1
|
Wang X, Sahota DS, Wong L, Nguyen-Hoang L, Chen Y, Tai AST, Liu F, Lau SL, Lee APW, Poon LC. Prediction of pre-eclampsia using maternal hemodynamic parameters at 12 + 0 to 15 + 6 weeks. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2025. [PMID: 39825806 DOI: 10.1002/uog.29177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025]
Abstract
OBJECTIVES To compare the maternal hemodynamic profile at 12 + 0 to 15 + 6 weeks' gestation in women who subsequently developed pre-eclampsia (PE) and those who did not, and to assess the screening performance of maternal hemodynamic parameters for PE in combination with the Fetal Medicine Foundation (FMF) triple test, including maternal factors (MF), mean arterial pressure (MAP), uterine artery pulsatility index and placental growth factor. METHODS This was a prospective case-control study involving Chinese women with a singleton pregnancy who underwent preterm PE screening at 11 + 0 to 13 + 6 weeks' gestation using the FMF triple test, between February 2020 and February 2023. Women identified as being at high risk (≥ 1:100) for preterm PE by the FMF triple test were matched 1:1 with women identified as low risk (< 1:100) for maternal age ± 3 years, maternal weight ± 5 kg and date of screening ± 14 days. Two-dimensional transthoracic echocardiography was performed at 12 + 0 to 15 + 6 weeks to evaluate maternal hemodynamic parameters (heart rate (HR), stroke volume (SV), cardiac output (CO) and systemic vascular resistance (SVR)). Maternal hemodynamic parameters were expressed as multiples of the median (MoM) values, determined by linear regression models to adjust for gestational age (GA) and MF. The distribution of log10 MoM values of maternal hemodynamic parameters in cases of PE and unaffected pregnancies, and the association between these hemodynamic parameters and GA at delivery, were assessed. The risks of preterm PE (delivery before 37 weeks) and any-onset PE (delivery at any time) were reassessed using Bayes' theorem after maternal hemodynamic parameters were added to the FMF triple test. The screening performance for preterm PE and any-onset PE was determined by the area under the receiver-operating-characteristics curve (AUC) and detection rate at a 10% fixed false-positive rate (FPR). Differences in AUC (ΔAUC) were assessed using DeLong's test. RESULTS A total of 743 cases were analyzed, of whom 39 (5.2%) subsequently developed PE, including 29 (3.9%) cases of preterm PE and 10 (1.3%) cases of term PE. Mean log10 SVR MoM was significantly higher in cases of preterm PE and any-onset PE compared with unaffected pregnancies. Mean log10 SV MoM and log10 CO MoM were significantly lower in cases of preterm PE and any-onset PE compared with unaffected pregnancies. Mean log10 HR MoM was not significantly different between the study groups. Mean log10 CO MoM and log10 SVR MoM were not significantly correlated with GA at delivery in preterm PE and any-onset PE. For the prediction of preterm PE and any-onset PE, adding CO or SVR or replacing MAP with CO and SVR in the FMF triple test achieved an identical or greater AUC compared with the FMF triple test, but ΔAUC was not significantly different. In addition, adding CO or SVR or replacing MAP by CO and SVR in the FMF triple test did not improve the detection rate for preterm PE and any-onset PE at a fixed FPR of 10%. CONCLUSIONS Women with preterm PE or any-onset PE exhibited increased SVR and decreased CO before the clinical manifestations of PE became apparent. These changes may serve as early indicators of cardiovascular maladaptation. However, assessment of maternal hemodynamics at 12 + 0 to 15 + 6 weeks does not enhance the screening performance for preterm PE and any-onset PE of these parameters. The FMF triple test remains superior to other biomarker combinations for predicting PE. © 2025 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
|
2
|
Mallinson AI, Longridge NS, Roseborough S, Wong L. The clinical meaning and significance of OVEMP morphology. Eur Arch Otorhinolaryngol 2024; 281:6333-6338. [PMID: 39103504 DOI: 10.1007/s00405-024-08860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE While some OVEMP recordings are morphologically straightforward, some are poor in appearance, which can create a challenge, as they often require a "second look" by another experienced assessor. Even OVEMPs in normal subjects are sometimes poorly formed, but we wondered if the morphological assessment of the OVEMP response might provide some additional diagnostic information. METHODS A single experienced assessor evaluated the OVEMP recordings of 60 patients referred sequentially to a tertiary care centre, and categorized them as "easy to assess" (i.e. obvious to a minimally trained assessor) or "difficult to assess", often requiring a second look by another experienced assessor. RESULTS In 48 patients, the results were easy to assess (regardless of the actual clinical results) while 12 were classified as "difficult". This figure reflected the rate of morphologically poor responses we found in our population of normative data. CONCLUSION Our clinical concern is that many centres have given up relying on OVEMP assessment because the morphology of the wave may be challenging to interpret. OVEMP assessment often calls for a "second look", requiring a collaboration between two experienced assessors. It seems that this feature may not be diagnostically useful and poor OVEMP morphology may present a challenge in interpretation, but this should not be used as a reason to defer OVEMP testing.
