1
|
Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G. Endothelial progenitor cell–derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007; 110:2440-8. [PMID: 17536014 DOI: 10.1182/blood-2007-03-078709] [Citation(s) in RCA: 731] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Membrane-derived microvesicles (MVs) are released from the cell surface and are implicated in cell-to-cell communication. We evaluated whether MVs derived from endothelial progenitor cells (EPCs) are able to trigger angiogenesis. We found that EPC-derived MVs were incorporated in endothelial cells by interaction with α4 and β1 integrins expressed on the MV surface. In vitro, MVs promoted endothelial cell survival, proliferation, and organization in capillary-like structures. In vivo, in severe combined immunodeficient (SCID) mice, MV-stimulated human endothelial cells organized in patent vessels. When incubated with RNase, despite their internalization into endothelial cells, MVs failed to induce in vitro and in vivo angiogenic effects. mRNA transfer was shown by transduction of GFP protein in endothelial cells by MVs containing GFP-mRNA and the biologic relevance by the angiogenic effect of MV-mRNA extract delivered by lipofectamine. Microarray ana-lysis and quantitative reverse transcription–polymerase chain reaction (RT-PCR) of MV-mRNA extract indicated that MVs were shuttling a specific subset of cellular mRNA, such as mRNA associated with the PI3K/AKT signaling pathway. Protein expression and functional studies showed that PI3K and eNOS play a critical role in the angiogenic effect of MVs. These results suggest that EPCs may activate angiogenesis in endothelial cells by releasing MVs able to trigger an angiogenic program.
Collapse
|
|
18 |
731 |
2
|
Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, Tetta C, Camussi G. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 2012; 7:e33115. [PMID: 22431999 PMCID: PMC3303802 DOI: 10.1371/journal.pone.0033115] [Citation(s) in RCA: 489] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/05/2012] [Indexed: 12/15/2022] Open
Abstract
Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
489 |
3
|
Panes J, Bouhnik Y, Reinisch W, Stoker J, Taylor SA, Baumgart DC, Danese S, Halligan S, Marincek B, Matos C, Peyrin-Biroulet L, Rimola J, Rogler G, van Assche G, Ardizzone S, Ba-Ssalamah A, Bali MA, Bellini D, Biancone L, Castiglione F, Ehehalt R, Grassi R, Kucharzik T, Maccioni F, Maconi G, Magro F, Martín-Comín J, Morana G, Pendsé D, Sebastian S, Signore A, Tolan D, Tielbeek JA, Weishaupt D, Wiarda B, Laghi A. Imaging techniques for assessment of inflammatory bowel disease: joint ECCO and ESGAR evidence-based consensus guidelines. J Crohns Colitis 2013; 7:556-85. [PMID: 23583097 DOI: 10.1016/j.crohns.2013.02.020] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
Abstract
The management of patients with IBD requires evaluation with objective tools, both at the time of diagnosis and throughout the course of the disease, to determine the location, extension, activity and severity of inflammatory lesions, as well as, the potential existence of complications. Whereas endoscopy is a well-established and uniformly performed diagnostic examination, the implementation of radiologic techniques for assessment of IBD is still heterogeneous; variations in technical aspects and the degrees of experience and preferences exist across countries in Europe. ECCO and ESGAR scientific societies jointly elaborated a consensus to establish standards for imaging in IBD using magnetic resonance imaging, computed tomography, ultrasonography, and including also other radiologic procedures such as conventional radiology or nuclear medicine examinations for different clinical situations that include general principles, upper GI tract, colon and rectum, perineum, liver and biliary tract, emergency situation, and the postoperative setting. The statements and general recommendations of this consensus are based on the highest level of evidence available, but significant gaps remain in certain areas such as the comparison of diagnostic accuracy between different techniques, the value for therapeutic monitoring, and the prognostic implications of particular findings.
Collapse
|
Practice Guideline |
12 |
467 |
4
|
Monteleone G, Biancone L, Marasco R, Morrone G, Marasco O, Luzza F, Pallone F. Interleukin 12 is expressed and actively released by Crohn's disease intestinal lamina propria mononuclear cells. Gastroenterology 1997; 112:1169-78. [PMID: 9098000 DOI: 10.1016/s0016-5085(97)70128-8] [Citation(s) in RCA: 394] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Cell-mediated immunity is a feature of Crohn's disease (CD). The heterodimer interleukin (IL)-12, produced by phagocytes, induces T-cell cytokines, primarily interferon (IFN)-gamma. This study examined whether CD lamina propria mononuclear cells (LPMCs) express and release bioactive IL-12. METHODS LPMCs were isolated from 13 patients with CD, 9 with ulcerative colitis (UC), and 13 controls. Messenger RNA for p40 and p35 IL-12 subunits was evaluated by reverse-transcription polymerase chain reaction. IL-12 was measured by enzyme-linked immunosorbent assay in LPMC culture supernatants. The INF-gamma-inducing effect of unstimulated LPMC supernatants was evaluated. RESULTS Messenger RNA for both IL-12 subunits was detected in LPMCs of 11 of 13 patients with CD, 1 of 9 patients with UC, and 1 of 13 controls (P < 0.001). IL-12 was measured (10.5 +/- 2 pg/mL at 24 hours) in unstimulated CD LPMCs and was enhanced by pokeweed mitogen, lipopolysaccharide, and staphylococcal enterotoxin B. No IL-12 was detectable in 8 of 9 patients with UC and 12 of 13 control-unstimulated LPMCs. IL-12 induced by pokeweed mitogen and staphylococcal enterotoxin B in UC was lower than in CD and did not differ from controls. An IFN-gamma-inducing effect was restricted to unstimulated CD LPMC supernatants and was inhibited by an anti-IL-12 antibody in a dose-dependent fashion. CONCLUSIONS IL-12 transcripts are expressed in CD intestinal tissues. CD LPMCs are up-regulated in their capability of releasing bioactive IL-12. Expression and release of bioactive IL-12 seem to differentiate CD from UC.
