1
|
Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn JH, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. NANOSCALE 2015; 7:4598-810. [PMID: 25707682 DOI: 10.1039/c4nr01600a] [Citation(s) in RCA: 1026] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
Collapse
|
|
10 |
1026 |
2
|
Hu G, Yang L, Yang Z, Wang Y, Jin X, Dai J, Wu Q, Liu S, Zhu X, Wang X, Wu TC, Howe RCT, Albrow-Owen T, Ng LWT, Yang Q, Occhipinti LG, Woodward RI, Kelleher EJR, Sun Z, Huang X, Zhang M, Bain CD, Hasan T. A general ink formulation of 2D crystals for wafer-scale inkjet printing. SCIENCE ADVANCES 2020; 6:eaba5029. [PMID: 32851166 PMCID: PMC7423364 DOI: 10.1126/sciadv.aba5029] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/02/2020] [Indexed: 05/28/2023]
Abstract
Recent advances in inkjet printing of two-dimensional (2D) crystals show great promise for next-generation printed electronics development. Printing nonuniformity, however, results in poor reproducibility in device performance and remains a major impediment to their large-scale manufacturing. At the heart of this challenge lies the coffee-ring effect (CRE), ring-shaped nonuniform deposits formed during postdeposition drying. We present an experimental study of the drying mechanism of a binary solvent ink formulation. We show that Marangoni-enhanced spreading in this formulation inhibits contact line pinning and deforms the droplet shape to naturally suppress the capillary flows that give rise to the CRE. This general formulation supports uniform deposition of 2D crystals and their derivatives, enabling scalable and even wafer-scale device fabrication, moving them closer to industrial-level additive manufacturing.
Collapse
|
research-article |
5 |
54 |
3
|
Choi HW, Shin DW, Yang J, Lee S, Figueiredo C, Sinopoli S, Ullrich K, Jovančić P, Marrani A, Momentè R, Gomes J, Branquinho R, Emanuele U, Lee H, Bang SY, Jung SM, Han SD, Zhan S, Harden-Chaters W, Suh YH, Fan XB, Lee TH, Chowdhury M, Choi Y, Nicotera S, Torchia A, Moncunill FM, Candel VG, Durães N, Chang K, Cho S, Kim CH, Lucassen M, Nejim A, Jiménez D, Springer M, Lee YW, Cha S, Sohn JI, Igreja R, Song K, Barquinha P, Martins R, Amaratunga GAJ, Occhipinti LG, Chhowalla M, Kim JM. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat Commun 2022; 13:814. [PMID: 35145096 PMCID: PMC8831553 DOI: 10.1038/s41467-022-28459-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Smart textiles consist of discrete devices fabricated from-or incorporated onto-fibres. Despite the tremendous progress in smart textiles for lighting/display applications, a large scale approach for a smart display system with integrated multifunctional devices in traditional textile platforms has yet to be demonstrated. Here we report the realisation of a fully operational 46-inch smart textile lighting/display system consisting of RGB fibrous LEDs coupled with multifunctional fibre devices that are capable of wireless power transmission, touch sensing, photodetection, environmental/biosignal monitoring, and energy storage. The smart textile display system exhibits full freedom of form factors, including flexibility, bendability, and rollability as a vivid RGB lighting/grey-level-controlled full colour display apparatus with embedded fibre devices that are configured to provide external stimuli detection. Our systematic design and integration strategies are transformational and provide the foundation for realising highly functional smart lighting/display textiles over large area for revolutionary applications on smart homes and internet of things (IoT).
Collapse
|
research-article |
3 |
49 |
4
|
Lee J, Pak S, Giraud P, Lee YW, Cho Y, Hong J, Jang AR, Chung HS, Hong WK, Jeong HY, Shin HS, Occhipinti LG, Morris SM, Cha S, Sohn JI, Kim JM. Thermodynamically Stable Synthesis of Large-Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n-n Heterojunction Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702206. [PMID: 28692787 DOI: 10.1002/adma.201702206] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/14/2017] [Indexed: 05/26/2023]
Abstract
Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for large-scale and highly crystalline molybdenum disulfide monolayers using a solution-processed precursor deposition. The low supersaturation level, triggered by the evaporation of an extremely thin precursor layer, reduces the nucleation density dramatically under a thermodynamically stable environment, yielding uniform and clean monolayer films and large crystal sizes up to 500 µm. As a result, the photoluminescence exhibits only a small full-width-half-maximum of 48 meV, comparable to that of exfoliated and suspended monolayer crystals. It is confirmed that this growth procedure can be extended to the synthesis of other TMDC monolayers, and robust MoS2 /WS2 heterojunction devices are easily prepared using this synthetic procedure due to the large-sized crystals. The heterojunction device shows a fast response time (≈45 ms) and a significantly high photoresponsivity (≈40 AW-1 ) because of the built-in potential and the majority-carrier transport at the n-n junction. These findings indicate an efficient pathway for the fabrication of high-performance 2D optoelectronic devices.
