1
|
Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen RV, Krainc D. Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. Proc Natl Acad Sci U S A 2005; 102:11023-8. [PMID: 16043692 PMCID: PMC1182457 DOI: 10.1073/pnas.0504921102] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder caused by an expansion of glutamine repeats in ubiquitously distributed huntingtin protein. Recent studies have shown that mutant huntingtin interferes with the function of widely expressed transcription factors, suggesting that gene expression may be altered in a variety of tissues in HD, including peripheral blood. Affymetrix and Amersham Biosciences oligonucleotide microarrays were used to analyze global gene expression in blood samples of HD patients and matched controls. We identified 322 mRNAs that showed significantly altered expression in HD blood samples, compared with controls (P < 0.0005), on two different microarray platforms. A subset of up-regulated mRNAs selected from this group was able to distinguish controls, presymptomatic individuals carrying the HD mutation, and symptomatic HD patients. In addition, early presymptomatic subjects showed gene expression profiles similar to those of controls, whereas late presymptomatic subjects showed altered expression that resembled that of symptomatic HD patients. These elevated mRNAs were significantly reduced in HD patients involved in a dose-finding study of the histone deacetylase inhibitor sodium phenylbutyrate. Furthermore, expression of the marker genes was significantly up-regulated in postmortem HD caudate, suggesting that alterations in blood mRNAs may reflect disease mechanisms observed in HD brain. In conclusion, we identified changes in blood mRNAs that clearly distinguish HD patients from controls. These alterations in mRNA expression correlate with disease progression and response to experimental treatment. Such markers may provide clues to the state of HD and may be of predictive value in clinical trials.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
288 |
2
|
Remely M, Lovrecic L, de la Garza AL, Migliore L, Peterlin B, Milagro FI, Martinez AJ, Haslberger AG. Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 2014; 172:2756-68. [PMID: 25046997 DOI: 10.1111/bph.12854] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/24/2014] [Accepted: 07/10/2014] [Indexed: 12/17/2022] Open
Abstract
Many nutrients are known for a wide range of activities in prevention and alleviation of various diseases. Recently, their potential role in regulating human health through effects on epigenetics has become evident, although specific mechanisms are still unclear. Thus, nutriepigenetics/nutriepigenomics has emerged as a new and promising field in current epigenetics research in the past few years. In particular, polyphenols, as part of the central dynamic interaction between the genome and the environment with specificity at physiological concentrations, are well known to affect mechanisms underlying human health. This review summarizes the effects of dietary compounds on epigenetic mechanisms in the regulation of gene expression including expression of enzymes and other molecules responsible for drug absorption, distribution, metabolism and excretion in cancer, metabolic syndrome, neurodegenerative disorders and hormonal dysfunction.
Collapse
|
Review |
11 |
76 |
3
|
Hogarth P, Lovrecic L, Krainc D. Sodium phenylbutyrate in Huntington's disease: a dose-finding study. Mov Disord 2008; 22:1962-4. [PMID: 17702032 DOI: 10.1002/mds.21632] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transcriptional dysregulation in Huntington's disease (HD) is mediated in part by aberrant patterns of histone acetylation. We performed a dose-finding study in human HD of sodium phenylbutyrate (SPB), a histone deacetylase inhibitor that ameliorates the HD phenotype in animal models. We used a dose-escalation/de-escalation design, using prespecified toxicity criteria and standard clinical and laboratory safety measures. The maximum tolerated dose was 15 g/day. At higher doses, toxicity included vomiting, lightheadedness, confusion, and gait instability. We saw no significant laboratory or electrocardiographic abnormalities. Gene expression changes in blood suggested an inverse dose-response. In conclusion, SPB at 12 to 15 g/day appears to be safe and well-tolerated in human HD.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
66 |
4
|
Bergant G, Maver A, Lovrecic L, Čuturilo G, Hodzic A, Peterlin B. Comprehensive use of extended exome analysis improves diagnostic yield in rare disease: a retrospective survey in 1,059 cases. Genet Med 2017; 20:303-312. [PMID: 28914264 DOI: 10.1038/gim.2017.142] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/27/2017] [Indexed: 01/02/2023] Open
Abstract