Collapse
|
3
|
Liu F, Lu J, Kwan AHW, Yeung YK, Wong L, Chiu CPH, Poon LC, Sahota DS. Consolidated and updated ultrasonographic fetal biometry and estimated fetal weight references for the Hong Kong Chinese population. Hong Kong Med J 2024; 30:444-451. [PMID: 39676617 DOI: 10.12809/hkmj2310910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
INTRODUCTION This study aimed to construct consolidated and updated ultrasonographic fetal biometry and estimated fetal weight (EFW) references for the Hong Kong Chinese population and evaluate the extent of under- and overdiagnosis of small-for-gestational-age (SGA) and large-for-gestational-age (LGA) using these new references. METHODS Fetal biometry and EFW references were constructed using the Generalised Additive Model for Location, Scale, and Shape, based on data from 1679 singleton pregnancies in non-smoking Chinese women. Ultrasound scans were performed at 12 to 40 weeks of gestation to measure biparietal diameter, head circumference, abdominal circumference (AC), and femur length, following standardised protocols. The rates of SGA and LGA diagnoses using the existing and updated Hong Kong fetal biometry references were compared in an independent cohort of 10 229 pregnancies. RESULTS The median number of scans per gestational week between 20 and 39 weeks was 75 (interquartile range=67-83). Compared with existing references, the new AC reference would significantly (P<0.001) increase the proportions of SGA fetuses with AC measurements at <3rd and <10th percentiles from 1.7% and 6.1% to 3.4% and 10.0%, respectively. Conversely, it would significantly decrease (P<0.001) the proportions of LGA fetuses with AC at >90th and >97th percentiles from 15.0% and 4.9% to 11.5% and 3.5%, respectively. CONCLUSION Adoption of the new references, particularly for AC, may lead to increased identification of SGA cases and decreased identification of LGA cases. The proportions of these cases will be more consistent with their intended diagnostic thresholds. Further studies are needed to determine how these references impact pregnancy outcomes.
Collapse
|
4
|
Wang X, Chen Y, Sahota DS, Tai S, Liu F, Wong L, Liu J, Lau S, Hoang LN, Lee A, Poon LC. Abstracts of the 34th World Congress on Ultrasound in Obstetrics and Gynecology, 15-18 September 2024, Budapest, Hungary. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64 Suppl 1:99. [PMID: 39249724 DOI: 10.1002/uog.27994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
|
5
|
Tse AW, Wong L, Wah Y, Ting Y, Law K, Poon LC, Leung T. Abstracts of the 34th World Congress on Ultrasound in Obstetrics and Gynecology, 15-18 September 2024, Budapest, Hungary. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64 Suppl 1:284-285. [PMID: 39248970 DOI: 10.1002/uog.28746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
|
6
|
Gwata N, Hui A, Wong L, Thee LJ, Tsaltas J, Mol B. A 24-Months Follow-Up Study of Individuals With Endometriosis Using Transvaginal Ultrasound. J Minim Invasive Gynecol 2024; 31:695-703. [PMID: 38692482 DOI: 10.1016/j.jmig.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
STUDY OBJECTIVE To investigate the progression of deep infiltrating endometriosis using transvaginal ultrasound surveillance of patients undergoing conservative management. DESIGN Retrospective single cohort. SETTING Australian tertiary university hospital PATIENTS: One hundred twenty two women with endometriosis proven on transvaginal ultrasound who had not undergone surgical management. INTERVENTIONS The progression of endometriosis lesions demonstrated on transvaginal ultrasound in women receiving conservative management over the course of 24 months. MEASUREMENTS AND MAIN RESULTS A total of 122 patients fulfilled the inclusion criteria. All women had 2 ultrasounds that were performed at least 6 months apart. The median follow-up time was 490.5 days (255.4-725.6). At second scan, 22% (95% CI: 15-30%) of cohort experienced an increase in the number of endometriosis nodules compared to first scan, with 51% (95% CI: 42-60%) remaining static while 27% (95% CI: 19-35%) experienced a decrease. While there was no statistically significant difference in the volumes of uterosacral ligament, retro cervical, and bowel endometriosis, endometrioma volumes were significantly lower at second scan (Median = 3.24 mL, IQR = 0.6-16.87) as compared to the first scan (Median = 7.41 mL, IQR = 2.04-28.95), p <.001. CONCLUSION Individuals with deep infiltrating endometriosis are unlikely to see significant disease progression over time. Both surgical and nonsurgical interventions are effective in managing endometriosis in terms of endometriotic nodule size and number, as measured by ultrasound.
