1
|
da Fonseca-Martins AM, Ramos TD, Pratti JES, Firmino-Cruz L, Gomes DCO, Soong L, Saraiva EM, de Matos Guedes HL. Immunotherapy using anti-PD-1 and anti-PD-L1 in Leishmania amazonensis-infected BALB/c mice reduce parasite load. Sci Rep 2019; 9:20275. [PMID: 31889072 PMCID: PMC6937231 DOI: 10.1038/s41598-019-56336-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023] Open
Abstract
Leishmaniasis is a neglected disease, for which current treatment presents numerous issues. Leishmania amazonensis is the etiological agent of cutaneous and diffuse cutaneous leishmaniasis. The roles of the programmed death-1 (PD-1) receptor on lymphocytes and its ligand (PD-L1) on antigen-presenting cells have been well studied in tumor and other infection models; but little is known about their roles in non-healing cutaneous leishmaniasis. In this study, we observed that L. amazonensis induced PD-1 expression on both CD4+ and CD8+ T cells and PD-L1 on dendritic cells on BALB/c mice. We tested the therapeutic potential of anti-PD-1 and anti-PD-L1 monoclonal antibodies (MoAbs) against a non-healing L. amazonensis infection in BALB/c mice, and that anti-PD-1 and anti-PD-L1 treatment significantly increased IFN-γ-producing CD4+ and CD8+ T cells, respectively. Compared with infection controls, mice treated with anti-PD-1 and anti-PD-L1, but not anti-PD-L2, displayed bigger lesions with significantly lower parasite loads. Treatment did not affect anti-Leishmania antibody (IgM, IgG, IgG1 and IgG2a) or IL-10 production, but anti-PD-1 treatment reduced both IL-4 and TGF-β production. Together, our results highlight the therapeutic potential of an anti-PD-1-based treatment in promoting the reinvigoration of T cells for the control of parasite burden.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
24 |
2
|
Pereira JC, Ramos TD, Silva JD, de Mello MF, Pratti JES, da Fonseca-Martins AM, Firmino-Cruz L, Kitoko JZ, Chaves SP, Gomes DCDO, Diaz BL, Rocco PRM, de Matos Guedes HL. Effects of Bone Marrow Mesenchymal Stromal Cell Therapy in Experimental Cutaneous Leishmaniasis in BALB/c Mice Induced by Leishmania amazonensis. Front Immunol 2017; 8:893. [PMID: 28848541 PMCID: PMC5554126 DOI: 10.3389/fimmu.2017.00893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022] Open
Abstract
Cutaneous leishmaniasis remains both a public health and a therapeutic challenge. To date, no ideal therapy for cutaneous leishmaniasis has been identified, and no universally accepted therapeutic regimen and approved vaccines are available. Due to the mesenchymal stromal cell (MSC) immunomodulatory capacity, they have been applied in a wide variety of disorders, including infectious, inflammatory, and allergic diseases. We evaluated the potential effects of bone marrow MSC therapy in a murine model of cutaneous leishmaniasis. In vitro, coculture of infected macrophages with MSC increased parasite load on macrophages in comparison with controls (macrophages without MSCs). In vivo, BALB/c mice were infected with 2 × 106Leishmania amazonensis (Josefa strain) promastigotes in the footpad. 7 and 37 days after infection, animals were treated with 1 × 105 MSCs, either intralesional (i.l.), i.e., in the same site of infection, or intravenously (i.v.), through the external jugular vein. Control animals received the same volume (50 µL) of phosphate-buffered saline by i.l. or i.v. routes. The lesion progression was assessed by its thickness measured by pachymetry. Forty-two days after infection, animals were euthanized and parasite burden in the footpad and in the draining lymph nodes was quantified by the limiting dilution assay (LDA), and spleen cells were phenotyped by flow cytometry. No significant difference was observed in lesion progression, regardless of the MSC route of administration. However, animals treated with i.v. MSCs presented a significant increase in parasite load in comparison with controls. On the other hand, no harmful effect due to MSCs i.l. administered was observed. The spleen cellular profile analysis showed an increase of IL-10 producing T CD4+ and TCD8+ cells in the spleen only in mice treated with i.v. MSC. The excessive production of IL-10 could be associated with the disease-aggravating effects of MSC therapy when intravenously administered. As a conclusion, in the current murine model of L. amazonensis-induced cutaneous disease, MSCs did not control the damage of cutaneous disease and, depending on the administration route, it could result in deleterious effects.