PurposeWe sought to determine the analytical sensitivity of several extended exome variation analysis approaches in terms of their contribution to diagnostic yield and their clinical feasibility.MethodsWe retrospectively analyzed the results of genetic testing in 1,059 distinct cases referred for exome sequencing to our institution. In these, we routinely employed extended exome analysis approaches in addition to basic variant analysis, including (i) copy-number variation (CNV) detection, (ii) nonconsensus splice defect detection, (ii) genomic breakpoint detection, (iv) homozygosity mapping, and (v) mitochondrial variant analysis.ResultsExtended exome analysis approaches assisted in identification of causative genetic variant in 44 cases, which represented a 4.2% increase in diagnostic yield. The greatest contribution was associated with CNV analysis (1.8%) and splice variant prediction (1.2%), and the remaining approaches contributed an additional 1.2%. Analysis of workload has shown that on average nine additional variants per case had to be interpreted in the extended analysis.ConclusionWe show that extended exome analysis approaches improve the diagnostic yield of heterogeneous genetic disorders and result in considerable increase of diagnostic yield of exome sequencing with a minor increase of interpretative workload.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
58 |
5
|
Remely M, Stefanska B, Lovrecic L, Magnet U, Haslberger AG. Nutriepigenomics: the role of nutrition in epigenetic control of human diseases. Curr Opin Clin Nutr Metab Care 2015; 18:328-33. [PMID: 26001651 DOI: 10.1097/mco.0000000000000180] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW Nutrients or even diets affect the epigenome by lifelong remodeling. Nutritional imbalances are associated with noncommunicable diseases. Thus, nutriepigenomics is a promising field in the treatment of complex human diseases. RECENT FINDINGS The epigenome is susceptible to changes and can be shaped by nutritional states, especially in prenatal period through transgenerational mechanisms and in early postnatal life when critical developmental processes are taking place. Although more stable, the epigenetic marks in adulthood are also dynamic and modifiable by environmental factors including diet. SUMMARY The present review is focused on the most recent knowledge of epigenetically active nutrients/diets including transgenerational inheritance and prenatal predispositions related to increased risk for cancer, metabolic syndrome, and neurodegenerative diseases.
Collapse
|
Review |
10 |
55 |
6
|
Vears DF, Sénécal K, Clarke AJ, Jackson L, Laberge AM, Lovrecic L, Piton A, Van Gassen KLI, Yntema HG, Knoppers BM, Borry P. Points to consider for laboratories reporting results from diagnostic genomic sequencing. Eur J Hum Genet 2018; 26:36-43. [PMID: 29184171 PMCID: PMC5839050 DOI: 10.1038/s41431-017-0043-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/31/2017] [Indexed: 11/09/2022] Open
Abstract
Although NGS technologies are well-embedded in the clinical setting for identification of genetic causes of disease, guidelines issued by professional bodies are inconsistent regarding some aspects of reporting results. Most recommendations do not give detailed guidance about whether variants of uncertain significance (VUS) should be reported by laboratory personnel to clinicians, and give conflicting messages regarding whether unsolicited findings (UF) should be reported. There are also differences both in their recommendations regarding whether actively searching for secondary findings (SF) is appropriate, and in the extent to which they address the duty (or lack thereof) to reanalyse variants when new information arises. An interdisciplinary working group considered the current guidelines, their own experiences, and data from a recent qualitative study to develop a set of points to consider for laboratories reporting results from diagnostic NGS. These points to consider fall under six categories: (i) Testing approaches and technologies used, (ii) Approaches for VUS; (iii) Approaches for reporting UF, (iv) Approaches regarding SF; (v) Reanalysis of data & re-contact; and vi) Minors. While it is unclear whether uniformity in reporting across all laboratories is desirable, we hope these points to consider will be useful to diagnostic laboratories as they develop their processes for making decisions about reporting VUS and UF from NGS in the diagnostic context.
Collapse
|
research-article |
7 |
43 |
7
|
Deans ZC, Ahn JW, Carreira IM, Dequeker E, Henderson M, Lovrecic L, Õunap K, Tabiner M, Treacy R, van Asperen CJ. Recommendations for reporting results of diagnostic genomic testing. Eur J Hum Genet 2022; 30:1011-1016. [PMID: 35361922 PMCID: PMC9436979 DOI: 10.1038/s41431-022-01091-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Results of clinical genomic testing must be reported in a clear, concise format to ensure they are understandable and interpretable. It is important laboratories are aware of the information which is essential to make sure the results are not open to misinterpretation. As genomic testing has continued to evolve over the past decade, the European Society of Human Genetics (ESHG) recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic) published in 2014 have been reviewed and updated to provide the genomic community with guidance on reporting unambiguous results.
