1
|
Qian X, Liu J, Fu L, Li J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014; 346:1344-7. [DOI: 10.1126/science.1256815] [Citation(s) in RCA: 1277] [Impact Index Per Article: 116.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
11 |
1277 |
2
|
De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 1998; 121 ( Pt 8):1469-77. [PMID: 9712009 DOI: 10.1093/brain/121.8.1469] [Citation(s) in RCA: 369] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been difficult to establish a strong correlation between total brain T2-weighted lesion volume on MRI and clinical disability in multiple sclerosis, in part because of the lack of pathological specificity of T2-weighted MRI signal changes. Proton magnetic resonance spectroscopy studies have shown that measurements of the resonance intensity of N-acetylaspartate (which is localized exclusively in neurons and neuronal processes in the mature brain) can provide a specific index of axonal damage or dysfunction. Here we report a 30-month longitudinal study of 29 patients with multiple sclerosis who had either a relapsing or a secondary progressive clinical course. Conventional brain MRI and single-voxel proton magnetic resonance spectroscopy examinations were obtained at intervals of 6-8 months with concurrent clinical evaluation. At the onset of the study, the brain N-acetylaspartate:creatine resonance intensity ratio was abnormally low for the whole group of patients (control mean = 2.93 +/- 0.2, patient mean = 2.56 +/- 0.4, P < 0.005). There were no significant differences between the relapsing and secondary progressive subgroups. Over the follow-up period, there was a trend towards a decrease (8%) in the brain N-acetylaspartate:creatine ratio for the 11 relapsing patients and a significant (P < 0.001) correlation between changes in the brain N-acetylaspartate:creatine ratio and expanded disability scale scores for the patients in this group. This correlation was even more evident for the patients who had clinically relevant relapses during the 30 months of follow-up (seven of 11 patients). Increases in T2-weighted lesion volumes (35% in 30 months for the group as a whole, P < 0.0001, without differences between the subgroups) did not correlate with disability either in the group of patients as a whole or in the different subgroups. We conclude that indices of axonal damage or loss such as brain N-acetylaspartate may provide a specific measure of pathological changes relevant to disability. Total T2-weighted lesion volumes, although more sensitive to changes with time than brain N-acetylaspartate, may be less relevant to understanding the progression of disability.
Collapse
|
|
27 |
369 |
3
|
van Bruggen N, Thibodeaux H, Palmer JT, Lee WP, Fu L, Cairns B, Tumas D, Gerlai R, Williams SP, van Lookeren Campagne M, Ferrara N. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 1999; 104:1613-20. [PMID: 10587525 PMCID: PMC409867 DOI: 10.1172/jci8218] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
VEGF is mitogenic, angiogenic, and a potent mediator of vascular permeability. VEGF causes extravasation of plasma protein in skin bioassays and increases hydraulic conductivity in isolated perfused microvessels. Reduced tissue oxygen tension triggers VEGF expression, and increased protein and mRNA levels for VEGF and its receptors (Flt-1, Flk-1/KDR) occur in the ischemic rat brain. Brain edema, provoked in part by enhanced cerebrovascular permeability, is a major complication in central nervous system pathologies, including head trauma and stroke. The role of VEGF in this pathology has remained elusive because of the lack of a suitable experimental antagonist. We used a novel fusion protein, mFlt(1-3)-IgG, which sequesters murine VEGF, to treat mice exposed to transient cortical ischemia followed by reperfusion. Using high-resolution magnetic resonance imaging, we found a significant reduction in volume of the edematous tissue 1 day after onset of ischemia in mice that received mFlt(1-3)-IgG. 8-12 weeks after treatment, measurements of the resultant infarct size revealed a significant sparing of cortical tissue. Regional cerebral blood flow was unaffected by the administration of mFlt(1-3)-IgG. These results demonstrate that antagonism of VEGF reduces ischemia/reperfusion-related brain edema and injury, implicating VEGF in the pathogenesis of stroke and related disorders.
