1
|
Flanigan KM, Vetter TA, Simmons TR, Iammarino M, Frair EC, Rinaldi F, Chicoine LG, Harris J, Cheatham JP, Cheatham SL, Boe B, Waldrop MA, Zygmunt DA, Packer D, Martin PT. A first-in-human phase I/IIa gene transfer clinical trial for Duchenne muscular dystrophy using rAAVrh74.MCK. GALGT2. Mol Ther Methods Clin Dev 2022; 27:47-60. [PMID: 36186954 PMCID: PMC9483573 DOI: 10.1016/j.omtm.2022.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/26/2022] [Indexed: 02/04/2023]
Abstract
In a phase 1/2, open-label dose escalation trial, we delivered rAAVrh74.MCK.GALGT2 (also B4GALNT2) bilaterally to the legs of two boys with Duchenne muscular dystrophy using intravascular limb infusion. Subject 1 (age 8.9 years at dosing) received 2.5 × 1013 vector genome (vg)/kg per leg (5 × 1013 vg/kg total) and subject 2 (age 6.9 years at dosing) received 5 × 1013 vg/kg per leg (1 × 1014 vg/kg total). No serious adverse events were observed. Muscle biopsy evaluated 3 or 4 months post treatment versus baseline showed evidence of GALGT2 gene expression and GALGT2-induced muscle cell glycosylation. Functionally, subject 1 showed a decline in 6-min walk test (6MWT) distance; an increase in time to run 100 m, and a decline in North Star Ambulatory Assessment (NSAA) score until ambulation was lost at 24 months. Subject 2, treated at a younger age and at a higher dose, demonstrated an improvement over 24 months in NSAA score (from 20 to 23 points), an increase in 6MWT distance (from 405 to 478 m), and only a minimal increase in 100 m time (45.6-48.4 s). These data suggest preliminary safety at a dose of 1 × 1014 vg/kg and functional stabilization in one patient.
Collapse
|
2
|
Mendell JR, Chicoine LG, Al-Zaidy SA, Sahenk Z, Lehman K, Lowes L, Miller N, Alfano L, Galliers B, Lewis S, Murrey D, Peterson E, Griffin DA, Church K, Cheatham S, Cheatham J, Hogan MJ, Rodino-Klapac LR. Gene Delivery for Limb-Girdle Muscular Dystrophy Type 2D by Isolated Limb Infusion. Hum Gene Ther 2019; 30:794-801. [PMID: 30838895 PMCID: PMC6648191 DOI: 10.1089/hum.2019.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/21/2019] [Indexed: 01/16/2023] Open
Abstract
In a previous limb-girdle muscular dystrophy type 2D (LGMD2D) clinical trial, robust alpha-sarcoglycan gene expression was confirmed following intramuscular gene (SGCA) transfer. This paved the way for first-in-human isolated limb infusion (ILI) gene transfer trial to the lower limbs. Delivery of scAAVrh74.tMCK.hSGCA via an intravascular route through the femoral artery predicted improved ambulation. This method was initially chosen to avoid safety concerns required for large systemic vascular delivery viral loads. ILI methods were adopted from the extensive chemotherapy experience for treatment of malignancies confined to the extremities. Six LGMD2D subjects were enrolled in a dose-ascending open-label clinical trial. Safety of the procedure was initially assessed in the single limb of a non-ambulant affected adult at a dose of 1 × 1012 vg/kg. Subsequently, ambulatory children (aged 8-13 years) were enrolled and dosed bilaterally with either 1 × 1012 vg/kg/limb or 3 × 1012 vg/kg/limb. The six-minute walk test (6MWT) served as the primary clinical outcome; secondary outcomes included muscle strength (maximum voluntary isometric force testing) and SGCA expression at 6 months. All ambulatory participants except one had pre- and post-treatment muscle biopsies. All four subjects biopsied had confirmed SGCA gene delivery by immunofluorescence, Western blot analysis (14-25% of normal), and vector genome copies (5.4 × 103-7.7 × 104 vg/μg). Muscle strength in the knee extensors (assessed by force generation in kilograms) showed improvement in two subjects that correlated with an increase in fiber diameter post gene delivery. Six-minute walk times decreased or remained the same. Vascular delivery of AAVrh74.tMCK.hSGCA was effective at producing SGCA protein at low doses that correlated with vector copies and local functional improvement restricted to targeted muscles. Future trials will focus on systemic administration to enable targeting of proximal muscles to maximize clinical benefit.