Collapse
|
|
3 |
27 |
8
|
Lovrecic L, Kastrin A, Kobal J, Pirtosek Z, Krainc D, Peterlin B. Gene expression changes in blood as a putative biomarker for Huntington's disease. Mov Disord 2010; 24:2277-81. [PMID: 19844910 DOI: 10.1002/mds.22477] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Several studies demonstrated alterations of gene expression in blood in various neurological disorders including Huntington's disease (HD). Using microarray technology, a recent study identified a large number of significantly altered mRNAs in HD blood, from which a 12-gene set was selected as classifier for discriminating controls and HD patients. The aim of our study was to validate expression changes of these 12 genes in an independent cohort of HD patients and evaluate their sensitivity and specificity. Four different subject groups were included--patients with HD, Parkinson's disease (PD), acute ischemic stroke (AS) and healthy controls. Although the previous results were successfully validated, gene expression changes in HD blood partly overlapped with those observed in blood from PD and AS patients. Predictive value of the selected biomarker set for HD group was 78%, with 82% sensitivity and 53% specificity. Further gene expression analyses in longitudinal studies are needed to validate and refine possible transcriptomic blood biomarkers in HD.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
24 |
9
|
Lovrecic L, Remec ZI, Volk M, Rudolf G, Writzl K, Peterlin B. Clinical utility of array comparative genomic hybridisation in prenatal setting. BMC MEDICAL GENETICS 2016; 17:81. [PMID: 27846804 PMCID: PMC5111187 DOI: 10.1186/s12881-016-0345-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 11/06/2016] [Indexed: 12/16/2022]
Abstract
Background The objective of reported study was to evaluate the clinical utility of prenatal microarray testing for submicroscopic genomic imbalances in routine prenatal settings and to stratify the findings according to the type of fetal ultrasound anomaly. Methods From July 2012 to October 2015 chromosomal microarray testing was performed in 218 fetuses with varying indications for invasive prenatal diagnosis: abnormal karyotype, ultrasound anomalies, pathogenic variant in previous pregnancy or carriership in a parent. Results The detection rate in the group of fetuses with ultrasound anomalies was 10,0% for pathogenic copy number variants (CNVs), five of them being larger than 8 Mb and expected to be seen on prenatal karyotype. If only those pathogenic CNVs below the classical karyotype resolution are considered, chromosomal microarray testing provided an additional 7,7% diagnostic yield in here reported series. When stratified according to the ultrasound anomalies, the highest percentage of pathogenic CNVs were detected in the group of fetuses with multiple congenital anomalies (16,7%) and lowest in the group of isolated in utero growth restriction (6,3%). In the group of cases with isolated increased nuchal translucency we identified a small interstitial deletion of 16p24.1 involving FOXF1 gene. Prenatal aCGH also provided important insights into cases with seemingly balanced chromosomal rearrangements found on prenatal karyotype, where additional pathogenic CNV were discovered. Conclusion Prenatal chromosomal microarray testing significantly increases the diagnostic yield when compared with conventional karyotyping. The highest added value is shown in prenatal diagnostics in fetuses with abnormal ultrasound results. Variants of unknown significance and risk factor CNVs present important challenges and should be discussed with parents in advance, therefore pretest counseling prior to prenatal testing is very important.
Collapse
|
Journal Article |
9 |
13 |
10
|
Lovrecic L, Slavkov I, Dzeroski S, Peterlin B. ADP-ribosylation factor guanine nucleotide-exchange factor 2 (ARFGEF2): a new potential biomarker in Huntington's disease. J Int Med Res 2011; 38:1653-62. [PMID: 21309479 DOI: 10.1177/147323001003800510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microarray searches have revealed potential genetic biomarkers in a wide variety of human diseases. Identification of biomarkers for disease status is particularly important in chronic neurodegenerative diseases where brain tissue cannot be sampled. A previous study identified 12 genes from microarray analysis as associated with Huntington's disease, although the relationships had not been validated. We used new machine learning approaches to reanalyse those microarray data and to rank the identified potential genetic biomarkers. We then performed quantitative reverse transcription-polymerase chain reaction analysis on a subset of the candidate genes in blood samples from an independent cohort of 23 Huntington's disease patients and 23 healthy controls. Our highest ranked genes did not overlap with the 12 previously identified, but two were significantly up-regulated in the Huntington's disease group: ARFGEF2 and GOLGA8G. Little is known about the latter, but the former warrants further analysis as it is known to be associated with intracellular vesicular trafficking, disturbances of which characterize Huntington's disease.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
7 |
11
|