Collapse
|
Journal Article |
8 |
15 |
3
|
Pratti JES, da Fonseca Martins AM, da Silva JP, Ramos TD, Pereira JC, Firmino-Cruz L, Oliveira-Maciel D, Vieira TSDS, Lacerda LL, Vale AM, Freire-de-Lima CG, Gomes DCO, Saraiva EM, Rossi-Bergmann B, de Matos Guedes HL. The role of TLR9 on Leishmania amazonensis infection and its influence on intranasal LaAg vaccine efficacy. PLoS Negl Trop Dis 2019; 13:e0007146. [PMID: 30802247 PMCID: PMC6405171 DOI: 10.1371/journal.pntd.0007146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 03/07/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Leishmania (L.) amazonensis is one of the etiological agents of cutaneous leishmaniasis (CL) in Brazil. Currently, there is no vaccine approved for human use against leishmaniasis, although several vaccine preparations are in experimental stages. One of them is Leishvacin, or LaAg, a first-generation vaccine composed of total L. amazonensis antigens that has consistently shown an increase of mouse resistance against CL when administered intranasally (i.n.). Since Toll-like receptor 9 (TLR9) is highly expressed in the nasal mucosa and LaAg is composed of TLR9-binding DNA CpG motifs, in this study we proposed to investigate the role of TLR9 in both L. amazonensis infection and in LaAg vaccine efficacy in C57BL/6 (WT) mice and TLR9-/- mice. First, we evaluated, the infection of macrophages by L. amazonensis in vitro, showing no significant difference between macrophages from WT and TLR9-/- mice in terms of both infection percentage and total number of intracellular amastigotes, as well as NO production. In addition, neutrophils from WT and TLR9-/- mice had similar capacity to produce neutrophil extracellular traps (NETs) in response to L. amazonensis. L. amazonensis did not activate dendritic cells from WT and TLR9-/- mice, analysed by MHCII and CD86 expression. However, in vivo, TLR9-/- mice were slightly more susceptible to L. amazonensis infection than WT mice, presenting a larger lesion and an increased parasite load at the peak of infection and in the chronic phase. The increased TLR9-/- mice susceptibility was accompanied by an increased IgG and IgG1 production; a decrease of IFN-γ in infected tissue, but not IL-4 and IL-10; and a decreased number of IFN-γ producing CD8+ T cells, but not CD4+ T cells in the lesion-draining lymph nodes. Also, TLR9-/- mice could not control parasite growth following i.n. LaAg vaccination unlike the WT mice. This protection failure was associated with a reduction of the hypersensitivity response induced by immunization. The TLR9-/- vaccinated mice failed to respond to antigen stimulation and to produce IFN-γ by lymph node cells. Together, these results suggest that TLR9 contributes to C57BL/6 mouse resistance against L. amazonensis, and that the TLR9-binding LaAg comprising CpG motifs may be important for intranasal vaccine efficacy against CL.
