Alves BDS, Schimith LE, da Cunha AB, Dora CL, Hort MA. Omega-3 polyunsaturated fatty acids and Parkinson's disease: A systematic review of animal studies.
J Neurochem 2024;
168:1655-1683. [PMID:
38923542 DOI:
10.1111/jnc.16154]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The primary pathological features of PD include the presence of α-synuclein aggregates and Lewy bodies, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Recently, omega-3 fatty acids (ω-3 PUFAs) have been under investigation as a preventive and/or therapeutic strategy for PD, primarily owing to their antioxidant and anti-inflammatory properties. Therefore, the objective of this study was to conduct a systematic review of the literature, focusing on studies that assessed the effects of ω-3 PUFAs in rodent models mimicking human PD. The search was performed using the terms "Parkinson's disease," "fish oil," "omega 3," "docosahexaenoic acid," and "eicosapentaenoic acid" across databases PUBMED, Web of Science, Science Direct, Scielo, and Google Scholar. Following analysis based on predefined inclusion and exclusion criteria, 39 studies were included. Considering behavioral parameters, pathological markers of the disease, quantification of ω-3 PUFAs in the brain, as well as anti-inflammatory, antioxidant, and anti-apoptotic effects, it can be observed that ω-3 PUFAs exhibit a potential neuroprotective effect in PD. In summary, this systematic review presents significant scientific evidence regarding the effects and mechanisms underlying the neuroprotective properties of ω-3 PUFAs, offering valuable insights for the development of future clinical investigations.
Collapse