Collapse
|
3
|
Gruntman AM, Gernoux G, Tang Q, Ye GJ, Knop DR, Wang G, Benson J, Coleman KE, Keeler AM, Mueller C, Chicoine LG, Chulay JD, Flotte TR. Bridging from Intramuscular to Limb Perfusion Delivery of rAAV: Optimization in a Non-human Primate Study. Mol Ther Methods Clin Dev 2019; 13:233-242. [PMID: 30828586 PMCID: PMC6383191 DOI: 10.1016/j.omtm.2019.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/28/2019] [Indexed: 02/04/2023]
Abstract
Phase 1 and phase 2 gene therapy trials using intramuscular (IM) administration of a recombinant adeno-associated virus serotype 1 (rAAV1) for replacement of serum alpha-1 antitrypsin (AAT) deficiency have shown long-term (5-year) stable transgene expression at approximately 2% to 3% of therapeutic levels, arguing for the long-term viability of this approach to gene replacement of secreted serum protein deficiencies. However, achieving these levels required 100 IM injections to deliver 135 mL of vector, and further dose escalation is limited by the scalability of direct IM injection. To further advance the dose escalation, we sought to bridge the rAAV-AAT clinical development program to regional limb perfusion, comparing two methods previously established for gene therapy, peripheral venous limb perfusion (VLP) and an intra-arterial push and dwell (IAPD) using rAAV1 and rAAV8 in a non-human primate (rhesus macaque) study. The rhesus AAT transgene was used with a c-myc tag to enable quantification of transgene expression. 5 cohorts of animals were treated with rAAV1-IM, rAAV1-VLP, rAAV1-IAPD, rAAV8-VLP, and rAAV8-IAPD (n = 2-3), with a dose of 6 × 1012 vg/kg. All methods were well tolerated clinically. Potency, as determined by serum levels of AAT, of rAAV1 by the VLP method was twice that observed with direct IM injection; 90 μg/mL with VLP versus 38 μg/mL with direct IM injection. There was an approximately 25-fold advantage in estimated vector genomes retained within the muscle tissue with VLP and a 5-fold improvement in the ratio of total vector genomes retained within muscle as compared with liver. The other methods were intermediate in the potency and retention of vector genomes. Examination of muscle enzyme (CK) levels indicated rAAV1-VLP to be equally safe as compared with IM injection, while the IAPD method showed significant CK elevation. Overall, rAAV1-VLP demonstrates higher potency per vector genome injected and a greater total vector retention within the muscle, as compared to IM injection, while enabling a much greater total dose to be delivered, with equivalent safety. These data provide the basis for continuation of the dose escalation of the rAAV1-AAT program in patients and bode well for rAAV-VLP as a platform for replacement of secreted proteins.
Collapse
|
4
|
Xu R, Jia Y, Zygmunt DA, Cramer ML, Crowe KE, Shao G, Maki AE, Guggenheim HN, Hood BC, Griffin DA, Peterson E, Bolon B, Cheatham JP, Cheatham SL, Flanigan KM, Rodino-Klapac LR, Chicoine LG, Martin PT. An Isolated Limb Infusion Method Allows for Broad Distribution of rAAVrh74.MCK. GALGT2 to Leg Skeletal Muscles in the Rhesus Macaque. Mol Ther Methods Clin Dev 2018; 10:89-104. [PMID: 30073180 PMCID: PMC6070685 DOI: 10.1016/j.omtm.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
Recombinant adeno-associated virus (rAAV)rh74.MCK.GALGT2 is a muscle-specific gene therapy that is being developed to treat forms of muscular dystrophy. Here we report on an isolated limb infusion technique in a non-human primate model, where hindlimb blood flow is transiently isolated using balloon catheters to concentrate vector in targeted leg muscles. A bilateral dose of 2.5 × 1013 vector genomes (vg)/kg/limb was sufficient to induce GALGT2-induced glycosylation in 10%-60% of skeletal myofibers in all leg muscles examined. There was a 19-fold ± 6-fold average limb-wide increase in vector genomes per microgram genomic DNA at a bilateral dose of 2.5 × 1013 vg/kg/limb compared with a bilateral dose of 6 × 1012 vg/kg/limb. A unilateral dose of 6 × 1013 vg/kg/limb showed a 12- ± 3-fold increase in treated limb muscles compared to contralateral untreated limb muscles, which received vector only after release into the systemic circulation from the treated limb. Variability in AAV biodistribution between different segments of the same muscle was 125% ± 18% for any given dose, while variability between the same muscle for any given treatment dose was 45% ± 7%. These experiments demonstrate that treatment of muscles throughout the leg with rAAVrh74.MCK.GALGT2 can be accomplished safely using an isolated limb infusion technique, where balloon catheters transiently isolate the limb vasculature, but that intra- and inter-muscle transduction variability is a significant issue.