Collapse
|
research-article |
6 |
14 |
4
|
Firmino-Cruz L, Ramos TD, da Fonseca-Martins AM, Maciel-Oliveira D, Oliveira-Silva G, Pratti JES, Cavazzoni C, Chaves SP, Oliveira Gomes DC, Morrot A, Freire-de-Lima L, Vale AM, Freire-de-Lima CG, Decote-Ricardo D, de Matos Guedes HL. Immunomodulating role of IL-10-producing B cells in Leishmania amazonensis infection. Cell Immunol 2018; 334:20-30. [DOI: 10.1016/j.cellimm.2018.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/06/2023]
|
|
7 |
12 |
5
|
da Silva-Junior EB, Firmino-Cruz L, Guimarães-de-Oliveira JC, De-Medeiros JVR, de Oliveira Nascimento D, Freire-de-Lima M, de Brito-Gitirana L, Morrot A, Previato JO, Mendonça-Previato L, Decote-Ricardo D, de Matos Guedes HL, Freire-de-Lima CG. The role of Toll-like receptor 9 in a murine model of Cryptococcus gattii infection. Sci Rep 2021; 11:1407. [PMID: 33446850 PMCID: PMC7809259 DOI: 10.1038/s41598-021-80959-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor 9 (TLR9) is crucial to the host immune response against fungi, such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, but its importance in Cryptococcus gattii infection is unknown. Our study aimed to understand the role of TLR9 during the course of experimental C. gattii infection in vivo, considering that the cryptococcal DNA interaction with the receptor could contribute to host immunity even in an extremely susceptible model. We inoculated C57BL/6 (WT) and TLR9 knock-out (TLR9−/−) mice intratracheally with 104C. gattii yeast cells. TLR9−/− mice had a higher mortality rate compared to WT mice and more yeast cells that had abnormal size, known as titan cells, in the lungs. TLR9−/− mice also had a greater number of CFUs in the spleen and brain than WT mice, in addition to having lower levels of IFN-γ and IL-17 in the lung. With these markers of aggressive cryptococcosis, we can state that TLR9−/− mice are more susceptible to C. gattii, probably due to a mechanism associated with the decrease of a Th1 and Th17-type immune response that promotes the formation of titan cells in the lungs. Therefore, our results indicate the participation of TLR9 in murine resistance to C. gattii infection.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
11 |
6
|
Firmino-Cruz L, Decote-Ricardo D, Gomes DCDO, Morrot A, Freire-de-Lima CG, de Matos Guedes HL. How to B(e)-1 Important Cell During Leishmania Infection. Front Cell Infect Microbiol 2020; 9:424. [PMID: 31993374 PMCID: PMC6970944 DOI: 10.3389/fcimb.2019.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/28/2019] [Indexed: 12/27/2022] Open
Abstract
B-1 cells are an innate-like population of B lymphocytes that are subdivided into B-1a and B-1b distinguished by the presence or absence of CD5, respectively. B-1 cells can act as regulatory B cells, are able to present antigen and produce IL-10. Leishmaniasis in humans is a complex of diseases caused by parasites of the genus Leishmania. More than 20 species can infect humans, with each species causing the development of different immunological responses in the host. Susceptibility is usually related to the production of anti-inflammatory cytokines while the production of Th1 cytokines is indicative of resistance. However, few studies have attempted to evaluate the role of B-1 cells during either the in vivo infection or in vitro interaction with Leishmania parasites. In vivo studies were performed using XID mice model, BALB/Xid mice have a mutation in the Bruton's tyrosine kinase, which is an important enzyme for developing B-1 and maturing B-2 lymphocytes leading to the presence of immature B-2 cells. Here, we compile these studies and assess the influence of B-1 cells on disease progression with different Leishmania species.
