activity. RESULTS The HN1 protein level is decreased in the Docetaxel or 2-Methoxyestradiol treated LNCaP and PC-3 PCa cells whereas the Cyclin B1 level is increased. HN1 overexpression inhibited Docetaxel and 2-Methoxyestradiol induced apoptosis. In concordance, its depletion further stimulated apoptosis in drug-treated cells. However, silencing of Cyclin B1 along with HN1 abolished the increased apoptotic response induced by silencing of HN1 in Docetaxel or 2-Methoxyestradiol treated cells. CONCLUSION HN1 is an anti-apoptotic molecule and inhibits Docetaxel and 2-Methoxyestradiol induced apoptosis by targeting Cyclin B1.
Collapse
|
|
3 |
|
17
|
Varisli L, Tolan V. Silencing of HN1L suppresses the proliferation and migration of cancer cells. PERIOD BIOL 2022. [DOI: 10.18054/pb.v124i1-2.20098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background and purpose: HN1L is a member of the HN1 gene family and shares about 30% similarity with HN1 which is another member of the family on the primary protein sequence. Since HN1 is an important gene that is involved in various cellular mechanisms and also differentially expressed in carcinogenesis, we investigated the effect of HN1L on some malignant behaviors of various cancer cells.Material and methods: Co-expression analysis, Gene Ontology enrichment, and database searches were performed to predict the cellular roles of HN1, and to investigate its expression in cancers and their corresponding normal tissues. Western blotting and Real-Time PCR were used to compare the expression of HN1L in the normal prostate cells and prostate cancer cells. Cell proliferation and migration assays were used to investigate the effects of HN1L depletion on cell proliferation and migration.Results: The results of co-expression and Gene Ontology enrichment analyses showed that HN1L is co-expressed with DNA replication and DNA damage response/repair associated genes. The database search results revealed that HN1L expression increases in at least 10 diverse cancer types compared to their normal corresponding tissues. This result was confirmed in the prostate cancer cell model, experimentally. Silencing of HN1L inhibited proliferative and migrative behaviors of prostate, breast, colon, and cervix cancer cells.Conclusions: HN1L probably is a novel proto-oncogene that is involved in the DNA metabolism-related mechanisms, and high HN1L level promotes further proliferation and migration in the cancer cells.
Collapse
|
|
3 |
|
18
|
Varisli L, Dancik GM, Copland JA, Vlahopoulos SA. Editorial: Acute leukemias: molecular characterization, leukemia-initiating cells, and influence of the microenvironment, volume II. Front Oncol 2025; 14:1542306. [PMID: 39834938 PMCID: PMC11743270 DOI: 10.3389/fonc.2024.1542306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
|
Editorial |
1 |
|
19
|
Vlahopoulos S, Pan L, Varisli L, Dancik GM, Karantanos T, Boldogh I. OGG1 as an Epigenetic Reader Affects NFκB: What This Means for Cancer. Cancers (Basel) 2023; 16:148. [PMID: 38201575 PMCID: PMC10778025 DOI: 10.3390/cancers16010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
8-oxoguanine glycosylase 1 (OGG1), which was initially identified as the enzyme that catalyzes the first step in the DNA base excision repair pathway, is now also recognized as a modulator of gene expression. What is important for cancer is that OGG1 acts as a modulator of NFκB-driven gene expression. Specifically, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, such as NFκB to their cognate sites, enabling the expression of cytokines and chemokines, with ensuing recruitment of inflammatory cells. Recently, we highlighted chief aspects of OGG1 involvement in regulation of gene expression, which hold significance in lung cancer development. However, OGG1 has also been implicated in the molecular underpinning of acute myeloid leukemia. This review analyzes and discusses how these cells adapt through redox-modulated intricate connections, via interaction of OGG1 with NFκB, which provides malignant cells with alternative molecular pathways to transform their microenvironment, enabling adjustment, promoting cell proliferation, metastasis, and evading killing by therapeutic agents.
Collapse
|
Review |
2 |
|
20
|
Varisli L. Meta-analysis of the cell cycle related C12orf48. BIOCELL 2013; 37:11-16. [PMID: 24396997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The cell cycle is a conserved process from yeast to mammals and focuses on mechanisms that regulate the timing and frequency of DNA replication and cell division. The temporal and spatial expression of the genes is tightly regulated to ensure accurate replication and transmission of DNA to daughter cells during the cycle. Although the genes involved in interphase are well studied, most of the genes which are involved in mitotic events still remain unidentified. Since, the discovery of mitosis related genes is still incomplete, we performed a co-expression and gene ontology analysis for revealing novel mitosis regulated genes. In this study, we showed that C12orf48 is co-expressed with well-known mitotic genes. Moreover, it is also co-expressed with the genes that have roles in interphase such as DNA replication. Furthermore, our results showed that C12orf48 is also differentially expressed in various cancers. Therefore, the results presented in this study suggest that C12orf48 may be an important molecule for both interphase and mitosis. Since, the molecules involved in these mechanisms are crucial for proliferation as well as in carcinogenesis, C12orf48 should be considered as a novel cell cycle and carcinogenesis related gene.