Collapse
|
research-article |
26 |
344 |
4
|
Fu L, Matthews PM, De Stefano N, Worsley KJ, Narayanan S, Francis GS, Antel JP, Wolfson C, Arnold DL. Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 1998; 121 ( Pt 1):103-13. [PMID: 9549491 DOI: 10.1093/brain/121.1.103] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The current study was designed to determine the relative distribution of decreases of N-acetylasparate (NAA), a marker of axonal damage, between lesions and normal-appearing white matter of patients with established multiple sclerosis and to test for associations between changes in the ratio of NAA to creatine/phosphocreatine (NAA:Cr) in those compartments and changes in disability. Data were collected from a 30-month longitudinal study of 28 patients with either a relapsing course with partial remissons and no progression between attacks (relapsing/remitting) (11 patients) or a course of progressively increasing disability, following a period of relapsing/remitting disease (secondary progressive) (17 patients). Proton magnetic resonance spectroscopic imaging (MRSI) and conventional MRI examinations were performed at 6-8-month intervals with concurrent clinical assessments of disability. General linear models were used to test associations between MRSI, MRI, lesion volume and clinical data. Analysis confirmed that the NAA:Cr ratio is lower in lesions than in the normal-appearing white matter (-15.3% in relapsing/remitting multiple sclerosis and -8.8% in secondary progressive multiple sclerosis). The lower NAA:Cr ratio per unit lesion volume previously observed for secondary progressive relative to relapsing/remitting patients was found to result from a lower ratio (8.2%, P < 0.01) in the normal-appearing white matter rather than from any differences within lesions. The importance of changes in the normal-appearing white matter was emphasized further with the observation that the NAA:Cr ratio in the normal-appearing white matter accounted for most of the observed 15.6% (P < 0.001) decrease in the NAA:Cr ratio in the brains of relapsing/remitting patients over the period of study. The decrease in the NAA:Cr ratio in normal-appearing white matter correlated strongly (P < 0.001) with changes in disability in the relapsing/remitting subgroup. These results add to data suggesting that axonal damage or loss may be responsible for functional impairments in multiple sclerosis. The accumulation of secondary axonal damage in the normal-appearing white matter may be of particular significance for understanding chronic disability in this disease.
Collapse
|
|
27 |
276 |
5
|
Ou S, Kwok K, Li Y, Fu L. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:1026-1029. [PMID: 11262066 DOI: 10.1021/jf000574n] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
There have been many reports concerning the role of dietary fiber in lowering postprandial serum glucose, and the main mechanism was regarded as the viscosity of different dietary fibers in hampering diffusion of glucose and postponing absorption and digestion of carbohydrates. In this paper, two kinds of water-insoluble dietary fibers, water-insoluble dietary fiber of wheat bran and enzyme-resistant starch of maize amylose, and four kinds of water-soluble dietary fibers, water-soluble dietary fiber of wheat bran, carboxymethyl cellulose, guar gum, and xanthan gum, were used to investigate their postprandial serum glucose lowering mechanism in vitro. The results showed that these dietary fibers lowered postprandial serum glucose levels at least by three mechanisms. First, dietary fibers increase the viscosity of small intestine juice and hinder diffusion of glucose; second, they bind glucose and decrease the concentration of available glucose in the small intestine; and, third, they retard alpha-amylase action through capsuling starch and the enzyme and might directly inhibit the enzyme. All of these decreased the absorption rate of glucose and the concentration of postprandial serum glucose.