Collapse
|
Review |
5 |
10 |
7
|
Prat-Luri B, Neal C, Passelli K, Ganga E, Amore J, Firmino-Cruz L, Petrova TV, Müller AJ, Tacchini-Cottier F. The C5a-C5aR1 complement axis is essential for neutrophil recruitment to draining lymph nodes via high endothelial venules in cutaneous leishmaniasis. Cell Rep 2022; 39:110777. [PMID: 35508133 DOI: 10.1016/j.celrep.2022.110777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are specialized innate immune cells known for their ability to fight pathogens. However, the mechanisms of neutrophil trafficking to lymph nodes are not fully clear. Using a murine model of dermal infection with Leishmania parasites, we observe a transient neutrophil influx in draining lymph nodes despite sustained recruitment to the infection site. Cell-tracking experiments, together with intravital two-photon microscopy, indicate that neutrophil recruitment to draining lymph nodes occurs minimally through lymphatics from the infected dermis, but mostly through blood vessels via high endothelial venules. Mechanistically, neutrophils do not respond to IL-1β or macrophage-derived molecules. Instead, they are guided by the C5a-C5aR1 axis, using L-selectin and integrins, to extravasate into the draining lymph node parenchyma. We also report that C5, the C5a precursor, is locally produced in the draining lymph node by lymphatic endothelial cells. Our data establish and detail organ-specific mechanisms of neutrophil trafficking.
Collapse
|
|
3 |
9 |
8
|
Bezerra IPDS, Oliveira-Silva G, Braga DSFS, de Mello MF, Pratti JES, Pereira JC, da Fonseca-Martins AM, Firmino-Cruz L, Maciel-Oliveira D, Ramos TD, Vale AM, Gomes DCO, Rossi-Bergmann B, de Matos Guedes HL. Dietary Vitamin D3 Deficiency Increases Resistance to Leishmania (Leishmania) amazonensis Infection in Mice. Front Cell Infect Microbiol 2019; 9:88. [PMID: 31024859 PMCID: PMC6467002 DOI: 10.3389/fcimb.2019.00088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023] Open
Abstract
The leishmaniases are a group of diseases caused by Leishmania parasites, which have different clinical manifestations. Leishmania (Leishmania) amazonensis is endemic in South America and causes cutaneous leishmaniasis (CL), which can evolve into a diffuse form, characterized by an anergic immune response. Since the leishmaniases mainly affect poor populations, it is important to understand the involvement of immunonutrition, how the immune system is modulated by dietary nutrients and the effect this has on Leishmania infection. Vitamin D3 (VitD) is an immunonutrient obtained from diet or endogenously synthesized, which suppresses Th1 and Th17 responses by favoring T helper (Th) 2 and regulatory T cell (Treg) generation. Based on these findings, this study aims to evaluate dietary VitD influence on L. (L.) amazonensis experimental infection in C57BL/6 and BALB/c mice. Thus, C57BL/6 and BALB/c VitD deficient (VDD) mice were generated through dietary VitD restriction 45 days prior to infection. Both strains of VDD mice showed a more controlled lesion development compared to mice on a regular diet (Ctrl). There were no differences in serum levels of anti-Leishmania IgG1 and IgG2a, but there was a decrease in IgE levels in BALB/c VDD mice. Although CD4+ T cell number was not changed, the CD4+ IFN-y+ T cell population was increased in both absolute number and percentage in C57BL/6 and BALB/c VDD mice compared to Ctrl mice. There was also no difference in IL-4 and IL-17 production, however, there was reduction of IL-10 production in VDD mice. Together, our data indicate that VitD contributes to murine cutaneous leishmaniasis susceptibility and that the Th1 cell population may be related to the resistance of VDD mice to L. (L.) amazonensis infection.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
9 |
9
|