Vrecar I, Peterlin B, Teran N, Lovrecic L. Direct-to-consumer genetic testing in Slovenia: availability, ethical dilemmas and legislation. Biochem Med (Zagreb) 2015; 25:84-9. [PMID: 25672471 PMCID: PMC4401315 DOI: 10.11613/bm.2015.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Over the last few years, many private companies are advertising direct-to-consumer genetic testing (DTC GT), mostly with no or only minor clinical utility and validity of tests and without genetic counselling. International professional community does not approve provision of DTC GT and situation in some EU countries has been analysed already. The aim of our study was to analyse current situation in the field of DTC GT in Slovenia and related legal and ethical issues. MATERIALS AND METHODS Information was retrieved through internet search, performed independently by two authors, structured according to individual private company and the types of offered genetic testing. RESULTS Five private companies and three Health Insurance Companies offer DTC GT and it is provided without genetic counselling. Available tests include testing for breast cancer, tests with other health-related information (complex diseases, drug responses) and other tests (nutrigenetic, ancestry, paternity). National legislation is currently being developed and Council of Experts in Medical Genetics has issued an opinion about Genetic Testing and Commercialization of Genetic Tests in Slovenia. CONCLUSIONS Despite the fact that Slovenia has signed the Additional protocol to the convention on human rights and biomedicine, concerning genetic testing for health purposes, DTC GT in Slovenia is present and against all international recommendations. There is lack of or no medical supervision, clinical validity and utility of tests and inappropriate genetic testing of minors is available. There is urgent need for regulation of ethical, legal, and social aspects. National legislation on DTC GT is being prepared.
Collapse
|
research-article |
10 |
5 |
12
|
Lovrecic L, Bertok S, Žerjav Tanšek M. A New Case of an Extremely Rare 3p21.31 Interstitial Deletion. Mol Syndromol 2016; 7:93-8. [PMID: 27385966 DOI: 10.1159/000445227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2016] [Indexed: 01/29/2023] Open
Abstract
Interstitial 3p21.31 deletions have been very rarely reported. We describe a 7-year-old boy with global developmental delay, specific facial characteristics, hydronephrosis, and hypothyreosis with a de novo deletion of 3p21.31, encompassing 29 OMIM genes. Despite the wide use of microarrays, no similar case has been reported in the literature so far. Five overlapping cases are deposited in the DECIPHER database, 2 of which have significant overlapping chromosomal aberrations. They both share some phenotypic characteristics with our case, e.g. developmental delay, intellectual disability and facial dysmorphism (arched eyebrows, hypertelorism, low-set ears, and a large nose tip). In addition, loss-of-function mutations in the SETD2 gene (OMIM 612778) of the deleted region have been described in 3 patients, presenting with some similar clinical features, namely overgrowth, intellectual disability, speech delay, hypotonia, autism, and epilepsy. Therefore, SETD2 may explain part of the phenotype in our case. We focused on 3 other genes in the deleted region, based on their known functions, namely CSPG5 (OMIM 606775), PTH1R (OMIM 168468) and SMARCC1 (OMIM 601732), and assessed their potentially important role in describing the patient's phenotype. Additional cases with haploinsufficiency of this region are needed to elucidate further genotype-phenotype correlations.
Collapse
|
Journal Article |
9 |
4 |
13
|
Gasljevic G, Grat M, Kloboves Prevodnik V, Grcar Kuzmanov B, Gazic B, Lovrecic L, Podgornik H. Chronic Lymphocytic Leukemia with Divergent Richter's Transformation into a Clonally Related Classical Hodgkin's and Plasmablastic Lymphoma: A Case Report. Case Rep Oncol 2020; 13:120-129. [PMID: 32231533 DOI: 10.1159/000505683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/19/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) typically pursues a prolonged course. Its transformation into a more aggressive lymphoma occurs in 2-8% of all patients. Most commonly, diffuse large B-cell lymphoma develops. Transformation into a classical Hodgkin's lymphoma (cHL) occurs in <1%. Plasmablastic transformation has been only rarely reported. Cases of synchronous divergent transformation of CLL into a composite lymphoma are exceedingly rare. We describe the unique occurrence of the transformation of a long-standing CLL into a synchronous clonally related cHL as well as plasmablastic lymphoma (PBL) in an 85-year-old female patient. After 10 years of asymptomatic CLL, our patient was treated with a rituximab-chlorambucil scheme in combination with pegfilgrastim for recurrent infections and the development of B symptoms. Five cycles (of six planned) were administrated with no adverse effects. After the fifth cycle, lymphadenopathy with pronounced B symptoms appeared. Histology showed the presence of cHL in the lymph node, while the bone marrow was infiltrated by PBL. Our patient died in sepsis not receiving further specific oncologic treatment due to her poor general condition. Additional cytogenetic and molecular studies showed that this was a case of mutated CLL with trisomies of chromosomes 12, 3, and 18 (a rare specific +12 plus other-non+19 CLL subgroup). The presence of trisomy 12 has also been proved in plasmablasts and in cHL cells.