Collapse
|
|
28 |
394 |
5
|
Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G. Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 2013; 27:3037-42. [PMID: 22851627 DOI: 10.1093/ndt/gfs168] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy.
Collapse
|
Review |
12 |
315 |
6
|
Herrera MB, Bussolati B, Bruno S, Morando L, Mauriello-Romanazzi G, Sanavio F, Stamenkovic I, Biancone L, Camussi G. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 2007; 72:430-41. [PMID: 17507906 DOI: 10.1038/sj.ki.5002334] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSC) were recently shown to migrate to injured tissues when transplanted systemically. The mechanisms underlying the migration and homing of these cells is, however, unclear. In this study, we examine the role of CD44 and its major ligand, hyaluronic acid, in the trafficking of intravenously injected MSC in the glycerol-induced mouse model of acute renal failure (ARF). In vitro, hyaluronic acid promoted a dose-dependent migration of the stem cells that was inhibited by an anti-CD44 blocking monoclonal antibody. In vivo, stem cells injected into mice with ARF migrated to the injured kidney where hyaluronic acid expression was increased. Their presence correlated with morphological and functional recovery. Renal localization of the MSC was blocked by pre-incubation with the CD44 blocking antibody or by soluble hyaluronic acid. Stem cells derived from CD44 knockout mice did not localize to the injured kidney and did not accelerate morphological or functional recovery. Reconstitution by transfection of CD44 knockout stem cells with cDNA encoding wild-type CD44, but not a loss of function CD44 unable to bind hyaluronic acid, restored in vitro migration and in vivo localization of the cells to injured kidneys. We suggest that CD44 and hyaluronic acid interactions recruit exogenous MSC to injured renal tissue and enhance renal regeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
266 |
7
|
Granata R, Settanni F, Biancone L, Trovato L, Nano R, Bertuzzi F, Destefanis S, Annunziata M, Martinetti M, Catapano F, Ghè C, Isgaard J, Papotti M, Ghigo E, Muccioli G. Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human islets: involvement of 3',5'-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-Kinase/Akt signaling. Endocrinology 2007; 148:512-29. [PMID: 17068144 DOI: 10.1210/en.2006-0266] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Among its pleiotropic actions, ghrelin modulates insulin secretion and glucose metabolism. Herein we investigated the role of ghrelin in pancreatic beta-cell proliferation and apoptosis induced by serum starvation or interferon (IFN)-gamma/TNF-alpha, whose synergism is a major cause for beta-cell destruction in type I diabetes. HIT-T15 beta-cells expressed ghrelin but not ghrelin receptor (GRLN-R), which binds acylated ghrelin (AG) only. However, both unacylated ghrelin (UAG) and AG recognized common high-affinity binding sites on these cells. Either AG or UAG stimulated cell proliferation through Galpha(s) protein and prevented serum starvation- and IFN-gamma/TNF-alpha-induced apoptosis. Antighrelin antibody enhanced apoptosis in either the presence or absence of serum but not cytokines. AG and UAG even up-regulated intracellular cAMP. Blockade of adenylyl cyclase/cAMP/protein kinase A signaling prevented the ghrelin cytoprotective effect. AG and UAG also activated phosphatidyl inositol 3-kinase (PI3K)/Akt and ERK1/2, whereas PI3K and MAPK inhibitors counteracted the ghrelin antiapoptotic effect. Furthermore, AG and UAG stimulated insulin secretion from HIT-T15 cells. In INS-1E beta-cells, which express GRLN-R, AG and UAG caused proliferation and protection against apoptosis through identical signaling pathways. Noteworthy, both peptides inhibited cytokine-induced NO increase in either HIT-T15 or INS-1E cells. Finally, they induced cell survival and protection against apoptosis in human islets of Langerhans. These expressed GRLN-R but showed also UAG and AG binding sites. Our data demonstrate that AG and UAG promote survival of both beta-cells and human islets. These effects are independent of GRLN-R, are likely mediated by AG/UAG binding sites, and involve cAMP/PKA, ERK1/2, and PI3K/Akt.