Ramos TD, Silva JD, da Fonseca-Martins AM, da Silveira Pratti JE, Firmino-Cruz L, Maciel-Oliveira D, Dos-Santos JS, Tenorio JIN, de Araujo AF, Freire-de-Lima CG, Diaz BL, Cruz FF, Rocco PRM, de Matos Guedes HL. Combined therapy with adipose tissue-derived mesenchymal stromal cells and meglumine antimoniate controls lesion development and parasite load in murine cutaneous leishmaniasis caused by Leishmania amazonensis. Stem Cell Res Ther 2020; 11:374. [PMID: 32867857 PMCID: PMC7457509 DOI: 10.1186/s13287-020-01889-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background Leishmaniasis is a neglected disease caused by Leishmania spp. One of its characteristics is an imbalance of host immune responses to foster parasite survival. In this setting, mesenchymal stromal cells (MSCs) may be a viable therapeutic alternative, given their well-established immunomodulatory potential. In this study, we compared the effects of therapy with bone marrow (BM)- and adipose tissue (AD)-derived MSCs in leishmaniasis caused by Leishmania amazonensis in C57BL/6 mice. After determining the most effective MSC source, we then combined these cells with meglumine antimoniate (a pentavalent antimonial commonly used for the treatment of leishmaniasis) to treat the infected mice. Methods In vitro, co-culture of AD-MSCs and BM-MSCs with Leishmania amazonensis-infected macrophages was performed to understand the influence of both MSC sources in infected cells. In vivo, infected C57BL/6 mice were treated with phosphate-buffered saline (PBS), AD-MSCs and BM-MSCs, and then meglumine antimoniate was combined with MSCs from the most effective source. Results In vitro, co-culture of Leishmania amazonensis-infected macrophages with BM-MSCs, compared to AD-MSCs, led to a higher parasite load and lower production of nitric oxide. Fibroblasts grown in conditioned medium from co-cultures with AD-MSCs promoted faster wound healing. Despite a non-significant difference in the production of vascular endothelial growth factor, we observed higher production of tumor necrosis factor-α and interleukin (IL)-10 in the co-culture with AD-MSCs. In vivo, treatment of infected mice with BM-MSCs did not lead to disease control; however, the use of AD-MSCs was associated with partial control of lesion development, without significant differences in the parasite load. AD-MSCs combined with meglumine antimoniate reduced lesion size and parasite load when compared to PBS and AD-MSC groups. At the infection site, we detected a small production of IL-10, but we were unable to detect production of either IL-4 or interferon-γ, indicating resolution of infection without effect on the percentage of regulatory T cells. Conclusion Combination treatment of cutaneous leishmaniasis with AD-MSCs and meglumine antimoniate may be a viable alternative.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
7 |
10
|
Firmino-Cruz L, dos-Santos JS, da Fonseca-Martins AM, Oliveira-Maciel D, Guadagnini-Perez G, Roncaglia-Pereira VA, Dumard CH, Guedes-da-Silva FH, Vicente Santos AC, Alvim RGF, Lima TM, Marsili FF, Abreu DPB, Rossi-Bergmann B, Vale AM, Filardy AD, Silva JL, de Oliveira AC, Gomes AMO, de Matos Guedes HL. Intradermal Immunization of SARS-CoV-2 Original Strain Trimeric Spike Protein Associated to CpG and AddaS03 Adjuvants, but Not MPL, Provide Strong Humoral and Cellular Response in Mice. Vaccines (Basel) 2022; 10:1305. [PMID: 36016193 PMCID: PMC9415730 DOI: 10.3390/vaccines10081305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Despite the intramuscular route being the most used vaccination strategy against SARS-CoV-2, the intradermal route has been studied around the globe as a strong candidate for immunization against SARS-CoV-2. Adjuvants have shown to be essential vaccine components that are capable of driving robust immune responses and increasing the vaccination efficacy. In this work, our group aimed to develop a vaccination strategy for SARS-CoV-2 using a trimeric spike protein, by testing the best route with formulations containing the adjuvants AddaS03, CpG, MPL, Alum, or a combination of two of them. Our results showed that formulations that were made with AddaS03 or CpG alone or AddaS03 combined with CpG were able to induce high levels of IgG, IgG1, and IgG2a; high titers of neutralizing antibodies against SARS-CoV-2 original strain; and also induced high hypersensitivity during the challenge with Spike protein and a high level of IFN-γ producing CD4+ T-cells in mice. Altogether, those data indicate that AddaS03, CpG, or both combined may be used as adjuvants in vaccines for COVID-19.