Collapse
|
7
|
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Allen A, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Archuleta TN, Arend M, Arnold P, Arnold T, Arsenlis A, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AAS, Aybar N, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger RL, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Boyle D, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs R, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman TD, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christiansen NS, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins GW, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Danly C, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Do A, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, Drury O, DuBois DF, DuBois PF, Dunham G, Durocher M, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Fehrenbach T, Feit M, Felker B, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geddes CGR, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani FR, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Higginson DP, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins LF, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KHK, Inandan L, Iglesias C, Igumenshchev IV, Ivanovich I, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Krauland CM, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kur E, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lagin L, Lahmann B, Lairson B, Landen OL, Land T, Lane M, Laney D, Langdon AB, Langenbrunner J, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Manuel MJE, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez JI, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JMG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora RC, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Oesterle AL, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedretti A, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phillion D, Phipps TJ, Piceno E, Pickworth L, Ping Y, Pino J, Piston K, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo PW, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen MD, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmit PF, Smidt JM, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Smith R, Schölmerich M, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanley J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CH, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Stutz J, Summers L, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Wharton KB, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmann K, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff PJ, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Yu J, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, Zylstra AB. Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment. PHYSICAL REVIEW LETTERS 2024; 132:065102. [PMID: 38394591 DOI: 10.1103/physrevlett.132.065102] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024]
Abstract
On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.
Collapse
|
8
|
Fischerova D, Santos G, Wong L, Yulzari V, Bennett RJ, Dundr P, Burgetova A, Barsa P, Szabó G, Sousa N, Scovazzi U, Cibula D. Imaging in gynecological disease (26): clinical and ultrasound characteristics of benign retroperitoneal pelvic peripheral-nerve-sheath tumors. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:727-738. [PMID: 37058402 DOI: 10.1002/uog.26223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE To describe the clinical and sonographic characteristics of benign, retroperitoneal, pelvic peripheral-nerve-sheath tumors (PNSTs). METHODS This was a retrospective study of patients with a benign, retroperitoneal, pelvic PNST who had undergone preoperative ultrasound examination at a single gynecologic oncology center between 1 January 2018 and 31 August 2022. All ultrasound images, videoclips and final histological specimens of benign PNSTs were reviewed side-by-side in order to: describe the ultrasound appearance of the tumors, using the terminology of the International Ovarian Tumor Analysis (IOTA), Morphological Uterus Sonographic Assessment (MUSA) and Vulvar International Tumor Analysis (VITA) groups, following a predefined ultrasound assessment form; describe their origin in relation to nerves and pelvic anatomy; and assess the association between their ultrasound features and histotopography. A review of the literature reporting benign, retroperitoneal, pelvic PNSTs with preoperative ultrasound examination was performed. RESULTS Five women (mean age, 53 years) with a benign, retroperitoneal, pelvic PNST were identified, four with a schwannoma and one with a neurofibroma, of which all were sporadic and solitary. All patients had good-quality ultrasound images and videoclips and final biopsy of surgically excised tumors, except one patient managed conservatively who had only a core needle