Collapse
|
|
18 |
234 |
8
|
Doublier S, Ruotsalainen V, Salvidio G, Lupia E, Biancone L, Conaldi PG, Reponen P, Tryggvason K, Camussi G. Nephrin redistribution on podocytes is a potential mechanism for proteinuria in patients with primary acquired nephrotic syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1723-31. [PMID: 11337370 PMCID: PMC1891937 DOI: 10.1016/s0002-9440(10)64128-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the distribution of nephrin by immunofluorescence microscopy in renal biopsies of patients with nephrotic syndrome: 13 with membranous glomerulonephritis (GN), 10 with minimal change GN, and seven with focal segmental glomerulosclerosis. As control, six patients with IgA GN without nephrotic syndrome and 10 normal controls were studied. We found an extensive loss of staining for nephrin and a shift from a podocyte-staining pattern to a granular pattern in patients with nephrotic syndrome, irrespective of the primary disease. In membranous GN, nephrin was co-localized with IgG immune deposits. In the attempt to explain these results, we investigated in vitro whether stimuli acting on the cell cytoskeleton, known to be involved in the pathogenesis of GN, may induce redistribution of nephrin on the surface of human cultured podocytes. Aggregated but not disaggregated human IgG(4), plasmalemmal insertion of membrane attack complex of complement, tumor necrosis factor-alpha, and puromycin, induced the shedding of nephrin with a loss of surface expression. This phenomenon was abrogated by cytochalasin and sodium azide. These results suggest that the activation of cell cytoskeleton may modify surface expression of nephrin allowing a dislocation from plasma membrane to an extracellular site.
Collapse
|
research-article |
24 |
198 |
9
|
Pallone F, Fais S, Squarcia O, Biancone L, Pozzilli P, Boirivant M. Activation of peripheral blood and intestinal lamina propria lymphocytes in Crohn's disease. In vivo state of activation and in vitro response to stimulation as defined by the expression of early activation antigens. Gut 1987; 28:745-53. [PMID: 3040543 PMCID: PMC1433036 DOI: 10.1136/gut.28.6.745] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the present study the state of activation of either peripheral blood and intestinal lamina propria mononuclear cells in Crohn's disease was defined by investigating the expression of early activation antigens (namely the 4F2 antigen, the transferrin receptor and the interleukin-2 receptor). The expression of 4F2 and T9 antigens was greatly increased--in the peripheral blood and in the intestinal lamina propria whereas the proportion of interleukin-2 receptor bearing cells was much less pronounced. The counts of early activation antigens bearing cells in the lamina propria were quite comparable with those of the autologous peripheral cells. In the peripheral blood counts of 4F2 and T9 positive cells were very high in patients with active Crohn's disease but patients with quiescent disease also had a significantly raised proportion of 4F2 and T9 bearing cells. Only in those patients with no evidence of macroscopic disease (namely those resected without recurrence) the counts of early activation antigens bearing cells were within the normal range. The in vitro mitogen induced expression of early activation antigens on either peripheral and intestinal mononuclear cells of patients with Crohn's disease proved to be both quantitatively and qualitatively similar to that of the controls showing the full expression of 4F2, transferrin receptor, and interleukin-2 receptor. While demonstrating that in Crohn's disease there was no intrinsic defect of generation and expression of growth factors receptors by peripheral and intestinal lymphocytes, these results showed that there was a divergence in the expression of early activation antigens in vivo and in vitro. This would indicate that in Crohn's disease there is an in vivo increased population of preactivated rather than fully activated lymphocytes consisting of 4F2 and T9 bearing cells. The high proportion of these cells in the peripheral blood and in the intestine suggests that a chronic immune activation is present in these patients outside as well as within the affected bowel.
Collapse
|
research-article |
38 |
151 |
10
|
Terreno E, Geninatti Crich S, Belfiore S, Biancone L, Cabella C, Esposito G, Manazza AD, Aime S. Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn Reson Med 2006; 55:491-7. [PMID: 16450336 DOI: 10.1002/mrm.20793] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gd-HPDO3A has been internalized into rat hepatocarcinoma cells in the cytoplasm (by electroporation) or in intracellular vesicles (by pinocytosis), respectively. In the former case, the observed relaxation rates are likely dependent upon the amount of internalized paramagnetic complex, whereas in the latter case the relaxation enhancement is "quenched" to a plateau value (about 3 s(-1)) when the entrapped amount of Gd-chelate is higher than 1 x 10(10) Gd/cell. The observed behavior has been accounted in terms of a theoretical treatment based on equations formally derived by Labadie et al. (J Magn Reson B 1994;105:99-102). On this basis, entrapment into intracellular vesicles has been treated as a three-site water exchange (extracellular/cytoplasm/vesicle compartments), whereas the cell pellets containing the paramagnetic agent spread out in the cytoplasm can be analyzed by a two-site exchange system.