Collapse
|
research-article |
3 |
3 |
11
|
Dos-Santos JS, Firmino-Cruz L, Ramos TD, da Fonseca-Martins AM, Oliveira-Maciel D, De-Medeiros JVR, Chaves SP, Gomes DCO, de Matos Guedes HL. Characterization of Sv129 Mice as a Susceptible Model to Leishmania amazonensis. Front Med (Lausanne) 2019; 6:100. [PMID: 31192210 PMCID: PMC6548835 DOI: 10.3389/fmed.2019.00100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 11/30/2022] Open
Abstract
Leishmaniasis is a complex of neglected diseases caused by parasites of the genus Leishmania, such as Leishmania (Leishmania) amazonensis, the ethiologic agent of diffuse cutaneous leishmaniasis in Brazil. In this work, we investigated a new experimental model of infection for L. amazonensis: the Sv129 mouse. First, we subcutaneously infected Sv129 mice with 2 × 105 or 2 × 106L. amazonensis parasites of the Josefa strain. A progressive lesion developed for both inoculation doses, showing that Sv129 mice are susceptible, independent of parasite dose. We next investigated the mechanisms associated with the pathogenesis of infection. We did not observe an increase of frequency of interferon-gamma (IFN- γ)-producing CD4+ and CD8+ T cells, a phenotype similar to that seen in BALB/c mice. There was an increased of frequency and number of IL-17-producing γδ (gamma-delta) T cells in infected Sv129 mice compared to naïve SV129 and an increased frequency of this population compared to infected BALB/c mice. In addition, Sv129 mice presented high levels of both IgG1 and IgG2a, suggesting a mixed Th1 and Th2 response with a skew toward IgG1 production based on IgG1/IgG2a ratio. Susceptibility of the Sv129 mice was further confirmed with the use of another strain of L. amazonensis, LTB0016. In this work, we characterized the Sv129 mice as a new model of susceptibility to Leishmania amazonensis infection, during infection there was controlled IFN-γ production by CD4+ or CD8+ T cells and induced IL-17 production by γδ T cells.
Collapse
|
Journal Article |
6 |
2 |
12
|
dos-Santos JS, Firmino-Cruz L, da Fonseca-Martins AM, Oliveira-Maciel D, Perez GG, Roncaglia-Pereira VA, Dumard CH, Guedes-da-Silva FH, Santos ACV, Leandro MDS, Ferreira JRM, Guimarães-Pinto K, Conde L, Rodrigues DAS, Silva MVDM, Alvim RGF, Lima TM, Marsili FF, Abreu DPB, Ferreira Jr. OC, Mohana Borges RDS, Tanuri A, Souza TML, Rossi-Bergmann B, Vale AM, Silva JL, de Oliveira AC, Filardy AD, Gomes AMO, de Matos Guedes HL. Immunogenicity of SARS-CoV-2 Trimeric Spike Protein Associated to Poly(I:C) Plus Alum. Front Immunol 2022; 13:884760. [PMID: 35844561 PMCID: PMC9281395 DOI: 10.3389/fimmu.2022.884760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
The SARS-CoV-2 pandemic has had a social and economic impact worldwide, and vaccination is an efficient strategy for diminishing those damages. New adjuvant formulations are required for the high vaccine demands, especially adjuvant formulations that induce a Th1 phenotype. Herein we assess a vaccination strategy using a combination of Alum and polyinosinic:polycytidylic acid [Poly(I:C)] adjuvants plus the SARS-CoV-2 spike protein in a prefusion trimeric conformation by an intradermal (ID) route. We found high levels of IgG anti-spike antibodies in the serum by enzyme linked immunosorbent assay (ELISA) and high neutralizing titers against SARS-CoV-2 in vitro by neutralization assay, after two or three immunizations. By evaluating the production of IgG subtypes, as expected, we found that formulations containing Poly(I:C) induced IgG2a whereas Alum did not. The combination of these two adjuvants induced high levels of both IgG1 and IgG2a. In addition, cellular immune responses of CD4+ and CD8+ T cells producing interferon-gamma were equivalent, demonstrating that the Alum + Poly(I:C) combination supported a Th1 profile. Based on the high neutralizing titers, we evaluated B cells in the germinal centers, which are specific for receptor-binding domain (RBD) and spike, and observed that more positive B cells were induced upon the Alum + Poly(I:C) combination. Moreover, these B cells produced antibodies against both RBD and non-RBD sites. We also studied the impact of this vaccination preparation [spike protein with Alum + Poly(I:C)] in the lungs of mice challenged with inactivated SARS-CoV-2 virus. We found a production of IgG, but not IgA, and a reduction in neutrophil recruitment in the bronchoalveolar lavage fluid (BALF) of mice, suggesting that our immunization scheme reduced lung inflammation. Altogether, our data suggest that Alum and Poly(I:C) together is a possible adjuvant combination for vaccines against SARS-CoV-2 by the intradermal route.