biopsy. In all cases, the findings were incidental. The five PNSTs ranged in maximum diameter from 31 to 50 mm. All five PNSTs were solid, moderately vascular tumors, with non-uniform echogenicity, well-circumscribed by hyperechogenic epineurium and with no acoustic shadowing. Most of the masses were round (n = 4 (80%)), and contained small, irregular, anechoic, cystic areas (n = 3 (60%)) and hyperechogenic foci (n = 5 (100%)). In the woman with a schwannoma in whom surgery was not performed, follow-up over a 3-year period showed minimal growth (1.5 mm/year) of the mass. We also summarize the findings of 47 cases of benign retroperitoneal schwannoma and neurofibroma identified in a literature search. CONCLUSIONS On ultrasound examination, no imaging characteristics differentiate reliably between benign schwannomas and neurofibromas. Moreover, benign PNSTs show some similar features to malignant retroperitoneal tumors. They are solid lesions with intralesional blood vessels and show degenerative changes such as cystic areas and hyperechogenic foci. Therefore, ultrasound-guided biopsy may play a pivotal role in their diagnosis. If confirmed to be benign PNSTs, these tumors can be managed conservatively, with ultrasound surveillance. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
|
9
|
Goergen S, Coombs P, Wong L, Whiteley G. Prenatal diagnosis of a vermis cyst: a further case. Pediatr Radiol 2023; 53:2311-2313. [PMID: 37599289 DOI: 10.1007/s00247-023-05740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
|
10
|
Suratwala T, Tham G, Steele R, Wong L, Menapace J, Ray N, Bauman B. Smoothing tool design and performance during subaperture glass polishing. APPLIED OPTICS 2023; 62:2061-2072. [PMID: 37133094 DOI: 10.1364/ao.482739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During subaperture tool grinding and polishing, overlaps of the tool influence function can result in undesirable mid-spatial frequency (MSF) errors in the form of surface ripples, which are often corrected using a smoothing polishing step. In this study, flat multi-layer smoothing polishing tools are designed and tested to simultaneously (1) reduce or remove MSF errors, (2) minimize surface figure degradation, and (3) maximize the material removal rate. A time-dependent convergence model in which spatial material removal varies with a workpiece-tool height mismatch, combined with a finite element mechanical analysis to determine the interface contact pressure distribution, was developed to evaluate various smoothing tool designs as a function of tool material properties, thicknesses, pad textures, and displacements. An improvement in smoothing tool performance is achieved when the gap pressure constant, h¯ (which describes the inverse rate at which the pressure drops with a workpiece-tool height mismatch), is minimized for smaller spatial scale length surface features (namely, MSF errors) and maximized for large spatial scale length features (i.e., surface figure). Five specific smoothing tool designs were experimentally evaluated. A two-layer smoothing tool using a thin, grooved IC1000 polyurethane pad (with a high elastic modulus, E p a d =360M P a), thicker blue foam (with an intermediate modulus, E f o a m =5.3M P a) underlayer, and an optimized displacement (d t=1m m) provided the best overall performance (namely, high MSF error convergence, minimal surface figure degradation, and high material removal rate).
Collapse
|
11
|
Hui ASY, Chan WWY, Wah YM, Wong L, Lam HSHS, Leung TY. Delayed interval delivery in twin pregnancy in Hong Kong: two case reports. Hong Kong Med J 2023; 29:73-75. [PMID: 36810243 DOI: 10.12809/hkmj219861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
12
|
Suratwala T, Ross J, Steele R, Tham G, Wong L, Wolfs F, Defisher S, Bechtold R, Rinkus M, Mah C. Understanding the tool influence function during sub-aperture belt-on-wheel glass polishing. APPLIED OPTICS 2023; 62:91-101. [PMID: 36606856 DOI: 10.1364/ao.476547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The tool influence function (TIF) during sub-aperture belt-on-wheel polishing has been evaluated as a function of various process conditions (belt use/wear, dwell time, displacement, belt velocity, and wheel modulus and diameter) on fused silica glass workpieces using C e O 2 polishing media. TIF spots are circular or elliptical in shape with a largely flat bottom character. The volumetric removal rate varies significantly with belt use (or wear), stabilizing after ∼15m i n of use. A modified Preston model, where the pressure dependence is adjusted using a different scaling of the wheel modulus (E w0.5), largely predicts the volumetric removal rate over the range of process conditions evaluated. The relatively high volumetric removal rate of 30-60m m 3/h using a fixed C e O 2-in-resin-host belt offers a rapid, and hence, more economical, initial polish of aspheric and freeform optics.