Collapse
|
Case Reports |
5 |
4 |
14
|
Salamun V, Rizzo M, Lovrecic L, Hocevar K, Papler Burnik T, Janez A, Jensterle M, Vrtacnik Bokal E, Peterlin B, Maver A. The Endometrial Transcriptome of Metabolic and Inflammatory Pathways During the Window of Implantation Is Deranged in Infertile Obese Polycystic Ovarian Syndrome Women. Metab Syndr Relat Disord 2022; 20:384-394. [PMID: 35834645 DOI: 10.1089/met.2021.0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction and Aim: Obese women with polycystic ovarian syndrome (PCOS) have a reduced rate of spontaneous conception even when their cycles are ovulatory. Endometrial receptivity is an important factor for poor implantation and increased miscarriage rates. Mechanisms in which both pathologies modify the endometrium are not fully clarified. The aim of our study was to compare the endometrial transcriptomic profiles between infertile obese PCOS (O-PCOS) women and infertile normal weight subjects during the window of implantation in ovulatory menstrual cycles. Methods: We conducted a prospective transcriptomic analysis of the endometrium using RNA sequencing. In this way, potential endometrial mechanisms leading to the poor reproductive outcome in O-PCOS patients could be characterized. Endometrial samples during days 21-23 of the menstrual cycle were collected from infertile O-PCOS women (n = 11) and normal weight controls (n = 10). Subgroups were defined according to the ovulatory/anovulatory status in the natural cycles, and O-PCOS women were grouped into the O-PCOS ovulatory (O-PCOS-ovul) subgroup. RNA isolation, sequencing with library reparation, and subsequent RNAseq data analysis were performed. Results: Infertile O-PCOS patients had 610 differentially expressed genes (DEGs), after adjustment for multiple comparisons with normal weight infertile controls, related to obesity (MXRA5 and ECM1), PCOS (ADAMTS19 and SLC18A2), and metabolism (VNN1 and PC). In the ovulatory subgroup, no DEGs were found, but significant differences in canonical pathways and the upstream regulator were revealed. According to functional and upstream analyses of ovulatory subgroup comparisons, the most important biological processes were related to inflammation (TNFR1 signaling), insulin signaling (insulin receptor signaling and PI3/AKT), fatty acid metabolism (stearate biosynthesis I and palmitate biosynthesis I), and lipotoxicity (unfolded protein response pathway). Conclusions: We demonstrated that endometrial transcription in ovulatory O-PCOS patients is deranged in comparison with the control ovulatory endometrium. The most important pathways of differentiation include metabolism and inflammation. These processes could also represent potential mechanisms for poor embryo implantation, which prevent the development of a successful pregnancy. ClinicalTrials.gov ID: NCT03353948.
Collapse
|
|
3 |
3 |
15
|
Kotnik U, Maver A, Peterlin B, Lovrecic L. Assessment of pathogenic variation in gynecologic cancer genes in a national cohort. Sci Rep 2023; 13:5307. [PMID: 37002323 PMCID: PMC10066348 DOI: 10.1038/s41598-023-32397-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Population-based estimates of pathogenic variation burden in gynecologic cancer predisposition genes are a prerequisite for the development of effective precision public health strategies. This study aims to reveal the burden of pathogenic variants in a comprehensive set of clinically relevant breast, ovarian, and endometrial cancer genes in a large population-based study. We performed a rigorous manual classification procedure to identify pathogenic variants in a panel of 17 gynecologic cancer predisposition genes in a cohort of 7091 individuals, representing 0.35% of the general population. The population burden of pathogenic variants in hereditary gynecologic cancer-related genes in our study was 2.14%. Pathogenic variants in genes ATM, BRCA1, and CDH1 are significantly enriched and the burden of pathogenic variants in CHEK2 is decreased in our population compared to the control population. We have identified a high burden of pathogenic variants in several gynecologic cancer-related genes in the Slovenian population, most importantly in the BRCA1 gene.