Collapse
|
5
|
Trittmann JK, Jin Y, Chicoine LG, Liu Y, Chen B, Nelin LD. An arginase-1 SNP that protects against the development of pulmonary hypertension in bronchopulmonary dysplasia enhances NO-mediated apoptosis in lymphocytes. Physiol Rep 2017; 4:4/22/e13041. [PMID: 27895230 PMCID: PMC5358007 DOI: 10.14814/phy2.13041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 11/24/2022] Open
Abstract
Arginase and nitric oxide synthase (NOS) share a common substrate, l‐arginine, and have opposing effects on vascular remodeling. Arginase is the first step in polyamine and proline synthesis necessary for cellular proliferation, while NO produced from NOS promotes apoptosis. Previously, we identified a single nucleotide polymorphism (SNP) in the arginase‐1 (ARG1) gene, rs2781666 (T‐allele) that was associated with a decreased risk for developing pulmonary hypertension (PH) in a cohort of infants with bronchopulmonary dysplasia (BPD). In this study, we utilized lymphocytes from neonates (the only readily available cells from these patients expressing the two genotypes of interest) with either the rs2781666 SNP (TT) or wild type (GG) to test the hypothesis that the protection of the ARG1 SNP against the development of PH in BPD would involve augmented NO production leading to more apoptosis. Lymphocytes were stimulated with IL‐4, IL‐13, and phorbol myristate acetate (PMA). We found that TT lymphocytes had similar levels of arginase I and arginase II expression, but there was a tendency for lower urea production (a surrogate marker of arginase activity), than in the GG lymphocytes. The TT lymphocytes also had significantly greater NO production than did GG lymphocytes despite no differences in iNOS expression between genotypes. Furthermore, the TT lymphocytes had lower numbers of viable cells, and higher levels of cleaved caspase‐3 than did GG lymphocytes. Inhibiting NOS activity using Nω‐Nitro‐l‐arginine methyl ester hydrochloride (l‐NAME) significantly decreased cleaved caspase‐3 levels in the TT lymphocytes. These data demonstrate that the TT genotype results in greater levels of NO production leading to more apoptosis, which is consistent with the concept that BPD patients with the TT genotype are protected against the development of PH by producing greater basal levels of endogenous NO.
Collapse
|
6
|
Quirin KA, Kwon JJ, Alioufi A, Factora T, Temm CJ, Jacobsen M, Sandusky GE, Shontz K, Chicoine LG, Clark KR, Mendell JT, Korc M, Kota J. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:8-20. [PMID: 29349096 PMCID: PMC5675991 DOI: 10.1016/j.omtm.2017.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Recombinant adeno-associated virus (rAAV)-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9) expressing GFP in a self-complementary (sc) AAV vector under an EF1α promoter (scAAV.GFP) following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 1012 viral genomes (vg). Intraductal delivery of 1 × 1011 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 1011 vg. In a KrasG12D-driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.
Collapse
|
7
|
Cramer ML, Shao G, Rodino-Klapac LR, Chicoine LG, Martin PT. Induction of T-Cell Infiltration and Programmed Death Ligand 2 Expression by Adeno-Associated Virus in Rhesus Macaque Skeletal Muscle and Modulation by Prednisone. Hum Gene Ther 2017; 28:493-509. [PMID: 28345428 DOI: 10.1089/hum.2016.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Use of adeno-associated virus (AAV) to transduce genes into skeletal muscles can be associated with T-cell responses to viral capsid and/or to transgenic protein. Intramuscular mononuclear cell infiltrates primarily consisting of CD8+ T cells and also containing FOXP3+ regulatory T cells were present in rhesus macaque skeletal muscle treated with rAAVrh74.MCK.GALGT2 by vascular delivery. Administration of oral prednisone prior to AAV gene delivery and throughout the study reduced such infiltrates by 60% at 24 weeks post AAV delivery compared with AAV-treated animals not receiving prednisone, regardless of the presence of pre-existing AAV serum antibodies at the time of treatment. The majority of CD8+ T cells in AAV-treated muscles expressed activated caspase 3 and programmed cell death protein 1 (PD1), suggesting ongoing programmed cell death. AAV-transduced skeletal muscles also had elevated expression of programmed death ligand 2 (PDL2) on skeletal myofibers, and this increase in expression extended to muscles where transgene was not overexpressed. These data demonstrate that prednisone can reduce the extent of intramuscular T-cell infiltrates in AAV-treated muscles, which may aid in achieving long-term transgene expression, as may the induction of PDL2 expression on skeletal myofibers to promote PD1-mediated programmed T-cell death.