Collapse
|
|
8 |
49 |
5
|
Arena P, Bucolo M, Fortuna L, Occhipinti L. Cellular neural networks for real-time DNA microarray analysis. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2002; 21:17-25. [PMID: 12012600 DOI: 10.1109/memb.2002.1000180] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
23 |
31 |
6
|
Bang SY, Suh YH, Fan XB, Shin DW, Lee S, Choi HW, Lee TH, Yang J, Zhan S, Harden-Chaters W, Samarakoon C, Occhipinti LG, Han SD, Jung SM, Kim JM. Technology progress on quantum dot light-emitting diodes for next-generation displays. NANOSCALE HORIZONS 2021; 6:68-77. [PMID: 33400752 DOI: 10.1039/d0nh00556h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quantum dot light-emitting diodes (QD-LEDs) are widely recognised as great alternatives to organic light-emitting diodes (OLEDs) due to their enhanced performances. This focus article surveys the current progress on the state-of-the-art QD-LED technology including material synthesis, device optimization and innovative fabrication processes. A discussion on the material synthesis of core nanocrystals, shell layers and surface-binding ligands is presented for high photoluminescence quantum yield (PLQY) quantum dots (QDs) using heavy-metal free materials. The operational principles of several types of QD-LED device architectures are also covered, and the recent evolution of device engineering technologies is investigated. By exploring the fabrication process for pixel-patterning of QD-LEDs on an active-matrix backplane for full-colour display applications, we anticipate further improvement in device performance for the commercialisation of next-generation displays.
Collapse
|
|
4 |
13 |
7
|
Lee S, Choi HW, Figueiredo CL, Shin DW, Moncunill FM, Ullrich K, Sinopoli S, Jovančić P, Yang J, Lee H, Eisenreich M, Emanuele U, Nicotera S, Santos A, Igreja R, Marrani A, Momentè R, Gomes J, Jung SM, Han SD, Bang SY, Zhan S, Harden-Chaters W, Suh YH, Fan XB, Lee TH, Jo JW, Kim Y, Costantino A, Candel VG, Durães N, Meyer S, Kim CH, Lucassen M, Nejim A, Jiménez D, Springer M, Lee YW, An GH, Choi Y, Sohn JI, Cha S, Chhowalla M, Amaratunga GA, Occhipinti LG, Barquinha P, Fortunato E, Martins R, Kim JM. Truly form-factor-free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices. SCIENCE ADVANCES 2023; 9:eadf4049. [PMID: 37083532 PMCID: PMC10121163 DOI: 10.1126/sciadv.adf4049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.
Collapse
|
research-article |
2 |
13 |
8
|
Portilla L, Zhao J, Wang Y, Sun L, Li F, Robin M, Wei M, Cui Z, Occhipinti LG, Anthopoulos TD, Pecunia V. Ambipolar Deep-Subthreshold Printed-Carbon-Nanotube Transistors for Ultralow-Voltage and Ultralow-Power Electronics. ACS NANO 2020; 14:14036-14046. [PMID: 32924510 DOI: 10.1021/acsnano.0c06619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of ultralow-power and easy-to-fabricate electronics with potential for large-scale circuit integration (i.e., complementary or complementary-like) is an outstanding challenge for emerging off-the-grid applications, e.g., remote sensing, "place-and-forget", and the Internet of Things. Herein we address this challenge through the development of ambipolar transistors relying on solution-processed polymer-sorted semiconducting carbon nanotube networks (sc-SWCNTNs) operating in the deep-subthreshold regime. Application of self-assembled monolayers at the active channel interface enables the fine-tuning of sc-SWCNTN transistors toward well-balanced ambipolar deep-subthreshold characteristics. The significance of these features is assessed by exploring the applicability of such transistors to complementary-like integrated circuits, with respect to which the impact of the subthreshold slope and flatband voltage on voltage and power requirements is studied experimentally and theoretically. As demonstrated with inverter and NAND gates, the ambipolar deep-subthreshold sc-SWCNTN approach enables digital circuits with complementary-like operation and characteristics including wide noise margins and ultralow operational voltages (≤0.5 V), while exhibiting record-low power consumption (≤1 pW/μm). Among thin-film transistor technologies with minimal material complexity, our approach achieves the lowest energy and power dissipation figures reported to date, which are compatible with and highly attractive for emerging off-the-grid applications.