Collapse
|
Comparative Study |
24 |
264 |
6
|
Bonetti B, Fu L, Moon J, Bedwell DM. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 1995; 251:334-45. [PMID: 7650736 DOI: 10.1006/jmbi.1995.0438] [Citation(s) in RCA: 238] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In a recent study we found that the efficiency of translation termination could be decreased several hundred fold by altering the local sequence context surrounding stop codons in the yeast Saccharomyces cerevisiae. Suppression of termination was shown to be mediated by near-cognate tRNA mispairing with the termination codon. We have now examined in greater detail how the local sequence context affects the efficiency of translation termination in this organism. Our results indicate that the sequence immediately upstream of the termination codon plays a significant role in determining the efficiency of translation termination. An extended termination sequence (containing the stop codon and the following three nucleotides) was also found to be a major determinant of termination efficiency, with effects attributable to the fourth nucleotide being largely independent of the termination codon. For the UGA and UAA stop codons, the influence of the fourth position on termination efficiency (from most efficient to least efficient termination) was found to be G > U,A > C, while for the UAG codon it was U,A > C > G. These sequence-specific effects on the efficiency of translation termination suggest that polypeptide chain release factor (or another molecule that may play a role in translation termination, such as rRNA) recognizes an extended termination sequence in yeast. A previous study found a statistically significant bias toward certain tetranucleotide sequences (containing the stop codon and the first distal nucleotide) in several organisms. We found that tetranucleotide sequences most frequently used in yeast are among the most efficient at mediating translation termination, while rare tetranucleotide sequences mediate much less efficient termination. Taken together, our results indicate that upstream and downstream components of an extended sequence context act synergistically to determine the overall efficiency of translation termination in yeast.
Collapse
|
|
30 |
238 |
7
|
Collman JP, Fu L, Herrmann PC, Zhang X. A functional model related to cytochrome c oxidase and its electrocatalytic four-electron reduction of O2. Science 1997; 275:949-51. [PMID: 9020071 DOI: 10.1126/science.275.5302.949] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cytochrome c oxidase model that consists of a cobalt(II) porphyrin with a copper(I) triazacyclononane macrocycle fastened on the distal face and an imidazole covalently attached to the proximal face has been synthesized and characterized. Redox titrations with molecular oxygen (O2) and cobaltocene were carried out, and O2 was found to bind irreversibly in a 1:1 ratio to the model compound. This O2 adduct (a bridged peroxide) can be fully reduced to the deoxygenated form with four equivalents of cobaltocene. The model compound was adsorbed on an edge-plane graphite electrode, and rotating ring-disk voltammetry was used to monitor the electrocatalytic reduction of O2. Four-electron reduction of O2 was observed at physiological pH.
Collapse
|
|
28 |
163 |
8
|
Wang H, Marsters SA, Baker T, Chan B, Lee WP, Fu L, Tumas D, Yan M, Dixit VM, Ashkenazi A, Grewal IS. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nat Immunol 2001; 2:632-7. [PMID: 11429548 DOI: 10.1038/89782] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interactions of the tumor necrosis factor superfamily members B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) with their receptors-transmembrane activator and CAML interactor (TACI) and B cell maturation molecule (BCMA)-on B cells play an important role in the humoral immune response. Whereas BCMA is restricted to B cells, TACI is also expressed on activated T cells; we show here that TACI-Fc blocks the activation of T cells in vitro and inhibits antigen-specific T cell activation and priming in vivo. In a mouse model for rheumatoid arthritis (RA), an autoimmune disease that involves both B and T cell components, TACI-Fc treatment substantially inhibited inflammation, bone and cartilage destruction and disease development. Thus, BLyS and/or APRIL are important not only for B cell function but for T cell-mediated immune responses. Inhibition of these ligands might have therapeutic benefits for autoimmune diseases, such as RA, that involve both B and T cells.
Collapse
|
|
24 |
160 |
9
|
Mao W, Irby R, Coppola D, Fu L, Wloch M, Turner J, Yu H, Garcia R, Jove R, Yeatman TJ. Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 1997; 15:3083-90. [PMID: 9444956 DOI: 10.1038/sj.onc.1201496] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent data suggest that signal transduction may have a critical role in the development and regulation of the metastatic phenotype. Here, we investigated the role of c-Src activation in the process of human colon cancer metastasis to the liver. Our data, derived from two different sets of human colon cancer cell line metastatic variants, suggest that not only do highly-metastatic cells display constitutively elevated c-Src protein kinase activity when compared to poorly metastatic cells, but also that receptor tyrosine kinases participate in the ligand-activation of c-Src above basal levels. Specifically, the epidermal growth factor receptor (EGFR), p185HER2/Neu and the hepatocyte growth factor receptor (c-Met) appear to be linked to the process because they preferentially activate c-Src in highly-metastatic cells. EGFR was found to associate with c-Src in colon cancer cells and specific inhibitors of the EGFR resulted in a reduction of c-Src activity to basal levels. In addition, c-Src transfectants displayed partially-activated EGFRs, suggesting a feedback role for c-Src in the regulation of the EGFR. p185HER2/Neu was also identified in immunocomplexes of c-Src following ligand activation of the EGFR, but only in highly-metastatic cells. Collectively, these observations suggest a paradigm whereby c-Src interacts with multiple cell-surface growth factors in a catalytic fashion for the development of tumor cells with metastatic potential.