Collapse
|
8
|
White HA, Jin Y, Chicoine LG, Chen B, Liu Y, Nelin LD. Hypoxic proliferation requires EGFR-mediated ERK activation in human pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L649-L656. [PMID: 28188223 DOI: 10.1152/ajplung.00267.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that hypoxic proliferation of human pulmonary microvascular endothelial cells (hPMVECs) depends on epidermal growth factor receptor (EGFR) activation. To determine downstream signaling leading to proliferation, we tested the hypothesis that hypoxia-induced proliferation in hPMVECs would require EGFR-mediated activation of extracellular signal-regulated kinase (ERK) leading to arginase II induction. To test this hypothesis, hPMVECs were incubated in either normoxia (21% O2, 5% CO2) or hypoxia (1% O2, 5% CO2) and Western blotting was performed for EGFR, arginase II, phosphorylated-ERK (pERK), and total ERK (ERK). Hypoxia led to greater EGFR, pERK, and arginase II protein levels than did normoxia in hPMVECs. To examine the role of EGFR in these hypoxia-induced changes, hPMVECs were transfected with siRNA against EGFR or a scrambled siRNA and placed in hypoxia. Inhibition of EGFR using siRNA attenuated hypoxia-induced pERK and arginase II expression as well as the hypoxia-induced increase in viable cell numbers. hPMVECs were then treated with vehicle, an EGFR inhibitor (AG1478), or an ERK pathway inhibitor (U0126) and placed in hypoxia. Pharmacologic inhibition of EGFR significantly attenuated the hypoxia-induced increase in pERK level. Both AG1478 and U0126 also significantly attenuated the hypoxia-induced increase in viable hPMVECs numbers. hPMVECs were transfected with an adenoviral vector containing arginase II (AdArg2) and overexpression of arginase II rescued the U0126-mediated decrease in viable cell numbers in hypoxic hPMVECs. Our findings suggest that hypoxic activation of EGFR results in phosphorylation of ERK, which is required for hypoxic induction of arginase II and cellular proliferation.
Collapse
|
9
|
Trittmann JK, Gastier-Foster JM, Zmuda EJ, Frick J, Rogers LK, Vieland VJ, Chicoine LG, Nelin LD. A single nucleotide polymorphism in the dimethylarginine dimethylaminohydrolase gene is associated with lower risk of pulmonary hypertension in bronchopulmonary dysplasia. Acta Paediatr 2016; 105:e170-5. [PMID: 26663142 DOI: 10.1111/apa.13296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/17/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
Abstract
AIM Pulmonary hypertension (PH) develops in 25-40% of bronchopulmonary dysplasia (BPD) patients, substantially increasing mortality. We have previously found that asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) production, is elevated in patients with BPD-associated PH. ADMA is metabolised by N(ᴳ) ,N(ᴳ) -dimethylarginine dimethylaminohydrolase (DDAH). Presently, we test the hypothesis that there are single nucleotide polymorphisms (SNPs) in DDAH1 and/or DDAH2 associated with the development of PH in BPD patients. METHODS BPD patients were enrolled (n = 98) at Nationwide Children's Hospital. Clinical characteristics and 36 SNPs in DDAH1 and DDAH2 were compared between BPD-associated PH patients (cases) and BPD-alone patients (controls). RESULTS In BPD patients, 25 (26%) had echocardiographic evidence of PH (cases). In this cohort, DDAH1 wild-type rs480414 was 92% sensitive and 53% specific for PH in BPD, and the DDAH1 SNP rs480414 decreased the risk of PH in an additive model of inheritance (OR = 0.39; 95% CI [0.18-0.88], p = 0.01). CONCLUSION The rs480414 SNP in DDAH1 may be protective against the development of PH in patients with BPD. Furthermore, the DDAH1 rs480414 may be a useful biomarker in developing predictive models for PH in patients with BPD.