Collapse
|
|
5 |
10 |
9
|
Tan J, Chen Y, He J, Occhipinti LG, Wang Z, Zhou X. Two-dimensional material-enhanced surface plasmon resonance for antibiotic sensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131644. [PMID: 37209558 DOI: 10.1016/j.jhazmat.2023.131644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Two-dimensional (2D) materials attract attention from the academic community due to their excellent properties, and their wide application in sensing is expected to revolutionize environmental monitoring, medical diagnostics, and food safety. In this work, we systematically evaluate the effects of 2D materials on the Au chip surface plasmon resonance (SPR) sensor. The results reveal that 2D materials cannot improve the sensitivity of intensity-modulated SPR sensors. However, there exists an optimal real part of RI of 3.5-4.0 and optimal thickness when choosing nanomaterials for sensitivity enhancement of SPR sensors in angular modulation. In addition, the smaller the imaginary part of the nanomaterial RI, the higher the sensitivity of the proposed Au SPR sensor. The 2D material's thickness needed for the highest sensitivity decreases with increasing real part and imaginary part of the RI. As a case study, we developed a 5 nm-thickness MoS2-enhanced SPR biosensor, which exhibited a low sulfonamides (SAs) detection limit of 0.05 μg/L based on a group-targeting indirect competitive immunoassay, nearly 12-fold lower than that of the bare Au SPR system. The proposed criteria help to shed light on the 2D material-Au surface interaction, which has greatly promoted the development of novel SPR biosensing with outstanding sensitivity.
Collapse
|
|
2 |
9 |
10
|
Tan EK, Au YZ, Moghaddam GK, Occhipinti LG, Lowe CR. Towards Closed-Loop Integration of Point-of-Care Technologies. Trends Biotechnol 2019; 37:775-788. [DOI: 10.1016/j.tibtech.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
|
|
6 |
7 |
11
|
Tan EKW, Rughoobur G, Rubio-Lara J, Tiwale N, Xiao Z, Davidson CAB, Lowe CR, Occhipinti LG. Nanofabrication of Conductive Metallic Structures on Elastomeric Materials. Sci Rep 2018; 8:6607. [PMID: 29700337 PMCID: PMC5920093 DOI: 10.1038/s41598-018-24901-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Existing techniques for patterning metallic structures on elastomers are limited in terms of resolution, yield and scalability. The primary constraint is the incompatibility of their physical properties with conventional cleanroom techniques. We demonstrate a reliable fabrication strategy to transfer high resolution metallic structures of <500 nm in dimension on elastomers. The proposed method consists of producing a metallic pattern using conventional lithographic techniques on silicon coated with a thin sacrificial aluminium layer. Subsequent wet etching of the sacrificial layer releases the elastomer with the embedded metallic pattern. Using this method, a nano-resistor with minimum feature size of 400 nm is fabricated on polydimethylsiloxane (PDMS) and applied in gas sensing. Adsorption of solvents in the PDMS causes swelling and increases the device resistance, which therefore enables the detection of volatile organic compounds (VOCs). Sensitivity to chloroform and toluene vapor with a rapid response (~30 s) and recovery (~200 s) is demonstrated using this PDMS nano-resistor at room temperature.
Collapse
|
Journal Article |
7 |
6 |
12
|
Caponetto R, Fortuna L, Occhipinti L, Xibilia MG. SC-CNNs for chaotic signal applications in secure communication systems. Int J Neural Syst 2004; 13:461-8. [PMID: 15031854 DOI: 10.1142/s0129065703001777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper a CNNs based circuit for the generation of hyperchaotic signals is proposed. The circuit has been developed for applications in secure communication systems. An Saito oscillator has been designed by using a suitable configuration of a four-cells State-Controlled CNNs. A cryptography system based on the Saito oscillator has been implemented by using inverse system synchronization. The proposed circuit implementation and experimental results are given.