Collapse
|
13
|
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Arend M, Arnold P, Arnold T, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AS, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger R, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman T, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins G, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, DuBois DF, DuBois PF, Dunham G, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Feit M, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani F, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins L, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KHK, Inandan L, Iglesias C, Igumenshchev IV, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lahmann B, Lairson B, Landen OL, Langenbrunner J, Lagin L, Land T, Lane M, Laney D, Langdon AB, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal C, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JMG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora R, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phipps TJ, Piceno E, Ping Y, Pickworth L, Pino J, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo P, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen M, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmitt MJ, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schölmerich M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CB, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Widmann K, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff J, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, Zylstra AB. Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment. PHYSICAL REVIEW LETTERS 2022; 129:075001. [PMID: 36018710 DOI: 10.1103/physrevlett.129.075001] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion.
Collapse
|
14
|
Noman MAA, Huang DS, Coulup SK, Syeda SS, Henry, Wong L, Georg GI. Cytotoxicity of phenylpironetin analogs and the metabolic fate of pironetin and phenylpironetin. Bioorg Chem 2022; 125:105915. [PMID: 35660840 PMCID: PMC11557558 DOI: 10.1016/j.bioorg.2022.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022]
Abstract
To improve pironetin's metabolic stability we prepared four analogs by replacing its C12-14 segment with an aryl group. The antiproliferative activity of phenyl analog 4 was reduced two-fold and dihydroxy-4-fluorophenyl analog 5 was slightly more effective against OVCAR5 and A2780 ovarian cancer cell lines compared with the parent compound pironetin (1). The activity of 4-fluorophenyl analog 6 was reduced 3-fold in both cell lines. The activity of 7-O-methyl analog 7 was reduced 36-fold in OVCAR5 cells and 47-fold and A2780 cells, compared with pironetin. Phenylpironetin (4) was rapidly metabolized by mouse and human liver microsomes. We identified 17 human metabolites for phenyl analog 4 and 14 human metabolites for pironetin. Metabolism occurred at the C12-13 moiety, the α,β-unsaturated lactone and the side chains of the molecules (C6-C11 segments). The significant extent of oxidative metabolism suggests that it may not be possible to attain a metabolically stable pironetin analog by structural modifications of the parent compound.
Collapse
|
15
|
Wah YMI, Sahota DS, Chaemsaithong P, Wong L, Kwan AHW, Ting YH, Law KM, Leung TY, Poon LC. Impact of replacing or adding pregnancy-associated plasma protein-A at 11-13 weeks on screening for preterm pre-eclampsia. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:200-206. [PMID: 35468236 DOI: 10.1002/uog.24918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To assess whether pregnancy-associated plasma protein-A (PAPP-A) alters or provides equivalent screening performance as placental growth factor (PlGF) when screening for preterm pre-eclampsia (PE) at 11-13 weeks of gestation. METHODS This was a secondary analysis of a non-intervention screening study of 6546 singleton pregnancies that were screened prospectively for preterm PE in the first trimester between December 2016 and June 2018. Patient-specific risks for preterm PE were estimated by maternal history, mean arterial pressure (MAP), uterine artery pulsatility index (UtA-PI), PlGF and PAPP-A. A competing-risks model with biomarkers expressed as multiples of the median was used. All women and clinicians were blinded to the risk for preterm PE. The performance of screening for preterm PE using PlGF vs PAPP-A vs both PAPP-A and PlGF was assessed by comparing areas under the receiver-operating-characteristics (AUC) curves. McNemar's test was used to compare detection rate at a fixed false-positive