Collapse
|
10
|
Chen B, Strauch K, Jin Y, Cui H, Nelin LD, Chicoine LG. Asymmetric dimethylarginine does not inhibit arginase activity and is pro-proliferative in pulmonary endothelial cells. Clin Exp Pharmacol Physiol 2015; 41:469-74. [PMID: 24799070 DOI: 10.1111/1440-1681.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 11/27/2022]
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenously produced nitric oxide synthase (NOS) inhibitor. L-Arginine can be metabolised by NOS and arginase, and arginase is the first step in polyamine production necessary for cellular proliferation. We tested the hypothesis that ADMA would inhibit NOS but not arginase activity and that this pattern of inhibition would result in greater L-arginine bioavailability to arginase, thereby increasing viable cell number. Bovine arginase was used in in vitro activity assays with various concentrations of substrate (L-arginine, ADMA, N(G) -monomethyl-L-arginine (L-NMMA) and N(G) -nitro-L-arginine methyl ester (L-NAME)). Only L-arginine resulted in measurable urea production (Km = 6.9 ± 0.8 mmol/L; Vmax = 6.6 ± 0.3 μmol/mg protein per min). We then incubated bovine arginase with increasing concentrations of ADMA, L-NMMA and L-NAME in the presence of 1 mmol/L l-arginine and found no effect of any of the tested compounds on arginase activity. Using bovine pulmonary arterial endothelial cells (bPAEC) we determined the effects of ADMA on nitric oxide (NO) and urea production and found significantly lower NO production and greater urea production (P < 0.003) with ADMA, without changes in arginase protein levels. In addition, ADMA treatment resulted in an approximately 30% greater number of viable cells after 48 h than in control bPAEC. These results demonstrate that ADMA is neither a substrate nor an inhibitor of arginase activity and that in bPAEC ADMA inhibits NO production and enhances urea production, leading to more viable cells. These results may have pathophysiological implications in disorders associated with higher ADMA levels, such as pulmonary hypertension.
Collapse
|
11
|
Chen B, Xue J, Meng X, Slutzky JL, Calvert AE, Chicoine LG. Resveratrol prevents hypoxia-induced arginase II expression and proliferation of human pulmonary artery smooth muscle cells via Akt-dependent signaling. Am J Physiol Lung Cell Mol Physiol 2014; 307:L317-25. [PMID: 24951775 DOI: 10.1152/ajplung.00285.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary artery smooth muscle cell (PASMC) proliferation plays a fundamental role in the vascular remodeling seen in pulmonary hypertensive diseases associated with hypoxia. Arginase II, an enzyme regulating the first step in polyamine and proline synthesis, has been shown to play a critical role in hypoxia-induced proliferation of human PASMC (hPASMC). In addition, there is evidence that patients with pulmonary hypertension have elevated levels of arginase in the vascular wall. Resveratrol, a natural polyphenol found in red wine and grape skins, has diverse biochemical and physiological actions including antiproliferative properties. Furthermore, resveratrol has been shown to attenuate right ventricular and pulmonary artery remodeling, both pathological components of pulmonary hypertension. The present studies tested the hypothesis that resveratrol would prevent hypoxia-induced pulmonary artery smooth muscle cell proliferation by inhibiting hypoxia-induced arginase II expression. Our data indicate that hypoxia-induced hPASMC proliferation is abrogated following treatment with resveratrol. In addition, the hypoxic induction of arginase II was directly attenuated by resveratrol treatment. Furthermore, we found that the inhibitory effect of resveratrol on arginase II in hPASMC was mediated through the PI3K-Akt signaling pathway. Supporting these in vitro findings, resveratrol normalized right ventricular hypertrophy in an in vivo neonatal rat model of chronic hypoxia-induced pulmonary hypertension. These novel data support the notion that resveratrol may be a potential therapeutic agent in pulmonary hypertension by preventing PASMC arginase II induction and proliferation.
Collapse
|
12
|
Rieger-Fackeldey E, Park MS, Schanbacher BL, Joshi MS, Chicoine LG, Nelin LD, Bauer JA, Welty SE, Smith CV. Lung development alterations in newborn mice after recovery from exposure to sublethal hyperoxia. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1010-1016. [PMID: 24518568 PMCID: PMC7538813 DOI: 10.1016/j.ajpath.2013.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/27/2013] [Accepted: 12/30/2013] [Indexed: 11/26/2022]
Abstract
Exposure of newborn mice to hyperoxia arrests lung development, with resultant pathological characteristics similar to bronchopulmonary dysplasia in infants born prematurely. We tested the hypothesis that aberrations in lung development caused by 14 days of sublethal hyperoxia would be reversed during 14 days of recovery to room air (RA) when the concentration of oxygen exposure was weaned gradually. Newborn FVB mice were exposed to 85% oxygen or RA for 14 days. Weaning from hyperoxia was by either transfer directly into RA or a decrease in the concentration of oxygen by 10% per days. At 28 days, pups were euthanized, and the lungs were inflation fixed and assessed. At postnatal day 28, lungs of mice weaned abruptly from hyperoxia had fewer (6 ± 0.6 versus 10 ± 0.7; P < 0.001) alveoli per high-powered field and larger alveoli (4050 ± 207 versus 2305 ± 182 μm(2)) than animals weaned gradually; both hyperoxia-exposed groups were different from lungs obtained from air-breathing controls (20 ± 0.5 alveoli per high-powered field; P < 0.001). The results are consistent with the absence of catch-up alveolarization in this model and indicate that the long-term consequences of early exposures to hyperoxia merit closer examination. The effects of abrupt weaning to RA observed further suggest that weaning should be considered in experimental models of newborn exposure to hyperoxia.