Collapse
|
research-article |
3 |
1 |
13
|
de Mello MF, Machado PDA, Gomes PS, Oliveira-Silva G, Carneiro MPD, Ramos TD, Silveira Pratti JE, Peralva R, Firmino-Cruz L, Da-Cruz AM, Covre L, Gomes DCO, Rossi-Bergmann B, Pinto EF, da Fonseca-Martins AM, de Matos Guedes HL. Efficacy of LaAg Vaccine Associated with Saponin Against Leishmania amazonensis Infection. Vaccines (Basel) 2025; 13:129. [PMID: 40006676 PMCID: PMC11861163 DOI: 10.3390/vaccines13020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The total lysate of Leishmania amazonensis (LaAg) is one of the most extensively studied vaccine formulations against leishmaniasis. Despite demonstrating safety and immunogenicity when administered intramuscularly, LaAg has failed to show efficacy in clinical trials and, in some cases, has even been associated with an enhanced susceptibility to infection. Adjuvants, which are molecules or compounds added to antigens to enhance the immunogenicity or modulate the immune response, are frequently employed in vaccine studies. This study aimed to evaluate different adjuvants to improve the protective efficacy of LaAg in L.amazonensis infection using a BALB/c mouse model. METHODS BALB/c mice were immunized with LaAg in combination with various adjuvants. The delayed-type hypersensitivity (DTH) test was assessed by measuring the infected paw and was used to evaluate the immunogenicity and to determine the most effective adjuvant. The immune response was analyzed through flow cytometry, focusing on cytokine production, immune cell recruitment and lesion size, alongside the control of parasite load at the infection site. The expression levels of iNOS and TGF-β were quantified using RT-qPCR, while IgG1, IgG2a and IgE antibody levels were determined via ELISA. RESULTS Among the adjuvants tested, only saponin (SAP) elicited a significant DTH response following LaAg challenge. SAP enhanced the immunogenicity of LaAg, as evidenced by increased IFN-γ-producing CD4+ and CD8+ T cells in the draining lymph nodes at 18 h post-challenge. Additionally, SAP facilitated the recruitment of lymphocytes, macrophages, neutrophils and eosinophils to the infection site. CONCLUSIONS The LaAg + SAP combination conferred partial protection, as demonstrated by a reduction in lesion size and the partial control of parasite load. In conclusion, the addition of SAP as an adjuvant to LaAg effectively modulates the immune response, enhancing the vaccine's protective efficacy. These findings provide valuable insights into the development of improved vaccines against L.amazonensis infection.