rate (FPR) of 10%. RESULTS PlGF and PAPP-A were measured in 6546 women, of whom 37 developed preterm PE. The AUC and detection rate at 10% FPR using PlGF in combination with maternal history, MAP and UtA-PI were 0.854 and 59.46%, respectively. The respective values were 0.813 and 51.35% when replacing PlGF with PAPP-A and 0.855 and 59.46% when using both PAPP-A and PlGF. Statistically non-significant differences were noted in AUC when replacing PlGF with PAPP-A (ΔAUC, 0.04; P = 0.095) and when using both PAPP-A and PlGF (ΔAUC, 0.002; P = 0.423). However, on an individual case basis, screening using PlGF in conjunction with maternal history, MAP and UtA-PI identified three (8.1%) additional pregnancies that developed preterm PE and that were not identified when replacing PlGF with PAPP-A. Screening using PAPP-A in addition to maternal history and other biomarkers did not identify any additional pregnancies. CONCLUSION On an individual case basis, adoption of a screening strategy that uses PAPP-A instead of PlGF results in reduced detection of preterm PE, consistent with previous literature. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
|
16
|
Wong L, Lee C, Yen Y. 054 IL-18 regulates nerve growth factor and semaphorin 3A in dermatomyositis-related pruritus. J Invest Dermatol 2022. [DOI: 10.1016/j.jid.2022.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Cao Y, Chau M, Zheng Y, Zhao YL, Kwan A, Hui A, Lam YH, Tan T, Tse WT, Wong L, Leung TY, Dong Z, Choy KW. Exploring the diagnostic utility of genome sequencing for fetal congenital heart defects. Prenat Diagn 2022; 42:862-872. [PMID: 35441720 DOI: 10.1002/pd.6151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The diagnostic yield for congenital heart defects (CHD) with routine genetic testing is around 10-20% when considering the pathogenic CNVs or aneuploidies as positive findings. This is a pilot study to investigate the utility of genome sequencing (GS) for prenatal diagnosis of CHD. METHODS Genome sequencing (GS, 30X) was performed on 13 trios with CHD for which karyotyping and/or chromosomal microarray results were non-diagnostic. RESULTS Trio GS provided a diagnosis for 4/13 (30.8%) fetuses with complex CHDs and other structural anomalies. Findings included pathogenic or likely pathogenic variants in DNAH5, COL4A1, PTPN11, and KRAS. Of nine cases without a possibly genetic etiology by GS, we had follow-up on eight. For five of them (60%), the parents chose to keep the pregnancy. A balanced translocation [46,XX,t(14;22)(q32.33;q13.31)mat] was detected in a trio with biallelic DNAH5 mutations, which together explained the recurrent fetal situs inversus and dextrocardia that was presumably due to de novo Phelan-McDermid syndrome. A secondary finding of a BRCA2 variant and carrier status of HBB, USH2A, HBA1/HBA2 were detected in the trio. CONCLUSIONS GS expands the diagnostic scope of mutation types over conventional testing, revealing the genetic etiology for fetal heart anomalies. Patients without a known genetic abnormality indicated by GS likely opted to keep pregnancy especially if the heart issue could be repaired. We provide evidence to support the application of GS for fetuses with CHD. This article is protected by copyright. All rights reserved.
Collapse
|
18
|
Suratwala T, Menapace J, Tham G, Steele R, Wong L, Ray N, Bauman B. Understanding and reducing mid-spatial frequency ripples during hemispherical sub-aperture tool glass polishing. APPLIED OPTICS 2022; 61:3084-3095. [PMID: 35471283 DOI: 10.1364/ao.455233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
During sub-aperture tool polishing of glass optics, mid-spatial surface ripples are generated because of material removal non-uniformities during tool linear translation (resulting in feed ripples) and tool pathway step overlaps (resulting in pitch ripples). A variety of tool influence function (TIF) spots, trenches, and patches were created to understand and minimize such ripples on fused silica workpieces after polishing with cerium oxide slurry using a rotating hemispherical pad-foam tool. The feed ripple amplitude can be decreased by reducing the non-uniformities in the pad texture and/or by minimizing a derived feed ripple metric (rf=Vmax0.5Vf/Rt) via adjustments in processing parameters. Pitch ripples can be minimized by reducing relative step distance to spot radius ratio (xs/at) and by achieving a flat bottom trench shape cross section or by reducing the material removal per pass. Using the combined methods, an overall ripple error of ∼1.2nm rms has been achieved.