Collapse
|
|
28 |
147 |
10
|
Narayanan S, Fu L, Pioro E, De Stefano N, Collins DL, Francis GS, Antel JP, Matthews PM, Arnold DL. Imaging of axonal damage in multiple sclerosis: spatial distribution of magnetic resonance imaging lesions. Ann Neurol 1997; 41:385-91. [PMID: 9066360 DOI: 10.1002/ana.410410314] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We performed magnetic resonance imaging and magnetic resonance spectroscopic imaging on 28 patients with multiple sclerosis stratified for disability and clinical course (relapsing with at least partial remissions or secondary progressive disease). Lesions were segmented on the conventional proton density and T2-weighted magnetic resonance images, and lesion distribution images were generated for, each patient. The conventional magnetic resonance and spectroscopic images were transformed into a standard brain-based stereotaxic coordinate space, allowing comparison of images from different patients on a voxel-by-voxel basis. The spatial distribution of lesions in the transformed magnetic resonance images did not differ significantly between the relapsing and the progressive disease groups. We then generated from the individual data sets, group lesion probability distribution images for the relapsing and the progressive disease groups. The spatial distribution of metabolites was characterized with respect to lesion distribution using the magnetic resonance spectroscopic images transformed into stereotaxic space and averaged. The neuronal marker N-acetylaspartate was diffusely lower in the multiple sclerosis patients than in normal control subjects. Comparison of the averaged metabolite and T2-weighted lesion probability images confirmed loss of N-acetylaspartate in regions of both high and low lesion probability. This suggests that diffuse axonal volume loss or dysfunction extends beyond the inflammatory lesions of multiple sclerosis, perhaps due to microscopic disease or wallerian degeneration along projection pathways of axons traversing the lesions.
Collapse
|
Clinical Trial |
28 |
143 |
11
|
Fu L, Bundy C, Sadiq SA. Psychological distress in people with disfigurement from facial palsy. Eye (Lond) 2011; 25:1322-6. [PMID: 21720412 PMCID: PMC3194312 DOI: 10.1038/eye.2011.158] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/06/2011] [Indexed: 11/09/2022] Open
Abstract
AIMS Psychological distress is well documented in people with facial disfigurement. However, the prevalence of psychological distress in patients with facial palsy has not been studied. This study aims to establish the prevalence of psychological distress and the extent of anxiety and depression in a sample of facial palsy patients from the Northwest of England. METHOD A total of 103 participants with facial palsy completed a questionnaire pack comprising the Illness Perception Questionnaire-Revised (IPQ-R), a demographic questionnaire, and the Hospital Anxiety and Depression Scale (HADS). The severity of participants' facial palsy was measured by the House-Brackmann scale. RESULTS In all, 32.7 and 31.3% of the sample had significant levels of anxiety and depression, respectively. The mean age of participants was 59, and 35.9% had grade 6 facial palsy. Significant associations were found between participants' perception of consequences, duration, timeline, and the level of distress. No significant associations were found between clinical severity of facial palsy and levels of distress. Females had significantly higher levels of anxiety compared with males. CONCLUSIONS There was a significant level of distress in this study group. The levels of psychological distress were higher than the levels found in other outpatient attenders. There were significant associations between participants' illness perceptions and their level of distress.