Collapse
|
|
19 |
144 |
11
|
Granata R, Settanni F, Gallo D, Trovato L, Biancone L, Cantaluppi V, Nano R, Annunziata M, Campiglia P, Arnoletti E, Ghè C, Volante M, Papotti M, Muccioli G, Ghigo E. Obestatin promotes survival of pancreatic beta-cells and human islets and induces expression of genes involved in the regulation of beta-cell mass and function. Diabetes 2008; 57:967-79. [PMID: 18162507 DOI: 10.2337/db07-1104] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Obestatin is a newly discovered peptide encoded by the ghrelin gene whose biological functions are poorly understood. We investigated obestatin effect on survival of beta-cells and human pancreatic islets and the underlying signaling pathways. RESEARCH DESIGN AND METHODS beta-Cells and human islets were used to assess obestatin effect on cell proliferation, survival, apoptosis, intracellular signaling, and gene expression. RESULTS Obestatin showed specific binding on HIT-T15 and INS-1E beta-cells, bound to glucagon-like peptide-1 receptor (GLP-1R), and recognized ghrelin binding sites. Obestatin exerted proliferative, survival, and antiapoptotic effects under serum-deprived conditions and interferon-gamma/tumor necrosis factor-alpha/interleukin-1 beta treatment, particularly at pharmacological concentrations. Ghrelin receptor antagonist [D-Lys(3)]-growth hormone releasing peptide-6 and anti-ghrelin antibody prevented obestatin-induced survival in beta-cells and human islets. beta-Cells and islet cells released obestatin, and addition of anti-obestatin antibody reduced their viability. Obestatin increased beta-cell cAMP and activated extracellular signal-related kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt; its antiapoptotic effect was blocked by inhibition of adenylyl cyclase/cAMP/protein kinase A (PKA), PI 3-kinase/Akt, and ERK1/2 signaling. Moreover, obestatin upregulated GLP-1R mRNA and insulin receptor substrate-2 (IRS-2) expression and phosphorylation. The GLP-1R antagonist exendin-(9-39) reduced obestatin effect on beta-cell survival. In human islets, obestatin, whose immunoreactivity colocalized with that of ghrelin, promoted cell survival and blocked cytokine-induced apoptosis through cAMP increase and involvement of adenylyl cyclase/cAMP/PKA signaling. Moreover, obestatin 1) induced PI 3-kinase/Akt, ERK1/2, and also cAMP response element-binding protein phosphorylation; 2) stimulated insulin secretion and gene expression; and 3) upregulated GLP-1R, IRS-2, pancreatic and duodenal homeobox-1, and glucokinase mRNA. CONCLUSIONS These results indicate that obestatin promotes beta-cell and human islet cell survival and stimulates the expression of main regulatory beta-cell genes, identifying a new role for this peptide within the endocrine pancreas.
Collapse
|
|
17 |
143 |
12
|
Cantaluppi V, Biancone L, Figliolini F, Beltramo S, Medica D, Deregibus MC, Galimi F, Romagnoli R, Salizzoni M, Tetta C, Segoloni GP, Camussi G. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant 2012; 21:1305-20. [PMID: 22455973 DOI: 10.3727/096368911x627534] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The efficacy of islet transplantation is limited by poor graft vascularization. We herein demonstrated that microvesicles (MVs) released from endothelial progenitor cells (EPCs) enhanced human islet vascularization. After incorporation into islet endothelium and β-cells, EPC-derived MVs favored insulin secretion, survival, and revascularization of islets transplanted in SCID mice. MVs induced in vitro islet endothelial cell proliferation, migration, resistance to apoptosis, and organization in vessel-like structures. Moreover, MVs partially overcame the antiangiogenic effect of rapamycin and inhibited endothelial-leukocyte interaction via L-selectin and CD40. MVs were previously shown to contain defined patterns of mRNAs. Here we demonstrated that MVs carried the proangiogenic miR-126 and miR-296 microRNAs (miRNAs). MVs pretreated with RNase or derived from Dicer knocked-down EPCs showed a reduced angiogenic effect. In addition, MVs overcame the antiangiogenic effect of the specific antagomiRs of miR-126 and miR-296, suggesting a relevant contribution of miRNAs delivered by MVs to islet endothelium. Microarray analysis of MV-stimulated islet endothelium indicated the upregulation of mRNAs coding for factors involved in endothelial proliferation, differentiation, and angiogenesis. In addition, MVs induced the activation of the PI3K-Akt and eNOS signaling pathways in islet endothelium. These results suggest that MVs activate an angiogenic program in islet endothelium that may sustain revascularization and β-cell function.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
139 |
13
|
Crich SG, Biancone L, Cantaluppi V, Duò D, Esposito G, Russo S, Camussi G, Aime S. Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn Reson Med 2004; 51:938-44. [PMID: 15122675 DOI: 10.1002/mrm.20072] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A simple labeling procedure of stem/progenitor cells based on the use of Gd-HPDO3A and Eu-HPDO3A, respectively, is described. The Gd-chelate acts as T(1)-agent for MRI visualization, whereas the corresponding Eu-chelate acts as reporter in fluorescence microscopy. Owing to their substantial chemical equivalence, the two chelates are equally internalized in EPCs (endothelial progenitor cells), thus allowing their visualization by both techniques. The lanthanide chelates are entrapped in endosomic vesicles and the labeled cells retain biological activity with preservation of viability and pro-angiogenesis capacity. Hyperintense spots in MR have been observed for Gd-labeled EPCs injected under mice kidney capsule or grafted on a subcutaneous Matrigel plug up to 14 days after transplantation.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
137 |
14
|