Collapse
|
Meta-Analysis |
12 |
|
21
|
Dancik GM, Varisli L, Tolan V, Vlahopoulos S. Aldehyde Dehydrogenase Genes as Prospective Actionable Targets in Acute Myeloid Leukemia. Genes (Basel) 2023; 14:1807. [PMID: 37761947 PMCID: PMC10531322 DOI: 10.3390/genes14091807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
It has been previously shown that the aldehyde dehydrogenase (ALDH) family member ALDH1A1 has a significant association with acute myeloid leukemia (AML) patient risk group classification and that AML cells lacking ALDH1A1 expression can be readily killed via chemotherapy. In the past, however, a redundancy between the activities of subgroup members of the ALDH family has hampered the search for conclusive evidence to address the role of specific ALDH genes. Here, we describe the bioinformatics evaluation of all nineteen member genes of the ALDH family as prospective actionable targets for the development of methods aimed to improve AML treatment. We implicate ALDH1A1 in the development of recurrent AML, and we show that from the nineteen members of the ALDH family, ALDH1A1 and ALDH2 have the strongest association with AML patient risk group classification. Furthermore, we discover that the sum of the expression values for RNA from the genes, ALDH1A1 and ALDH2, has a stronger association with AML patient risk group classification and survival than either one gene alone does. In conclusion, we identify ALDH1A1 and ALDH2 as prospective actionable targets for the treatment of AML in high-risk patients. Substances that inhibit both enzymatic activities constitute potentially effective pharmaceutics.
Collapse
|
research-article |
2 |
|
22
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
|
Review |
1 |
|
23
|
Varisli L, Dancik GM, Tolan V, Vlahopoulos S. Critical Roles of SRC-3 in the Development and Progression of Breast Cancer, Rendering It a Prospective Clinical Target. Cancers (Basel) 2023; 15:5242. [PMID: 37958417 PMCID: PMC10648290 DOI: 10.3390/cancers15215242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BCa) is the most frequently diagnosed malignant tumor in women and is also one of the leading causes of cancer-related death. Most breast tumors are hormone-dependent and estrogen signaling plays a critical role in promoting the survival and malignant behaviors of these cells. Estrogen signaling involves ligand-activated cytoplasmic estrogen receptors that translocate to the nucleus with various co-regulators, such as steroid receptor co-activator (SRC) family members, and bind to the promoters of target genes and regulate their expression. SRC-3 is a member of this family that interacts with, and enhances, the transcriptional activity of the ligand activated estrogen receptor. Although SRC-3 has important roles in normal homeostasis and developmental processes, it has been shown to be amplified and overexpressed in breast cancer and to promote malignancy. The malignancy-promoting potential of SRC-3 is diverse and involves both promoting malignant behavior of tumor cells and creating a tumor microenvironment that has an immunosuppressive phenotype. SRC-3 also inhibits the recruitment of tumor-infiltrating lymphocytes with effector function and promotes stemness. Furthermore, SRC-3 is also involved in the development of resistance to hormone therapy and immunotherapy during breast cancer treatment. The versatility of SRC-3 in promoting breast cancer malignancy in this way makes it a good target, and methodical targeting of SRC-3 probably will be important for the success of breast cancer treatment.
Collapse
|
Review |
2 |
|
24
|
Vlahopoulos SA, Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V. Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia. Int J Oncol 2024; 65:115. [PMID: 39513593 PMCID: PMC11575927 DOI: 10.3892/ijo.2024.5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Aldehyde dehydrogenase 1 family member A1 (ALDH1A1) is a member of the aldehyde dehydrogenase gene subfamily that encode enzymes with the ability to oxidize retinaldehyde. It was recently shown that high ALDH1A1 RNA abundance correlates with a poor prognosis in acute myeloid leukemia (AML). AML is a hematopoietic malignancy associated with high morbidity and mortality rates. Although there are a number of agents that inhibit ALDH activity, it would be crucial to develop methodologies for adjustable genetic interference, which would permit interventions on several oncogenic pathways in parallel. Intervention in multiple oncogenic pathways is theoretically possible with microRNAs (miRNAs or miRs), a class of small non‑coding RNAs that have emerged as key regulators of gene expression in AML. A number of miRNAs have shown the ability to interfere with ALDH1A1 gene expression directly in solid tumor cells, and these miRNAs can be evaluated in AML model systems. There are indications that a few of these miRNAs actually do have an association with AML disease course, rendering them a promising target for genetic intervention in AML cells.
Collapse
|
Review |
1 |
|
25
|
Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V, Vlahopoulos S. ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review). Oncol Lett 2025; 29:213. [PMID: 40093866 PMCID: PMC11905208 DOI: 10.3892/ol.2025.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
The expression of cytosolic aldehyde dehydrogenases (ALDHs), which mediate the last step in the pathway of the synthesis of all-trans retinoic acid, is dysregulated in various types of human cancer, and has been associated with the development of cancer stem cells (CSCs) in solid tumors and hematological malignancies. CSCs are considered a minor fraction of cancer cells with the capacity to initiate neoplastic tumors. ALDH1A1 serves a crucial role in the emergence of the CSC phenotype, induces the malignant behavior of cancer cells and promotes treatment resistance. Notably, ALDH1A1-induced therapy resistance is not exclusive to just one group of drugs, but affects diverse types of drugs that use different mechanisms to kill cells. This diversity of drug resistance-inducing effects is associated with the stemness-supporting functions of ALDH1A1. The inhibition of ALDH1A1 activity using chemicals or the depletion of ALDH1A1 via genetic approaches, such as the use of small interfering RNA, can overcome diverse pathways of therapy resistance. In the context of breast cancer, it is critical that only a fraction of malignant cells are expected to manifest stem-like features, which include increased expression of ALDH1A1. From the angle of disease prognosis, the extent of the association of ALDH1A1 with increased malignant behavior and drug resistance remains to be determined through the application of cutting-edge methods that detect the expression of tracked biomarkers within tumors.
Collapse
|
Review |
1 |
|