Collapse
|
13
|
Sulkowski JP, Preston TJ, Cooper JN, Duffy VL, Deans KJ, Chicoine LG, Minneci PC. Comparison of routine laboratory measures of heparin anticoagulation for neonates on extracorporeal membrane oxygenation. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2014; 46:69-76. [PMID: 24779122 PMCID: PMC4557514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
Our objective was to determine the best measure of heparin anticoagulation in neonatal patients on extracorporeal membrane oxygenation. Activated clotting time (ACT), activated partial thromboplastin time (aPTT), and antifactor Xa levels, along with corresponding heparin infusion rates and heparin bolus volumes, were collected from neonates receiving ECMO at our institution from 2008 to 2013. After natural log transformation of antifactor Xa, ACT, and aPTT, overall correlations between antifactor Xa levels and either ACT or aPTT and correlations between these tests and heparin infusion rates were evaluated using linear mixed models that accounted for both within- and between-patient correlations. Twenty-six neonates with an average weight of 3.4 kg (standard deviation .7) had a total of 27 separate ECMO runs during the study period. Within each patient, ACT (r = .40, p < .0001) and aPTT (r = .48, p < .0001) were both directly correlated with antifactor Xa levels. In contrast, between patients, only aPTT maintained a direct correlation with antifactor Xa (r = .61, p = .07), whereas ACT showed a statistically significant inverse correlation with antifactor Xa (r = -.48, p = .04). Compared with ACT, aPTT is more consistently reflective of the anticoagulation status both within each patient on ECMO and between patients treated with ECMO. Future efforts to develop standardized heparin infusion algorithms for patients on ECMO should consider using aPTT levels to monitor anticoagulation.
Collapse
|
14
|
Chicoine LG, Montgomery CL, Bremer WG, Shontz KM, Griffin DA, Heller KN, Lewis S, Malik V, Grose WE, Shilling CJ, Campbell KJ, Preston TJ, Coley BD, Martin PT, Walker CM, Clark KR, Sahenk Z, Mendell JR, Rodino-Klapac LR. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery. Mol Ther 2014; 22:338-347. [PMID: 24196577 PMCID: PMC3916040 DOI: 10.1038/mt.2013.244] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/12/2013] [Indexed: 11/09/2022] Open
Abstract
Duchenne muscular dystrophy is a monogenic disease potentially treatable by gene replacement. Use of recombinant adeno-associated virus (AAV) will ultimately require a vascular approach to broadly transduce muscle cells. We tested the impact of preexisting AAV antibodies on microdystrophin expression following vascular delivery to nonhuman primates. Rhesus macaques were treated by isolated limb perfusion using a fluoroscopically guided catheter. In addition to serostatus stratification, the animals were placed into one of the three immune suppression groups: no immune suppression, prednisone, and triple immune suppression (prednisone, tacrolimus, and mycophenolate mofetil). The animals were analyzed for transgene expression at 3 or 6 months. Microdystrophin expression was visualized in AAV, rhesus serotype 74 sero-negative animals (mean: 48.0 ± 20.8%) that was attenuated in sero-positive animals (19.6 ± 18.7%). Immunosuppression did not affect transgene expression. Importantly, removal of AAV binding antibodies by plasmapheresis in AAV sero-positive animals resulted in high-level transduction (60.8 ± 18.0%), which is comparable with that of AAV sero-negative animals (53.7 ± 7.6%), whereas non-pheresed sero-positive animals demonstrated significantly lower transduction levels (10.1 ± 6.0%). These data support the hypothesis that removal of AAV binding antibodies by plasmapheresis permits successful and sustained gene transfer in the presence of preexisting immunity (natural infection) to AAV.