Ranghino A, Cantaluppi V, Grange C, Vitillo L, Fop F, Biancone L, Deregibus MC, Tetta C, Segoloni GP, Camussi G. Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia. Int J Immunopathol Pharmacol 2012; 25:75-85. [PMID: 22507320 DOI: 10.1177/039463201202500110] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Paracrine mediators released from endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis following ischemia. Recently, we demonstrated that microvesicles (MVs) derived from EPCs are able to activate an angiogenic program in quiescent endothelial cells by a horizontal transfer of RNA. In this study we aim to investigate whether EPC-derived MVs are able to induce neoangiogenesis and to enhance recovery in a murine model of hindlimb ischemia. Hindlimb ischemia was induced in severe combined immunodeficient (SCID) mice by ligation and resection of the left femoral artery and mice were treated with EPC-derived MVs (MVs), RNase-inactivated MVs (RnaseMVs), fibroblast-derived MVs or vehicle alone as control (CTL). Since MVs contained the angiogenic miR-126 and miR-296, we evaluated whether microRNAs may account for the angiogenic activities by treating mice with MVs obtained from DICER-knock-down EPC (DICER-MVs). The limb perfusion evaluated by laserdoppler analysis demonstrated that MVs significantly enhanced perfusion in respect to CTL (0.50±0.08 vs 0.39±0.03, p<0.05). After 7 days, immunohistochemical analyses on the gastrocnemius muscle of the ischemic hindlimb showed that MVs but not fibroblast-MVs significantly increased the capillary density in respect to CTL (MVs vs CTL: 24.7±10.3 vs 13.5±6, p<0.0001) and (fibroblast-MVs vs CTL: 10.2±3.4 vs 13.5±6, ns); RNaseMVs and DICER-MVs significantly reduced the effect of MVs (RNaseMVs vs CTL: 15.7±4.1 vs 13.5±6, ns) (MVs vs DICER-MVs 24.7±10.3 vs 18.1±5.8, p <0.05), suggesting a role of RNAs shuttled by MVs. Morphometric analysis confirmed that MVs enhanced limb perfusion and reduced injury. The results of the present study indicate that treatment with EPC-derived MVs improves neovascularization and favors regeneration in severe hindlimb ischemia induced in SCID mice. This suggests a possible use of EPCs-derived MVs for treatment of peripheral arterial disease.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
127 |
15
|
Biancone L, Araki M, Araki K, Vassalli P, Stamenkovic I. Redirection of tumor metastasis by expression of E-selectin in vivo. J Exp Med 1996; 183:581-7. [PMID: 8627169 PMCID: PMC2192458 DOI: 10.1084/jem.183.2.581] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The selectin class of adhesion molecules plays a critical role in facilitating leukocyte adhesion to and subsequent transmigration of endothelium. On this basis, selectins have been suggested to promote tumor cell attachment to endothelium, thereby facilitating metastasis of certain types of tumors, although direct evidence for such a role is lacking. To explore this hypothesis, two sets of transgenic mice were developed: TgnES, which constitutively expresses cell surface E-selectin in all tissues, under the control of the beta-actin promoter; and TgnEsol, which expresses truncated, soluble E-selectin in the liver, under the control of the alpha 1 antitrypsin promoter. B16F10 melanoma cells were stably transfected with alpha(1,3/1,4) fucosyltransferase-specific cDNA (B16F10ft), allowing them to express E-selectin ligands or with hygromycin resistance selection vector only B16F10hygro). Normal mice injected with B16F10ft and B16F10hygro and transgenic mice injected with B16F10hygro developed lung tumors exclusively. In contrast, TgnES mice injected with B16F10ft cells developed massive infiltrating liver tumors. B16F10ft cells injected into TgnEsol mice also formed liver tumors, but these grew more slowly, with a well-delineated, noninfiltrating distinct histologic pattern. These observations provide direct evidence that expression of E-selectin can redirect metastasis of tumor cells expressing appropriate ligands in vivo.
Collapse
|
research-article |
29 |
125 |
16
|
Conaldi PG, Biancone L, Bottelli A, Wade-Evans A, Racusen LC, Boccellino M, Orlandi V, Serra C, Camussi G, Toniolo A. HIV-1 kills renal tubular epithelial cells in vitro by triggering an apoptotic pathway involving caspase activation and Fas upregulation. J Clin Invest 1998; 102:2041-9. [PMID: 9854039 PMCID: PMC509158 DOI: 10.1172/jci3480] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HIV-infected patients suffer several renal syndromes, which can progress rapidly from renal insufficiency to end-stage renal disease. Histologically, HIV-induced nephropathy is characterized by prominent tubulopathy with apoptosis of tubular cells. Clinical and experimental evidence suggests that renal injury may be directly related to virus infection. Although HIV-1 is a polytropic and not solely lymphotropic pathogen, the susceptibility of renal cells to HIV-1 remains to be determined. This paper demonstrates in vitro the permissiveness of proximal tubular epithelial cells (PTEC) to HIV-1 and describes the effects of PTEC infection to explain the pathogenesis of tubular damage in vivo. The results indicate that PTEC express HIV-specific receptor and coreceptors and sustain virus replication. We observed that HIV-1 infection causes the death of tubular cells by triggering an apoptotic pathway involving caspase activation. Fas upregulation but not Fas ligand expression was found in the infected PTEC. However, after HIV-1 infection, tubular cells became susceptible to apoptosis induced through Fas stimulation. Caspase inhibition prevented the death of the infected PTEC in spite of persistent viral replication. These findings may explain the prominent histopathology of HIV-associated nephropathy and demonstrate that the apoptosis of nonlymphoid cells can be directly induced by HIV-1.