Collapse
|
19
|
Liu L, Li W, Leonardi M, Condous G, Da Silva Costa F, Mol BW, Wong L. Diagnostic Accuracy of Transvaginal Ultrasound and Magnetic Resonance Imaging for Adenomyosis: Systematic Review and Meta-Analysis and Review of Sonographic Diagnostic Criteria. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2289-2306. [PMID: 33502767 DOI: 10.1002/jum.15635] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 05/14/2023]
Abstract
We aim to first systematically review and perform a meta-analysis of the diagnostic accuracy of transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI) and, second, to evaluate the accuracy of various sonographic diagnostic criteria for adenomyosis. A search of PubMed and Embase yielded 32 eligible studies. In diagnosing adenomyosis, the diagnostic performance of TVUS was found to be high and comparable to the performance of MRI. Of the eight sonographic criteria, only five were assessable. The best individual criterion was echogenic subendometrial lines and buds. Limited data exist for the various sonographic criteria, and further studies are required to compare their performance.
Collapse
|
20
|
Kwan AHW, Chaemsaithong P, Wong L, Tse WT, Hui ASY, Poon LC, Leung TY. Transperineal ultrasound assessment of fetal head elevation by maneuvers used for managing umbilical cord prolapse. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 58:603-608. [PMID: 33219729 DOI: 10.1002/uog.23544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To assess objectively the degree of fetal head elevation achieved by different maneuvers commonly used for managing umbilical cord prolapse. METHODS This was a prospective observational study of pregnant women at term before elective Cesarean delivery. A baseline assessment of fetal head station was performed with the woman in the supine position, using transperineal ultrasound for measuring the parasagittal angle of progression (psAOP), head-symphysis distance (HSD) and head-perineum distance (HPD). The ultrasonographic measurements of fetal head station were repeated during different maneuvers, including elevation of the maternal buttocks using a wedge, knee-chest position, Trendelenburg position with a 15° tilt and filling the maternal urinary bladder with 100 mL, 300 mL and 500 mL of normal saline. The measurements obtained during the maneuvers were compared with the baseline measurements. RESULTS Twenty pregnant women scheduled for elective Cesarean section at term were included in the study. When compared with baseline (median psAOP, 103.6°), the knee-chest position gave the strongest elevation effect, with the greatest reduction in psAOP (psAOP, 80.7°; P < 0.001), followed by filling the bladder with 500 mL (psAOP, 89.9°; P < 0.001) and 300 mL (psAOP, 94.4°; P < 0.001) of normal saline. Filling the maternal bladder with 100 mL of normal saline (psAOP, 96.1°; P = 0.001), the Trendelenburg position (psAOP, 96.8°; P = 0.014) and elevating the maternal buttocks (psAOP, 98.3°; P = 0.033) gave modest elevation effects. Similar findings were reported for HSD and HPD. The fetal head elevation effects of the knee-chest position, Trendelenburg position and elevation of the maternal buttocks were independent of the initial fetal head station, but that of bladder filling was greater when the initial head station was low. CONCLUSIONS To elevate the fetal presenting part, the knee-chest position provides the best effect, followed by filling the maternal urinary bladder with 500 mL then 300 mL of fluid, respectively. Filling the bladder with 100 mL of fluid, the Trendelenburg position and elevation of the maternal buttocks have modest effects. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
|
21
|
Noureldin K, Razzaq H, Whelan KL, Najdawi A, Wong L, Dick G, Halai A. 152 Evaluating the Incidence and Predictors of Readmission in Patients Awaiting Cholecystectomy for Previously Diagnosed Acute Gallstone Disease. Br J Surg 2021. [DOI: 10.1093/bjs/znab134.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Introduction
The prevalence of gallstones up to 15%.20-40% will develop symptomatic gallstones and occupy most of the surgical waiting list. The timing of a cholecystectomy remains controversial.
Method
Retrospective data analysis over 2 years, including: diagnosis, commodities, ASA class, investigations, readmissions numbers and causes, time to surgery, operative details, and rate of conversion to open procedures. Chi-square test was used for analysis.
Results
532 cholecystectomies were performed.44% of the patients had commodities. Presentations were; Acute cholecystitis (41.7%), biliary colic (23.1%), acute pancreatitis (15.9), obstructive jaundice (9.2%). USS was performed in 97.3%, CT scan in 17.8% and MRCP in 45.8%. 14% had ERCP. Re admission rate was 56.4%, between 1-6 times, secondary to; cholecystitis (12.5%), biliary colic (26.7), gallstone pancreatitis (8.2%), obstructive jaundice (8.0%), other complications (0.5-1.5%). Emergency cholecystectomy was performed in 14.9% with conversion rate 1.4%.major complication rate was 2.7. The median time on waiting list was 12 (0-123) weeks. This prolonged to 25 (0-400) weeks, when calculated at time of diagnosis. Complicated gallstones disease (p-value 0.0001) was predictors of recurrent symptoms and readmissions.