Collapse
|
other |
14 |
120 |
12
|
Miseta A, Kellermayer R, Aiello DP, Fu L, Bedwell DM. The vacuolar Ca2+/H+ exchanger Vcx1p/Hum1p tightly controls cytosolic Ca2+ levels in S. cerevisiae. FEBS Lett 1999; 451:132-6. [PMID: 10371152 DOI: 10.1016/s0014-5793(99)00519-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is well established that the vacuole plays an important role in the cellular adaptation to growth in the presence of elevated extracellular Ca2+ concentrations in Saccharomyces cerevisiae. The Ca2+ ATPase Pmc1p and the Ca2+/H+ exchanger Vcx1p/Hum1p have been shown to facilitate Ca2+ sequestration into the vacuole. However, the distinct physiological roles of these two vacuolar Ca2+ transporters remain uncertain. Here we show that Vcx1p can rapidly sequester a sudden pulse of cytosolic Ca2+ into the vacuole, while Pmc1p carries out this function much less efficiently. This finding is consistent with the postulated role of Vcx1p as a high capacity, low affinity Ca2+ transporter and suggests that Vcx1p may act to attenuate the propagation of Ca2+ signals in this organism.
Collapse
|
|
26 |
118 |
13
|
Shipley MT, Fu L, Ennis M, Liu WL, Aston-Jones G. Dendrites of locus coeruleus neurons extend preferentially into two pericoerulear zones. J Comp Neurol 1996; 365:56-68. [PMID: 8821441 DOI: 10.1002/(sici)1096-9861(19960129)365:1<56::aid-cne5>3.0.co;2-i] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The intrinsic cytoarchitecture and neurochemical organization of the nucleus locus coeruleus have been characterized extensively, but there is little information about the organization of locus coeruleus neuronal processes extending outside of the nucleus proper. Light and electron microscopic immunocytochemical techniques were used to investigate the distribution of dopamine-beta-hydroxylase- or tyrosine-hydroxylase-labeled extranuclear processes in the rat pericoerulear region. The vast majority of these processes extended preferentially into two zones: (1) the pontine tegmentum medial and rostral to locus coeruleus, here termed the rostromedial pericoerulear region; and (2) a narrow region adjacent to the IVth ventricle caudomedial to locus coeruleus, designated here as the caudal juxtaependymal pericoerulear region. Far fewer labeled processes extended into the lateral and ventral pericoerulear regions. Seventy-seven percent of the labeled profiles in the pericoerulear region were dendrites. All labeled profiles in the rostromedial pericoerulear region and 94% of the labeled profiles in the caudal juxtaependymal zone were dendrites. By contrast, in the rostroventral pericoerulear region, 25% of the labeled profiles were axons. Locus coeruleus extranuclear dendrites were never presynaptic to other structures but were often contacted by several unlabeled presynaptic terminals. These results indicate that the dendrites of locus coeruleus neurons extend preferentially into two pericoerulear zones. Extranuclear dendrites in all pericoerulear regions receive extensive, nonnoradrenergic synaptic contacts. Thus, pericoerulear dendrites, particularly in the rostromedial and caudal juxtaependymal zones, are important sites for the integration of inputs to locus coeruleus neurons.