Collapse
|
research-article |
1 |
|
14
|
Oliveira-Maciel D, dos-Santos JS, Oliveira-Silva G, de Mello MF, da Fonseca-Martins AM, Carneiro MPD, Ramos TD, Firmino-Cruz L, Gomes DCO, Rossi-Bergmann B, de Matos Guedes HL. MPLA and AddaVax ® Adjuvants Fail to Promote Intramuscular LaAg Vaccine Protectiveness against Experimental Cutaneous Leishmaniasis. Microorganisms 2021; 9:microorganisms9061272. [PMID: 34207948 PMCID: PMC8230739 DOI: 10.3390/microorganisms9061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
There is so far no vaccine approved for human leishmaniasis, mainly because of the lack of appropriate adjuvants. This study aimed to evaluate in mice the capacity of a mixture of monophosphoryl lipid A (MPLA) and AddaVax® adjuvants in enhancing the efficacy of a Leishvacin®-like vaccine comprised of Leishmania amazonensis whole antigens (LaAg). For that, mice were immunized with LaAg plus MPLA/AddaVax® by the intramuscular route (i.m.) prior to challenge with 2 × 105 and 2 × 106 living parasites. Immunization with LaAg alone reduced the lesion growth of the 2 × 105-challenged mice only in the peak of infection, but that was not accompanied by reduced parasite load, and thus not considered protective. Mice given a 2 × 106 -challenge were not protected by LaAg. The association of LaAg with MPLA/AddaVax® was able to enhance the cutaneous hypersensitivity response compared with LaAg alone. Despite this, there was no difference in proliferative cell response to antigen ex vivo. Moreover, regardless of the parasite challenge, association of LaAg with MPL/AddaVax® did not significantly enhance protection in comparison with LaAg alone. This work demonstrated that MPL/AddaVax® is not effective in improving the efficacy of i.m. LaAg vaccine against cutaneous leishmaniasis.
Collapse
|
Journal Article |
4 |
|
15
|
Dos-Santos JS, Firmino-Cruz L, Oliveira-Maciel D, da Fonseca-Martins AM, Ramos TD, Nunes-Sousa L, Bittencourt Dos Santos I, Pedro Soares R, Claudio Oliveira Gomes D, Mengel J, Silva-Santos B, de Matos Guedes HL. IL-17A/IFN-γ producing γδ T cell functional dichotomy impacts cutaneous leishmaniasis in mice. J Leukoc Biol 2025; 117:qiae251. [PMID: 39656754 DOI: 10.1093/jleuko/qiae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
γδ T cells play diverse roles in immune responses, producing either interleukin (IL)-17A or interferon γ (IFN-γ). Here, we investigated the impact of this functional dichotomy on cutaneous leishmaniasis. We demonstrate that in Sv129 mice susceptible to Leishmania amazonensis, Vγ4+ γδ T cells are the main source of IL-17A. In type 1 IFN receptor-deficient (A129) mice with heightened susceptibility, there is an increased frequency of IL-17A-producing γδ T cells. L. amazonensis' lipophosphoglycan induces these IL-17A-producing γδ T cells. Notably, C57BL/6 mice deficient in γδ T cells or IL-17 receptor exhibit smaller lesions, indicating a pathogenic role of IL-17A-producing γδ T cells in cutaneous leishmaniasis. Conversely, adoptive transfer of fluorescence-activated cell sorting (FACS)-sorted γδ T cells lead to an accumulation of IFN-γ-producing γδ T cells, associated with control of lesion development. On the other hand, adoptive transfer of FACS-sorted IFN-γ-deficient γδ T cells abolished the control of lesion development. These data demonstrate a pathophysiological dichotomy in which IL-17A-producing γδ T cells promote pathogenesis, while IFN-γ-producing γδ T cells offer therapeutic potential in cutaneous leishmaniasis.
Collapse
MESH Headings
- Animals
- Interleukin-17/metabolism
- Interferon-gamma/metabolism
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/pathology
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Mice, Inbred C57BL
- Mice, Knockout
Collapse
|
|
1 |
|