Collapse
|
research-article |
27 |
124 |
17
|
Kohn A, Daperno M, Armuzzi A, Cappello M, Biancone L, Orlando A, Viscido A, Annese V, Riegler G, Meucci G, Marrollo M, Sostegni R, Gasbarrini A, Peralta S, Prantera C. Infliximab in severe ulcerative colitis: short-term results of different infusion regimens and long-term follow-up. Aliment Pharmacol Ther 2007; 26:747-56. [PMID: 17697208 DOI: 10.1111/j.1365-2036.2007.03415.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Severe ulcerative colitis is a life-threatening disorder, despite i.v. glucocorticoids treatment. Infliximab has been proposed as a safe rescue therapy. AIM To evaluate short- and long-term effectiveness and safety of infliximab in severe refractory ulcerative colitis. METHODS Eighty-three patients with severe ulcerative colitis (i.v. glucocorticoids treatment-refractory) were treated with infliximab in 10 Italian Gastroenterology Units. Patients underwent one or more infusions according to the choice of treating physicians. Short-term outcome was colectomy/death 2 months after the first infusion. Long-term outcome was survival free from colectomy. Safety data were recorded. RESULTS Twelve patients (15%) underwent colectomy within 2 months. One died of Legionella pneumophila infection 12 days after infliximab. Early colectomy rates were higher in patients receiving one infusion (9/26), compared with those receiving two/more infusions (3/57, P = 0.001, OR = 9.53). Seventy patients who survived colectomy and did not experience any fatal complications were followed-up for a median time of 23 months; 58 patients avoided colectomy during the follow-up. Forty-two patients were maintained on immunosuppressive drugs. No clinical features were associated with outcomes. CONCLUSIONS Infliximab is an effective and relatively safe therapy to avoid colectomy and maintain long-term remission for patients with severe refractory ulcerative colitis. In the short term, two or more infusions seem to be more effective than one single infusion.
Collapse
|
Multicenter Study |
18 |
114 |
18
|
Ranghino A, Bruno S, Bussolati B, Moggio A, Dimuccio V, Tapparo M, Biancone L, Gontero P, Frea B, Camussi G. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther 2017; 8:24. [PMID: 28173878 PMCID: PMC5297206 DOI: 10.1186/s13287-017-0478-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/28/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) and renal stem/progenitors improve the recovery of acute kidney injury (AKI) mainly through the release of paracrine mediators including the extracellular vesicles (EVs). Several studies have reported the existence of a resident population of MSCs within the glomeruli (Gl-MSCs). However, their contribution towards kidney repair still remains to be elucidated. The aim of the present study was to evaluate whether Gl-MSCs and Gl-MSC-EVs promote the recovery of AKI induced by ischemia-reperfusion injury (IRI) in SCID mice. Moreover, the effects of Gl-MSCs and Gl-MSC-EVs were compared with those of CD133+ progenitor cells isolated from human tubules of the renal cortical tissue (T-CD133+ cells) and their EVs (T-CD133+-EVs). Methods IRI was performed in mice by clamping the left renal pedicle for 35 minutes together with a right nephrectomy. Immediately after reperfusion, the animals were divided in different groups to be treated with: Gl-MSCs, T-CD133+ cells, Gl-MSC-EVs, T-CD133+-EVs or vehicle. To assess the role of vesicular RNA, EVs were either isolated by floating to avoid contamination of non-vesicles-associated RNA or treated with a high dose of RNase. Mice were sacrificed 48 hours after surgery. Results Gl-MSCs, and Gl-MSC-EVs both ameliorate kidney function and reduce the ischemic damage post IRI by activating tubular epithelial cell proliferation. Furthermore, T-CD133+ cells, but not their EVs, also significantly contributed to the renal recovery after IRI compared to the controls. Floating EVs were effective while RNase-inactivated EVs were ineffective. Analysis of the EV miRnome revealed that Gl-MSC-EVs selectively expressed a group of miRNAs, compared to EVs derived from fibroblasts, which were biologically ineffective in IRI. Conclusions In this study, we demonstrate that Gl-MSCs may contribute in the recovery of mice with AKI induced by IRI primarily through the release of EVs. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0478-5) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
8 |
110 |
19
|
Biancone L, David S, Della Pietra V, Montrucchio G, Cambi V, Camussi G. Alternative pathway activation of complement by cultured human proximal tubular epithelial cells. Kidney Int 1994; 45:451-60. [PMID: 8164433 DOI: 10.1038/ki.1994.59] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human proximal tubular epithelial cells (PTEC) incubated with normal human serum (NHS) were found to fix on their surface C3, properdin, terminal complement components and C5b-9 MAC neoantigen, but not C1q and C4, by immunofluorescence. Complement fixation was abrogated if PTEC were incubated with EDTA-treated NHS or C3-deficient human serum, but not with Mg EGTA-treated NHS or C1q-deficient human serum, showing the prevalent activation of the alternative pathway of complement. This event was followed by marked cytoskeleton alterations with disruption of the actin cortical network, redistribution of actin throughout the cytoplasm and formation of blebs, and by cell cytolysis. In addition, superoxide anion and hydrogen peroxide production and chemiluminescence response were detected in consequence of MAC insertion on PTEC plasma membrane. The dependency on MAC of the observed biological effects of complement fixation on PTEC surface was shown by using sera selectively deficient of terminal components of complement (C6 or C8), and therefore unable to form the C5b-9 MAC, and by restoring the ability to form MAC after addition of purified C6 or C8. The possible pathogenetic relevance of these observations in tubulointerstitial injury occurring in patients with complementuria due to non-selective proteinuria, is discussed.