Collapse
|
|
29 |
116 |
14
|
Matthews PM, Pioro E, Narayanan S, De Stefano N, Fu L, Francis G, Antel J, Wolfson C, Arnold DL. Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 1996; 119 ( Pt 3):715-22. [PMID: 8673485 DOI: 10.1093/brain/119.3.715] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Quantitative measurement of MRI-defined brain lesions can provide an index of the extent and activity of disease in multiple sclerosis patients. However, the relationships between these indices and clinical features are not well-understood. Heterogeneity of the pathological changes underlying MRI lesions may be an important factor determining the correlation between MRI lesion volumes and clinical measures. Recent studies have suggested that with magnetic resonance spectroscopy (MRS), it may be possible to define chemical changes that better reflect the pathological changes in multiple sclerosis. Here we report results of combined quantitative brain T2-weighted MRI lesion volume and proton MRS examinations that demonstrate heterogeneity of the chemical pathology underlying brain lesions in patients selected on the basis of similar clinical disability but differing with respect to the presence or absence of clinical relapses. We examined 29 patients with disease characterized by either clear relapses with at least partial remissions (RR) or secondary, chronic progression after an earlier history of a more relapsing and remitting course (SP). Total hemispheric lesion volume was greater (P < 0.04) in the RR (32.5 +/- 20.9 cm3) than in the SP (16.2 +/- 9.0 cm3) patients, despite the longer duration of disease in the latter group. Central brain N-acetyl aspartate: creatine (NAA:Cr) ratios were reduced relative to normal controls (4.0 +/- 0.3, n = 19) by similar amounts in the two patients groups (RR, 3.1 +/- 0.5; SP, 3.2 +/- 0.4; P < 0.0001). The ratio lesion volume:(NAA:Cr) was greater for the RR group (11.7 +/- 9.3 cm3) than for the SP group (5.4 +/- 3.3 cm3, P < 0.05), implying a greater average degree of axonal loss per unit lesion volume defined by MRI for subjects in the SP group or, alternatively, a greater proportion of lesions without axonal damage or loss in the RR group. Our results emphasize a limitation of using T2-weighted MRI lesion volume alone and suggest that combined analysis of MR-based chemical and imaging data might allow improved non-invasive assessment of lesion pathology in order to better understand its relationship to clinical features of multiple sclerosis.
Collapse
|
|
29 |
112 |
15
|
Fu L, Cheng YC. Role of additional mutations outside the YMDD motif of hepatitis B virus polymerase in L(-)SddC (3TC) resistance. Biochem Pharmacol 1998; 55:1567-72. [PMID: 9633992 DOI: 10.1016/s0006-2952(98)00050-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
L(-)SddC (3TC) has been shown to be the most promising nucleoside analogue used for the treatment of hepatitis B virus (HBV) infection. Unfortunately, it has been reported that about 12% of HBV-infected patients experience a recurrence of HBV after a period of treatment with 3TC. Point mutations were detected in the HBV polymerase of those viruses from 3TC-resistant patients. A common mutation occurred at methionine in the YMDD motif. In this report, we present mutants that were generated from the HBV genome (adr subtype) by site-directed mutagenesis based on clinical reports from other investigators. With the transient transfection system, it was found that by changing methionine to valine or isoleucine at the YMDD motif, the viral DNA replication would be more than 100-fold less efficient than that of the wild-type virus. Some additional mutations outside the YMDD motif could enhance the replication of the virus containing a YMDD mutation. Various levels of resistance to 3TC were observed in HBV mutants containing point mutations both inside and outside the YMDD motif. These results suggest that the mutations outside the YMDD motif compensate the YMDD mutation to some extent for the viral replication and may also contribute to clinical viral resistance to 3TC.
Collapse
|
|
27 |
107 |
16
|
Fu L, Benchimol S. Participation of the human p53 3'UTR in translational repression and activation following gamma-irradiation. EMBO J 1997; 16:4117-25. [PMID: 9233820 PMCID: PMC1170034 DOI: 10.1093/emboj/16.13.4117] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
p53 protein levels have been shown to increase in a number of cells after treatment with genotoxic agents through a post-transcriptional mechanism. In gamma-irradiated human cells, the accumulation of p53 protein is accompanied by an increase in the association of p53 mRNA with large polysomes without any change in the level of p53 mRNA. This redistribution of p53 mRNA on polysomes in response to irradiation is consistent with enhanced translational activity of p53 mRNA. We demonstrate that a region of the p53 3'-untranslated region (3'UTR) inhibits translation of a chimeric reporter mRNA in vivo. Induced elevation of reporter activity after gamma-irradiation was seen in cells expressing chimeric reporter-p53 3'UTR transcripts. These data taken together demonstrate translational control of p53 gene expression after gamma-irradiation and denote a previously unsuspected and novel role for the p53 3'UTR in controlling translation.