Collapse
|
|
21 |
3 |
13
|
Tan EKW, Rughoobur G, Rubio-Lara J, Tiwale N, Xiao Z, Davidson CAB, Lowe CR, Occhipinti LG. Author Correction: Nanofabrication of Conductive Metallic Structures on Elastomeric Materials. Sci Rep 2018; 8:13865. [PMID: 30206372 PMCID: PMC6133920 DOI: 10.1038/s41598-018-30954-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
Published Erratum |
7 |
3 |
14
|
Giusto E, Donegà M, Dumitru AC, Foschi G, Casalini S, Bianchi M, Leonardi T, Russo A, Occhipinti LG, Biscarini F, Garcia R, Pluchino S. Interfacing Polymers and Tissues: Quantitative Local Assessment of the Foreign Body Reaction of Mononuclear Phagocytes to Polymeric Materials. ACTA ACUST UNITED AC 2017; 1:e1700021. [DOI: 10.1002/adbi.201700021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Indexed: 01/08/2023]
|
|
8 |
2 |
15
|
Criscuolo V, Montoya NA, Lo Presti A, Occhipinti LG, Netti PA, Vecchione R, Falconi C. Double-Framed Thin Elastomer Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55255-55261. [PMID: 33252224 PMCID: PMC7735669 DOI: 10.1021/acsami.0c16312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Elastomers and, in particular, polydimethylsiloxane (PDMS) are widely adopted as biocompatible mechanically compliant substrates for soft and flexible micro-nanosystems in medicine, biology, and engineering. However, several applications require such low thicknesses (e.g., <100 μm) that make peeling-off critical because very thin elastomers become delicate and tend to exhibit strong adhesion with carriers. Moreover, microfabrication techniques such as photolithography use solvents which swell PDMS, introducing complexity and possible contamination, thus limiting industrial scalability and preventing many biomedical applications. Here, we combine low-adhesion and rectangular carrier substrates, adhesive Kapton frames, micromilling-defined shadow masks, and adhesive-neutralizing paper frames for enabling fast, easy, green, contaminant-free, and scalable manufacturing of thin elastomer devices, with both simplified peeling and handling. The accurate alignment between the frame and shadow masks can be further facilitated by micromilled marking lines on the back side of the low-adhesion carrier. As a proof of concept, we show epidermal sensors on a 50 μm-thick PDMS substrate for measuring strain, the skin bioimpedance and the heart rate. The proposed approach paves the way to a straightforward, green, and scalable fabrication of contaminant-free thin devices on elastomers for a wide variety of applications.
Collapse
|
research-article |
5 |
1 |
16
|
Mallah J, Occhipinti LG. Finite Element Simulation Model of Metallic Thermal Conductivity Detectors for Compact Air Pollution Monitoring Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:4683. [PMID: 39066080 PMCID: PMC11280567 DOI: 10.3390/s24144683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Air pollution has been associated with several health problems. Detecting and measuring the concentration of harmful pollutants present in complex air mixtures has been a long-standing challenge, due to the intrinsic difficulty of distinguishing among these substances from interferent species and environmental conditions, both indoor and outdoor. Despite all efforts devoted by the scientific and industrial communities to tackling this challenge, the availability of suitable device technologies able to selectively discriminate these pollutants present in the air at minute, yet dangerous, concentrations and provide a quantitative measure of their concentrations is still an unmet need. Thermal conductivity detectors (TCDs) show promising characteristics that make them ideal gas sensing tools capable of recognising different gas analytes based on their physical fingerprint characteristics at the molecular level, such as their density, thermal conductivity, dynamic viscosity, and others. In this paper, the operation of TCD gas sensors is presented and explored using a finite element simulation of Joule heating in a sensing electrode placed in a gas volume. The results obtained show that the temperature, and hence, the resistance of the individual suspended microbridge sensor device, depends on the surrounding gas and its thermal conductivity, while the sensitivity and power consumption depend on the properties of the constitutive metal. Moreover, the electrode resistance is proven to be linearly dependent on the applied voltage.