Collapse
|
15
|
Hayes D, Nicol KK, Tobias JD, Chicoine LG, Duffy VL, Mansour HM, Preston TJ. Identification of the nodose ganglia and TRPV1 in swine. Lung 2013; 191:445-7. [PMID: 23892914 DOI: 10.1007/s00408-013-9496-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
16
|
Jin Y, Tipple TE, Chicoine LG, Nelin LD, Chen B. Thioredoxin‐1 is necessary for hypoxia‐induced cell proliferation in human pulmonary artery smooth muscle cells. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.1141.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Chicoine LG, Pope AJ, Han Z, Druhan LJ, Nelin LD, Cardounel AJ. PRMT1 directly methylates eNOS and thereby prevents Akt‐dependent serine1177 phosphorylation leading to decreased NO production. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.724.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Cui H, Liu Y, Chicoine LG, Chen B, Nelin LD. HIF‐2α regulates hypoxia‐induced arginase II expression through EGFR. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.724.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Jin Y, Chen B, Calvert TJ, Chicoine LG, Liu Y, Nelin LD. Chronic hypoxia decreases arterial and venous compliance in isolated perfused rat lungs: an effect that is reversed by exogenous L-arginine. Am J Physiol Heart Circ Physiol 2012; 304:H195-205. [PMID: 23103497 DOI: 10.1152/ajpheart.00188.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension is characterized by vasoconstriction and vascular remodeling, leading to right ventricular dysfunction. Given the role of arterial compliance (C(a)) in right ventricular work, a decrease in C(a) would add to right ventricular work. Nitric oxide (NO) is a potent vasodilator made by NO synthases from L-arginine (L-Arg). However, little is known of the effect of L-Arg on vascular compliance (C(v)) in the lung. We hypothesized that exposure to CH would decrease C(a) and that this effect would be reversed by exogenous L-Arg. Sprague-Dawley rats were exposed to either normoxia or CH for 14 days; the lungs were then isolated and perfused. Vascular occlusions were performed and modeled using a three-compliance, two-resistor model. Pressure-flow curves were generated, and a distensible vessel model was used to estimate distensibility and a vascular resistance parameter (R(0)). Hypoxia resulted in the expected increase in arterial resistance (R(a)) as well as a decrease in both C(a) and C(v). L-Arg had little effect on R(a), C(a), or C(v) in isolated lungs from normoxic animals. L-Arg decreased R(a) in lungs from CH rats and redistributed compliance to approximately that found in normoxic lungs. CH increased R(0), and L-Arg reversed this increase in R(0). L-Arg increased exhaled NO, and inhibition of L-Arg uptake attenuated the L-Arg-induced increase in exhaled NO. These data demonstrate that the CH-induced decrease in C(a) was reversed by L-Arg, suggesting that L-Arg may improve CH-induced right ventricular dysfunction.
Collapse
|
20
|
Cui H, Chen B, Chicoine LG, Nelin LD. Overexpression of cationic amino acid transporter-1 increases nitric oxide production in hypoxic human pulmonary microvascular endothelial cells. Clin Exp Pharmacol Physiol 2012; 38:796-803. [PMID: 21923750 DOI: 10.1111/j.1440-1681.2011.05609.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The endogenous production of and/or the bioavailability of nitric oxide (NO) is decreased in pulmonary hypertensive diseases. L-arginine (L-arg) is the substrate for NO synthase (NOS). L-arg is transported into cells via the cationic amino acid transporters (CAT), of which there are two isoforms in endothelial cells, CAT-1 and CAT-2. 2. To test the hypothesis that hypoxia will decrease CAT expression and L-arg uptake resulting in decreased NO production in human pulmonary microvascular endothelial cells (hPMVEC), cells were incubated in either normoxia (21% O(2), 5% CO(2), balance N(2)) or hypoxia (1% O(2), 5% CO(2), balance N(2)). 3. The hPMVEC incubated in hypoxia had 80% less NO production than cells incubated in normoxia (P < 0.01). The hPMVEC incubated in hypoxia had significantly lower CAT-2 mRNA levels than normoxic hPMVEC (P < 0.005), and the transport of L-arg was 40% lower in hypoxic than in normoxic hPMVEC (P < 0.01). In hypoxic cells, overexpression of CAT-1 resulted in significantly greater L-arg transport and NO production (P < 0.05). 4. These results demonstrate that in hPMVEC, hypoxia decreased CAT-2 expression, L-arg uptake and NO production. Furthermore, the hypoxia-induced decrease in NO production in hPMVEC can be attenuated by overexpressing CAT in these cells. We speculate that the CAT may represent a novel therapeutic target for treating pulmonary hypertensive disorders.