Collapse
|
research-article |
28 |
97 |
17
|
Lavi E, Kolson DL, Ulrich AM, Fu L, González-Scarano F. Chemokine receptors in the human brain and their relationship to HIV infection. J Neurovirol 1998; 4:301-11. [PMID: 9639073 DOI: 10.3109/13550289809114531] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chemokine receptors have been recently identified as the important co-factors which in conjunction with CD4, mediate entry of HIV into its target cells. The brain is one of the most prominent targets of HIV infection, where it leads to HIV encephalitis (HIVE) and HIV-associated dementia. Knowledge of the distribution, physiology, and pathology of chemokines and chemokine receptors in the human brain is fundamental for understanding the pathogenesis of the interaction between HIV and the central nervous system (CNS). There is also increasing evidence that chemokine receptors expression in the CNS increases during pathological, especially inflammatory, conditions. The major co-factors for HIV infection, CCR5, CCR3, and CXCR4 have been detected in the human brain in a variety of cell types including microglia, astrocytes, neurons, and vascular endothelial cells. Furthermore, antibodies to chemokine receptors can also block HIV infectivity in cultured CNS cells. This indicates that chemokine receptors are likely to have a functional role in the pathogenesis of HIVE.
Collapse
|
Review |
27 |
96 |
18
|
Fu L, Wu NQ, Yang JH, Qu F, Johnson DL, Kung MC, Kung HH, Dravid VP. Direct Evidence of Oxidized Gold on Supported Gold Catalysts. J Phys Chem B 2005; 109:3704-6. [PMID: 16851411 DOI: 10.1021/jp045117e] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supported gold catalysts have drawn worldwide interest due to the novel properties and potential applications in industries. However, the origin of the catalytic activity in gold nanoparticles is still not well understood. In this study, time-of-flight secondary ion mass spectroscopy (TOF-SIMS) has been applied to investigate the nature of gold in Au (1.3 wt %)/gamma-Al2O3 and Au (2.8 wt %)/TiO2 catalysts prepared by the deposition-precipitation method. The SIMS spectrum of the supported gold catalysts presented AuO-, AuO2-, and AuOH- ion clusters. These measurements show direct evidence for oxidized gold on supported gold catalysts and may be helpful to gaining better understanding of the origin of the catalytic activity.
Collapse
|
|
20 |
95 |
19
|
Liu S, Yang W, Wang H, Fu L, Jiang F. Prior-online iteration for image reconstruction with electrical capacitance tomography. ACTA ACUST UNITED AC 2004. [DOI: 10.1049/ip-smt:20040246] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
|
21 |
95 |
20
|
|
|
29 |
94 |
21
|
Das Sarma J, Fu L, Tsai JC, Weiss SR, Lavi E. Demyelination determinants map to the spike glycoprotein gene of coronavirus mouse hepatitis virus. J Virol 2000; 74:9206-13. [PMID: 10982367 PMCID: PMC102119 DOI: 10.1128/jvi.74.19.9206-9213.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Demyelination is the pathologic hallmark of the human immune-mediated neurologic disease multiple sclerosis, which may be triggered or exacerbated by viral infections. Several experimental animal models have been developed to study the mechanism of virus-induced demyelination, including coronavirus mouse hepatitis virus (MHV) infection in mice. The envelope spike (S) glycoprotein of MHV contains determinants of properties essential for virus-host interactions. However, the molecular determinants of MHV-induced demyelination are still unknown. To investigate the mechanism of MHV-induced demyelination, we examined whether the S gene of MHV contains determinants of demyelination and whether demyelination is linked to viral persistence. Using targeted RNA recombination, we replaced the S gene of a demyelinating virus (MHV-A59) with the S gene of a closely related, nondemyelinating virus (MHV-2). Recombinant viruses containing an S gene derived from MHV-2 in an MHV-A59 background (Penn98-1 and Penn98-2) exhibited a persistence-positive, demyelination-negative phenotype. Thus, determinants of demyelination map to the S gene of MHV. Furthermore, viral persistence is insufficient to induce demyelination, although it may be a prerequisite for the development of demyelination.
Collapse
|
research-article |
25 |
92 |
22
|
Abstract
Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.