Collapse
|
research-article |
1 |
|
17
|
Yang J, Li G, Chen S, Su X, Xu D, Zhai Y, Liu Y, Hu G, Guo C, Yang HB, Occhipinti LG, Hu FX. Machine Learning-Assistant Colorimetric Sensor Arrays for Intelligent and Rapid Diagnosis of Urinary Tract Infection. ACS Sens 2024; 9:1945-1956. [PMID: 38530950 DOI: 10.1021/acssensors.3c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Urinary tract infections (UTIs), which can lead to pyelonephritis, urosepsis, and even death, are among the most prevalent infectious diseases worldwide, with a notable increase in treatment costs due to the emergence of drug-resistant pathogens. Current diagnostic strategies for UTIs, such as urine culture and flow cytometry, require time-consuming protocols and expensive equipment. We present here a machine learning-assisted colorimetric sensor array based on recognition of ligand-functionalized Fe single-atom nanozymes (SANs) for the identification of microorganisms at the order, genus, and species levels. Colorimetric sensor arrays are built from the SAN Fe1-NC functionalized with four types of recognition ligands, generating unique microbial identification fingerprints. By integrating the colorimetric sensor arrays with a trained computational classification model, the platform can identify more than 10 microorganisms in UTI urine samples within 1 h. Diagnostic accuracy of up to 97% was achieved in 60 UTI clinical samples, holding great potential for translation into clinical practice applications.
Collapse
|
|
1 |
|
18
|
Kandukuri TR, Prattis I, Oluwasanya P, Occhipinti LG. Pathogen Detection via Impedance Spectroscopy-Based Biosensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:856. [PMID: 38339574 PMCID: PMC10857222 DOI: 10.3390/s24030856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
This paper presents the development of a miniaturized sensor device for selective detection of pathogens, specifically Influenza A Influenza virus, as an enveloped virus is relatively vulnerable to damaging environmental impacts. In consideration of environmental factors such as humidity and temperature, this particular pathogen proves to be an ideal choice for our study. It falls into the category of pathogens that pose greater challenges due to their susceptibility. An impedance biosensor was integrated into an existing platform and effectively separated and detected high concentrations of airborne pathogens. Bio-functionalized hydrogel-based detectors were utilized to analyze virus-containing particles. The sensor device demonstrated high sensitivity and specificity when exposed to varying concentrations of Influenza A virus ranging from 0.5 to 50 μg/mL. The sensitivity of the device for a 0.5 μg/mL analyte concentration was measured to be 695 Ω· mL/μg. Integration of this pathogen detector into a compact-design air quality monitoring device could foster the advancement of personal exposure monitoring applications. The proposed sensor device offers a promising approach for real-time pathogen detection in complex environmental settings.
Collapse
|
research-article |
1 |
|
19
|
Xu M, Zhang J, Dong C, Tang C, Hu F, Malliaras GG, Occhipinti LG. Simultaneous Isotropic Omnidirectional Hypersensitive Strain Sensing and Deep Learning-Assisted Direction Recognition in a Biomimetic Stretchable Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420322. [PMID: 39887745 PMCID: PMC12038543 DOI: 10.1002/adma.202420322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Omnidirectional strain sensing and direction recognition ability are features of the human tactile sense, essential to address the intricate and dynamic requirements of real-world applications. Most of the current strain sensors work by converting uniaxial strain into electrical signals, which restricts their use in environments with multiaxial strain. Here, the first device with simultaneous isotropic omnidirectional hypersensitive strain sensing and direction recognition (IOHSDR) capabilities is introduced. By mimicking the human fingers from three dimensions, the IOHSDR device realizes a novel heterogeneous substrate that incorporates the involute of a circle, resulting in isotropic behavior in the radial direction and anisotropic property in the involute direction for hypersensitive strain sensing. With the assistance of a deep learning-based model, the IOHSDR device accomplishes an impressive accuracy of 99.58% in recognizing 360° stretching directions. Additionally, it exhibits superior performance in the typical properties of stretchable strain sensors, with a gauge factor of 634.12, an ultralow detection limit of 0.01%, and outstanding durability exceeding 15 000 cycles. The demonstration of radial artery pulse and throat vibration applications highlights the IOHSDR's unique characteristics of isotropic omnidirectional sensing and precise direction detection unleashing new classes of wearable health monitoring devices.