Collapse
|
|
31 |
106 |
20
|
Biancone L, Orlando A, Kohn A, Colombo E, Sostegni R, Angelucci E, Rizzello F, Castiglione F, Benazzato L, Papi C, Meucci G, Riegler G, Petruzziello C, Mocciaro F, Geremia A, Calabrese E, Cottone M, Pallone F. Infliximab and newly diagnosed neoplasia in Crohn's disease: a multicentre matched pair study. Gut 2006; 55:228-33. [PMID: 16120759 PMCID: PMC1856527 DOI: 10.1136/gut.2005.075937] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 08/05/2005] [Accepted: 08/16/2005] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The widespread use of anti-tumour necrosis factor alpha antibody (Infliximab) in Crohn's disease (CD) raises concerns about a possible cancer risk in the long term. In a matched pair study, we assessed whether Infliximab is associated with an increased risk of neoplasia. METHODS In a multicentre matched pair study, 404 CD patients treated with Infliximab (CD-IFX) were matched with 404 CD patients who had never received Infliximab (CD-C). Cases and controls were matched for sex, age (+/-5 years), site of CD, age at diagnosis (+/-5 years), immunosuppressant use, and follow up. New diagnoses of neoplasia from April 1999 to October 2004 were recorded. RESULTS Among the 404 CD-IFX, neoplasia was diagnosed in nine patients (2.22%) while among the 404 CD-C, seven patients developed neoplasia (1.73%) (odds ratio 1.33 (95% confidence interval 0.46-3.84); p=0.40). The survival curve adjusted for patient year of follow up showed no differences between CD-IFX and CD-C (p=0.90; log rank test). In the CD-IFX group, there was one cholangiocarcinoma, three breast cancers, one skin cancer, one leukaemia, one laryngeal cancer, and two anal carcinomas. Among the 7/404 (1.73%) CD-C, there were three intestinal adenocarcinomas (two caecum, one rectum), one basalioma, one spinalioma, one non-Hodgkin's lymphoma, and one breast cancer. Age at diagnosis of neoplasia did not differ between groups (CD-IFX v CD-C: median 50 (range 40-70 years) v 45 (27-72); p=0.50). CONCLUSION In our multicentre matched pair study, the frequency of a new diagnosis of neoplasia in CD patients treated with Infliximab was comparable with CD patients who had never received Infliximab.
Collapse
|
Multicenter Study |
19 |
105 |
21
|
Bussolati B, Biancone L, Cassoni P, Russo S, Rola-Pleszczynski M, Montrucchio G, Camussi G. PAF produced by human breast cancer cells promotes migration and proliferation of tumor cells and neo-angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1713-25. [PMID: 11073830 PMCID: PMC1885724 DOI: 10.1016/s0002-9440(10)64808-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Platelet-activating factor (PAF), a phospholipid mediator of inflammation, is present in breast cancer tissue and correlates with microvessel density. In the present study, we investigated the biological significance of PAF synthesized within breast cancer. In vitro, we observed the production of PAF by two estrogen-dependent (MCF7 and T-47D) and an estrogen-independent (MDA-MB231) breast cancer cell lines after stimulation with vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor, tumor necrosis factor, thrombin but not with estrogen, progesterone, and oxytocin. The sensitivity to agonist stimulation and the amount of PAF synthesized as cell-associated or released varied in different cell lines, being higher in MDA-MB231 cells, which are known to be highly invasive. We further demonstrate, by reverse transcriptase-polymerase chain reaction and cytofluorimetry, that all of the breast cancer cells express the PAF receptor and respond to PAF stimulation in terms of proliferation. Moreover, in MDA-MB231 cells PAF elicited cell motility. In vivo, two structurally different PAF receptor antagonists WEB 2170 and CV 3988 significantly reduced the formation of new vessels in a tumor induced by subcutaneous implantation of MDA-MB231 cells into SCID mice. In conclusion, these results suggest that PAF, produced and released by breast cancer cells, can contribute to tumor development by enhancing cell motility and proliferation and by stimulating the angiogenic response.
Collapse
|
research-article |
25 |
101 |
22
|
Bruno S, Bussolati B, Grange C, Collino F, di Cantogno LV, Herrera MB, Biancone L, Tetta C, Segoloni G, Camussi G. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells Dev 2009; 18:867-80. [PMID: 19579288 DOI: 10.1089/scd.2008.0320] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In humans, renal resident stem cells were identified within the interstitium, the tubular cells, and the Bowman's capsule. The aim of the present study was to investigate whether multipotent stem cells are present also in the adult human-decapsulated glomeruli and whether they represent a resident population. We found that human glomeruli deprived of the Bowman's capsule contain a population of CD133+CD146+ cells and a population of CD133-CD146+ cells expressing mesenchymal stem cell (MSC) markers and renal stem cell markers CD24 and Pax-2. The CD133+CD146+ cells differed from those previously isolated from Bowman's capsule as they co-expressed endothelial markers, such as CD31 and von Willebrand factor (vWF), were CD24-negative and were not clonogenic, suggesting an endothelial commitment. The glomerular mesenchymal CD133-CD146+ population (Gl-MSC) exhibited self-renewal capability, clonogenicity, and multipotency. In addition to osteogenic, adipogenic, and chondrogenic differentiation, these cells were able to differentiate to endothelial cells and epithelial cells expressing podocytes markers such as nephrin, podocin, and synaptopodin. Moreover, Gl-MSC when cultured in appropriate conditions, acquired mesangial cell markers such as alpha-smooth muscle actin (alpha-SMA) and angiotensin II (AT-II) receptor I. The expression of the embryonic organ-specific PAX-2 gene and protein and of donor sex identity when isolated from glomeruli of a renal allograft suggested these cells to be a tissue resident population. In conclusion, these results indicate the presence of a multipotent mesenchymal cell population resident in human glomeruli that may have a role in the physiological cell turnover and/or in response to glomerular injury.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