Collapse
|
|
18 |
86 |
23
|
Aslam M, Fu L, Li S, Dravid VP. Silica encapsulation and magnetic properties of FePt nanoparticles. J Colloid Interface Sci 2006; 290:444-9. [PMID: 15935370 DOI: 10.1016/j.jcis.2005.04.050] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Revised: 04/12/2005] [Accepted: 04/14/2005] [Indexed: 11/28/2022]
Abstract
Core-shell nanoparticles have emerged as an important class of functional nanostructures with potential applications in many diverse fields, especially in health sciences. We have used a modified aqueous sol-gel route for the synthesis of size-selective FePt@SiO2 core-shell nanoparticles. In this approach, oleic acid and olyel amine stabilized FePt nanoparticles are first encapsulated through an aminopropoxysilane (APS) monolayer and then subsequent condensation of triethoxysilane (TEOS) on FePt particle surface. These well-defined FePt@SiO2 core-shell nanoparticles with narrow size distribution become colloidal in aqueous media, and can thus be used as carrier fluid for biomolecular complexes. In comparison, the scarce hydrophilic nature of oleic acid monolayers on FePt particle surface yields an edgy partial coating of silica when only TEOS is applied for the surface modification. The synthesized core-shell nanoparticles were characterized by direct techniques of high resolution transmission electron microscopy (HRTEM), EDS and indirectly via UV-vis absorption and FTIR studies. The FePt@SiO2 nanoparticles exhibit essential characteristics of superparamagnetic behavior, as investigated by SQUID magnetometry. The blocking temperatures (T(B)) of FePt and FePt@SiO2 (135 and 80 K) were studied using zero field cooled (ZFC)/field cooled (FC) curves.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
80 |
24
|
Li T, Zhang Y, Fu L, Yu C, Li X, Li Y, Zhang X, Rong Z, Wang Y, Ning H, Liang R, Chen W, Babiuk LA, Chang Z. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther 2005; 12:751-61. [PMID: 15772689 PMCID: PMC7091583 DOI: 10.1038/sj.gt.3302479] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SARS-CoV (the SARS-Associated Coronavirus) was reported as a novel virus member in the coronavirus family, which was the cause of severe acute respiratory syndrome. Coronavirus replication occurs through a unique mechanism employing Leader sequence in the transcripts when initiating transcription from the genome. Therefore, we cloned the Leader sequence from SARS-CoV(BJ01), which is identical to that identified from SARS-CoV(HKU-39849), and constructed specific siRNA targeting the Leader sequence. Using EGFP and RFP reporter genes fused with the cloned SARS-CoV Leader sequence, we demonstrated that the siRNA targeting the Leader sequence decreased the mRNA abundance and protein expression levels of the reporter genes in 293T cells. By stably expressing the siRNA in Vero E6 cells, we provided data that the siRNA could effectively and specifically decrease the mRNA abundance of SARS-CoV genes as analyzed by RT-PCR and Northern blot. Our data indicated that the siRNA targeting the Leader sequence inhibited the replication of SARS-CoV in Vero E6 cells by silencing gene expression. We further demonstrated, via transient transfection experiments, that the siRNA targeting the Leader sequence had a much stronger inhibitory effect on SARS-CoV replication than the siRNAs targeting the Spike gene or the antisense oligodeoxynucleotides did. This report provides evidence that targeting Leader sequence using siRNA could be a powerful tool in inhibiting SARS-CoV replication.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
76 |
25
|
Abstract
We have prepared a robust polymer that can be used to measure glucose concentrations in complex biological media. At alkaline pH, the metal-complexing polymer binds glucose and instantly releases protons in proportion to the glucose concentration over a clinically relevant range (0 to 25 mM). The inexpensive polymer is sufficiently selective to provide an easily measurable response to glucose in porcine plasma. The polymer's ability to function at nonphysiological pH (at which the buffer capacity of biological samples is small) makes it possible to design simple and inexpensive sensing devices based on measurement of changes in proton concentration.
Collapse
|
|
28 |
70 |