Collapse
|
21
|
Chicoine LG, Nelin LD, Han Z. Hydrogen peroxide mediates hypoxic induction of arginase II in human microvascular pulmonary endothelial cells. FASEB J 2012. [DOI: 10.1096/fasebj.26.1_supplement.1130.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Han Z, Druhan LJ, Cardounel AJ, Chicoine LG. Regulation of Endothelial Nitric Oxide Production By Protein Methyltransferase's. FASEB J 2011. [DOI: 10.1096/fasebj.25.1_supplement.lb490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Nelin LD, Cui H, Chen B, Chicoine LG, Liu Y. L‐arginine uptake is necessary for lipopolysaccharide/tumor necrosis factor‐α‐induced apoptotic cell death in pulmonary endothelial cells. FASEB J 2011. [DOI: 10.1096/fasebj.25.1_supplement.1100.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Chicoine LG, Chicione LG, Stenger MR, Cui H, Calvert A, Evans RJ, English BK, Liu Y, Nelin LD. Nitric oxide suppression of cellular proliferation depends on cationic amino acid transporter activity in cytokine-stimulated pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 300:L596-604. [PMID: 21239536 DOI: 10.1152/ajplung.00029.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inducible nitric oxide (NO) synthase (iNOS) is a stress response protein upregulated in inflammatory conditions, and NO may suppress cellular proliferation. We hypothesized that preventing L-arginine (L-arg) uptake in endothelial cells would prevent lipopolysaccharide/tumor necrosis factor-α (LPS/TNF)-induced, NO-mediated suppression of cellular proliferation. Bovine pulmonary arterial endothelial cells (bPAEC) were treated with LPS/TNF or vehicle (control), and either 10 mM L-leucine [L-leu; a competitive inhibitor of L-arg uptake by the cationic amino acid transporter (CAT)] or its vehicle. In parallel experiments, iNOS or arginase II were overexpressed in bPAEC using an adenoviral vector (AdiNOS or AdArgII, respectively). LPS/TNF treatment increased the expression of iNOS, arginase II, CAT-1, and CAT-2 mRNA in bPAEC, resulting in greater NO and urea production than in control bPAEC, which was prevented by L-leu. LPS/TNF treatment resulted in fewer viable cells than in controls, and LPS/TNF-stimulated bPAEC treated with L-leu had more viable cells than LPS/TNF treatment alone. LPS/TNF treatment resulted in cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase expression, which was attenuated by L-leu. AdiNOS reduced viable cell number, and treatment of AdiNOS transfected bPAEC with L-leu preserved cell number. AdArgII increased viable cell number, and treatment of AdArgII transfected bPAEC with L-leu prevented the increase in cell number. These data demonstrate that iNOS expression in pulmonary endothelial cells leads to decreased cellular proliferation, which can be attenuated by preventing cellular L-arg uptake. We speculate that CAT activity may represent a novel therapeutic target in inflammatory lung diseases characterized by NO overproduction.
Collapse
|
25
|
Rodino-Klapac LR, Montgomery CL, Mendell JR, Chicoine LG. AAV-mediated gene therapy to the isolated limb in rhesus macaques. Methods Mol Biol 2011; 709:287-98. [PMID: 21194036 DOI: 10.1007/978-1-61737-982-6_19] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The development of a nonhuman primate (NHP) model for vascular delivery of therapeutic transgenes with adeno-associated viral (AAV) vectors is crucial for successfully treating muscular dystrophies. Current animal models for Duchenne muscular dystrophy (DMD) gene therapy have species limitations related to assessing function, immune response, and distribution of the micro- and minidystrophin transgenes in a clinically relevant manner. In addition, there are many forms of muscular dystrophy for which there are no available disease models. NHPs provide the ideal model to optimize vector delivery across a vascular barrier and provide accurate dose estimates for local or broadly targeted gene therapy studies. The vascular anatomy NHPs more clearly parallels humans providing an appropriate substrate for translational experiments. Here we outline the development of a rhesus macaque isolated focal limb perfusion (IFLP) protocol targeting the vascular bed of the gastrocnemius. This protocol serves as a model with broad implications for other muscle diseases along with the capability of targeting multiple muscle groups. To overcome the partial homogeneity between portions of the human microdystrophin transgene and those of the NHP dystrophin gene, we utilized a FLAG tag for tracking distribution of microdystrophin. We also provide methods for assessing transduction efficiency of microdystrophin.FLAG following the IFLP vascular delivery protocol.
Collapse
|