Conclusions
Management plan is due to optimize the timing of cholecystectomy to decrease the negative impact on readmission and complication rates plus the hospitals’ bed capacity and costs.
Collapse
|
22
|
Raef H, Wong L, Garelli C, Kim E, Ahmed M, Pike K, Moses S, Harris J, Marshak-Rothstein A, Rashighi M, Richmond J. 041 CXCR3 blockade reduces skin germinal center B cells and autoantibody titers in murine cutaneous lupus erythematosus. J Invest Dermatol 2021. [DOI: 10.1016/j.jid.2021.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Cazzoli I, Till J, Rowlinson G, Wong L. Supraventricular Tachycardia in a Neonate Repeatedly Induced by Ectopic Ventricular Couplet During Breast-feeding. Indian J Pediatr 2021; 88:188. [PMID: 32607668 DOI: 10.1007/s12098-020-03431-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/19/2020] [Indexed: 11/30/2022]
|
24
|
Suratwala T, Menapace J, Tham G, Steele R, Wong L, Ray N, Bauman B, Gregory M, Hordin T. Effect of workpiece curvature on the tool influence function during hemispherical sub-aperture tool glass polishing. APPLIED OPTICS 2021; 60:1041-1050. [PMID: 33690410 DOI: 10.1364/ao.415376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The influence of workpiece curvature on the tool influence function spot during polishing of fused silica glass with cerium oxide slurry, while using a rotating hemispherical pad-foam tool for a wide variety of process conditions (tool displacement, inclination angle, and rotation rate), has been investigated. (Workpiece curvature ranged from 500 mm radius concave to 43 mm radius convex.) The TIF spot decreases in diameter and increases in the peak removal rate on more convex workpieces. In contrast, the TIF spot increases both in diameter and peak removal rate on more concave workpieces. For the range of workpiece curvatures investigated, both the spot size and the peak removal rate changed significantly, as much as 2 times. An elastic sphere-sphere contact mechanics model, which utilizes both a modified displacement (that leads to a change in the applied load) as well as a mismatch factor (that influences the pressure distribution shape), has been developed. The model was validated using both offline load-displacement measurements and finite-element analysis simulations. The model quantitatively describes the measured change in the relative contact diameter and relative pressure distribution, as well as semiquantitively describes the change in the relative volumetric removal rate on a large variety of TIF spots. The change in the volumetric removal rate for convex workpieces is a result of the balance between a decreasing spot size (reducing removal) and an increasing peak pressure (increasing removal), which usually results in relatively small changes in volumetric removal. In the case of concave workpieces, the volumetric removal rate change is also governed by a similar balance, but the spot size increase contribution dominates, resulting in a significant increase in volumetric removal rate. Understanding these trends can enable methods to add greater determinism during the fabrication of freeform optics by adjusting polishing parameters (such as dwell time) while the tool translates along a workpiece surface with different local curvatures.
Collapse
|
25
|
Xi D, Wong L. Titanium and implantology: a review in dentistry. J BIOL REG HOMEOS AG 2021; 35:63-72. [PMID: 33463144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Implant dentistry has become a popular restorative option in clinical practice. Titanium and titanium alloys (TTA) are the gold standard for endo-osseus dental implants production, thanks to their biocompatibility, resistance to corrosion and mechanical properties. The characteristics of the TTA implant surface seem to be particularly relevant in the early phase of osseointegration. Furthermore, the microstructure of implant surface can largely influence the bone remodelling at the level of the bone-implant surface. Recently, research has stated on the long-term of both survival and success rates of osseointegrated implants and mainly on biomechanical aspects, such as load distribution and biochemical and histological processes at the bone-implant interface. This short review reports recent knowledge on chemical and mechanical properties, biological aspects, innovations in preventing peri-implantitis, describing clinical applications and recent improvements of TTA dental implants. In addition, it highlights current knowledge about a new implant coating that has been demonstrated to reduce the number of initially adhering bacteria and peri-implantitis.
Collapse
|