97 |
23
|
Geng X, Biancone L, Dai HH, Lin JJ, Yoshizaki N, Dasgupta A, Pallone F, Das KM. Tropomyosin isoforms in intestinal mucosa: production of autoantibodies to tropomyosin isoforms in ulcerative colitis. Gastroenterology 1998; 114:912-22. [PMID: 9558279 DOI: 10.1016/s0016-5085(98)70310-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Autoantibodies against tropomyosins (TMs) have been reported in ulcerative colitis (UC). In this study the hTM isoforms (hTM1-5) present in intestinal epithelial cells and in smooth muscle were investigated, and the immunoreactivity against hTMs by immunoglobulin G (IgG) produced in vitro by colonic mucosal lymphocytes (LPMCs) from patients with UC, Crohn's disease (CD), and controls was examined. METHODS TMs were extracted from colonic and jejunal epithelial cells and smooth muscle, and hTM isoforms were identified using isoform-specific monoclonal antibodies by enzyme-linked immunosorbent assay and transblot analysis. The immunoreactivity of IgG produced by colonic LPMCs was analyzed against the recombinant hTM isoforms. RESULTS The major hTM isoforms present in colonic and jejunal epithelial cells are hTM5 and hTM4, whereas intestinal smooth muscle contains the hTM1-3 isoforms. The IgG synthesized in vitro by LPMCs from UC (n = 19) recognized hTM5 and hTM1, more significantly (P < 0.04 to <0.001) when compared with CD (n = 12) and controls (n = 17). However, IgG produced by LPMCs from CD did not show such anti-hTM reactivity. Mucosal anti-hTM IgG mainly belonged to the IgG1 subclass. CONCLUSIONS Intestinal epithelial cells and smooth muscle have distinct hTM isoforms. Patients with UC, and not CD, show mucosal autoantibody response against hTM isoforms, particularly hTM5 and hTM1.
Collapse
|
|
27 |
94 |
24
|
Biancone L, Martino AD, Orlandi V, Conaldi PG, Toniolo A, Camussi G. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J Exp Med 1997; 186:147-52. [PMID: 9207009 PMCID: PMC2198950 DOI: 10.1084/jem.186.1.147] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fas-Fas ligand interaction is thought to be a crucial mechanism in controlling lymphocyte expansion by inducing lymphocyte apoptosis. However, Fas is also broadly expressed on nonlymphoid cells, where its function in vivo remains to be determined. In this study, we describe the development of inflammatory angiogenesis induced by agonistic anti-Fas mAb Jo2 in a murine model where Matrigel is used as a vehicle for the delivery of mediators. The subcutaneous implants in mice of Matrigel containing mAb Jo2 became rapidly infiltrated by endothelial cells and by scattered monocytes and macrophages. After formation and canalization of new vessels, marked intravascular accumulation and extravasation of neutrophils were observed. Several mast cells were also detected in the inflammatory infiltrate. The phenomenon was dose and time dependent and required the presence of heparin. The dependency on activation of Fas is suggested by the observation that the inflammatory angiogenesis was restricted to the agonistic anti-Fas mAb and it was absent in lpr Fas-mutant mice. Apoptotic cells were not detectable at any time inside the implant or in the surrounding tissue, suggesting that angiogenesis and cell infiltration did not result from recruitment of phagocytes by apoptotic cells but rather by a stimulatory signal through Fas-engagement. These findings suggest a role for Fas-Fas ligand interaction in promoting local angiogenesis and inflammation.
Collapse
|
research-article |
28 |
92 |
25
|
David S, Biancone L, Caserta C, Bussolati B, Cambi V, Camussi G. Alternative pathway complement activation induces proinflammatory activity in human proximal tubular epithelial cells. Nephrol Dial Transplant 1997; 12:51-6. [PMID: 9027773 DOI: 10.1093/ndt/12.1.51] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Proximal tubular epithelial cells express a surface C3-convertase activity which induces C fixation and insertion of the C5b-9 membrane attack complex (MAC) into the cell plasma membrane. The physiopathological consequences of this phenomenon are unknown. METHODS The effect of C fixation on the production of inflammatory mediators by human proximal tubular epithelial cells in culture was explored. RESULTS Proximal tubular epithelial cells incubated with a sublytic amount of normal human serum as a source of C, but not with heat-inactivated human serum, showed a time-dependent calcium influx and a concomitant release of 14C-arachidonic acid (14C-AA). Eicosanoid synthesis following the arachidonic acid mobilization was studied as prostaglandin E2 release. Mg2+/EGTA, which did not prevent C activation by the C3-convertase, and p-bromodiphenacyl bromide a phospholipase A2-inhibitor, inhibited mobilization of 14C-AA. These results suggest the activation of an extracellular Ca(2+)-dependent, phospholipase A2. Complement fixation was associated with the synthesis of proinflammatory cytokines such as IL-6 and TNF-alpha. Experiments with C6-deficient sera indicated that the release of 14C-AA and the production of cytokines were dependent on the insertion of the terminal components of complement in the plasma membrane. Indeed, the reconstitution of normal haemolytic activity of C6-deficient sera with purified C6 restored also the release of 14C-AA and the production of cytokines. CONCLUSIONS In vitro complement activation on the proximal tubular cell surface triggers the generation of proinflammatory mediators, which may potentially contribute to the pathogenesis of tubulointerstitial injury.
Collapse
|
|
28 |
90 |