Collapse
|
research-article |
2 |
2 |
16
|
Dolanc Merc M, Peterlin B, Lovrecic L. The genetic approach to stillbirth: A »systematic review«. Prenat Diagn 2023; 43:1220-1228. [PMID: 37072878 DOI: 10.1002/pd.6354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Unexplained stillbirth is defined as a stillbirth with no known cause after the exclusion of common causes, including obstetric complications, infections, placental insufficiency or abruption, umbilical cord complications, and congenital abnormalities with or without known genetic cause. More than 60% of stillbirth cases remain unexplained. The aim of this systematic review was to investigate the known genetic causes of unexplained stillbirth cases and to evaluate the current position and future directions for the use of genetic and genomic testing in expanding the knowledge in this field. A systematic search through several databases was performed using the keywords genetics and stillbirths in humans. Different methods to detect various types of causal genetic aberrations have been used in the past decades, from standard karyotyping to novel methods such as chromosomal microarray analysis and next generation sequencing technologies. Apart from common chromosomal aneuploidies, a promising hypothesis about genetic causes included genes related to cardiomyopathies and channelopathies. However, these were tested in the research settings, since molecular karyotyping is currently the standard approach in the routine evaluation of genetic causes of stillbirth. Hereby, we provide evidence that expanding knowledge using novel genetic and genomic testing might uncover new genetic causes of unexplained stillbirth.
Collapse
|
Systematic Review |
2 |
1 |
17
|
Lovrecic L, Gnan C, Baldan F, Franzoni A, Bertok S, Damante G, Isidor B, Peterlin B. Microduplication in the 2p16.1p15 chromosomal region linked to developmental delay and intellectual disability. Mol Cytogenet 2018; 11:39. [PMID: 29951117 PMCID: PMC6011332 DOI: 10.1186/s13039-018-0388-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/06/2018] [Indexed: 11/25/2022] Open
Abstract
Background Several patients with the 2p16.1p15 microdeletion syndrome have been reported. However, microduplication in the 2p16.1p15 chromosomal region has only been reported in one case, and milder clinical features were present compared to those attributed to 2p16.1p15 microdeletion syndrome. Some additional cases were deposited in DECIPHER database. Case presentation In this report we describe four further cases of 2p16.1p15 microduplication in four unrelated probands. They presented with mild gross motor delay, delayed speech and language development, and mild dysmorphic features. In addition, two probands have macrocephaly and one a congenital heart anomaly. Newly described cases share several phenotype characteristics with those detailed in one previously reported microduplication case. Conclusion The common features among patients are developmental delay, speech delay, mild to moderate intellectual disability and unspecific dysmorphic features. Two patients have bilateral clinodactyly of the 5th finger and two have bilateral 2nd-3rd toes syndactyly. Interestingly, as opposed to the deletion phenotype with some cases of microcephaly, 2 patients are reported with macrocephaly. The reported cases suggest that microduplication in 2p16.1p15 chromosomal region might be causally linked to developmental delay, speech delay, and mild intellectual disability.
Collapse
|
Case Reports |
7 |
1 |
18
|
Merc MD, Kotnik U, Peterlin B, Lovrecic L. Further exploration of cardiac channelopathy and cardiomyopathy genes in stillbirth. Prenat Diagn 2024; 44:1062-1072. [PMID: 38813989 DOI: 10.1002/pd.6616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE To explore genetic variation including whole genome copy number variation and sequence analysis of 98 genes associated with pediatric or adult cardiomyopathies, cardiac channelopathies, and sudden death in an unexplained intrauterine fetal death cohort. METHODS The study population included 55 stillbirth cases that remained unexplained after thorough postmortem examination, excluding maternal, fetal, and placental causes of stillbirth. Molecular karyotyping was performed in 55 cases and the trio exome sequencing approach was applied in 19 cases. RESULTS The analysis revealed six rare variants with predicted effects on protein function in six genes (CASQ2, DSC2, KCNE1, LDB3, MYH6, and SCN5A) previously reported in cases of stillbirth or severe early onset pediatric cardiac related phenotypes. When applying strict American College of Genetics and Genomics classification guidelines, these are still variants of uncertain significance. CONCLUSIONS Several potentially stillbirth-related genetic variants were detected in our cohort, adding to the growing literature on cardiac phenotype gene variation in stillbirth. However, the mechanisms of action, gene-gene interaction, and contribution of the uterine environment are still to be deciphered. In order to advance our knowledge of the genetics of unexplained fetal death, there is an evident need for international collaboration and field standardization.
Collapse
|
|
1 |
|