Collapse
|
research-article |
1 |
|
20
|
Tang C, Yi W, Xu M, Jin Y, Zhang Z, Chen X, Liao C, Kang M, Gao S, Smielewski P, Occhipinti LG. A deep learning-enabled smart garment for accurate and versatile monitoring of sleep conditions in daily life. Proc Natl Acad Sci U S A 2025; 122:e2420498122. [PMID: 39932995 PMCID: PMC11848432 DOI: 10.1073/pnas.2420498122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
In wearable smart systems, continuous monitoring and accurate classification of different sleep-related conditions are critical for enhancing sleep quality and preventing sleep-related chronic conditions. However, the requirements for device-skin coupling quality in electrophysiological sleep monitoring systems hinder the comfort and reliability of night wearing. Here, we report a washable, skin-compatible smart garment sleep monitoring system that captures local skin strain signals under weak device-skin coupling conditions without positioning or skin preparation requirements. A printed textile-based strain sensor array responds to strain from 0.1 to 10% with a gauge factor as high as 100 and shows independence to extrinsic motion artifacts via strain-isolating printed pattern design. Through reversible starching treatment, ink penetration depth during direct printing on garments is controlled to achieve batch-to-batch performance variation <10%. Coupled with deep learning, explainable AI, and transfer learning data processing, the smart garment is capable of classifying six sleep states with an accuracy of 98.6%, maintaining excellent explainability (classification with low bias) and generalization (95% accuracy on new users with few-shot learning less than 15 samples per class) in practical applications, paving the way for next-generation daily sleep healthcare management.
Collapse
|
research-article |
1 |
|
21
|
Arena P, Fortuna L, La Rosa M, Occhipinti L. From Neurophysiology to Neural Nets. Neuromodulation 2003. [DOI: 10.1046/j.1525-1403.2003.03027_1.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
|
22 |
|
22
|
Bang SY, Mocanu FC, Lee TH, Yang J, Zhan S, Jung SM, Shin DW, Suh YH, Fan XB, Lee S, Choi HW, Occhipinti LG, Han SD, Kim JM. Robust In-Zn-O Thin-Film Transistors with a Bilayer Heterostructure Design and a Low-Temperature Fabrication Process Using Vacuum and Solution Deposited Layers. ACS OMEGA 2020; 5:21593-21601. [PMID: 32905305 PMCID: PMC7469374 DOI: 10.1021/acsomega.0c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
We report on the design, fabrication, and characterization of heterostructure In-Zn-O (IZO) thin-film transistors (TFTs) with improved performance characteristics and robust operation. The heterostructure layer is fabricated by stacking a solution-processed IZO film on top of a buffer layer, which is deposited previously using an electron beam (e-beam) evaporator. A thin buffer layer at the dielectric interface can help to template the structure of the channel. The control of the precursors and of the solvent used during the sol-gel process can help lower the temperature needed for the sol-gel condensation reaction to proceed cleanly. This boosts the overall performance of the device with a significantly reduced subthreshold swing, a four-fold mobility increase, and a two-order of magnitude larger on/off ratio. Atomistic simulations of the a-IZO structure using molecular dynamics (both classical and ab initio) and hybrid density functional theory (DFT) calculations of the electronic structure reveal the potential atomic origin of these effects.
Collapse
|
research-article |
5 |
|
23
|
Akhavan S, Najafabadi AT, Mignuzzi S, Jalebi MA, Ruocco A, Paradisanos I, Balci O, Andaji-Garmaroudi Z, Goykhman I, Occhipinti LG, Lidorikis E, Stranks SD, Ferrari AC. Graphene-Perovskite Fibre Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400703. [PMID: 38824387 DOI: 10.1002/adma.202400703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/13/2024] [Indexed: 06/03/2024]
Abstract
The integration of optoelectronic devices, such as transistors and photodetectors (PDs), into wearables and textiles is of great interest for applications such as healthcare and physiological monitoring. These require flexible/wearable systems adaptable to body motions, thus materials conformable to non-planar surfaces, and able to maintain performance under mechanical distortions. Here, fibre PDs are prepared by combining rolled graphene layers and photoactive perovskites. Conductive fibres (~500 Ωcm-1) are made by rolling single-layer graphene (SLG) around silica fibres, followed by deposition of a dielectric layer (Al2O3 and parylene C), another rolled SLG as a channel, and perovskite as photoactive component. The resulting gate-tunable PD has a response time~9ms, with an external responsivity~22kAW-1 at 488nm for a 1V bias. The external responsivity is two orders of magnitude higher, and the response time one order of magnitude faster, than state-of-the-art wearable fibre-based PDs. Under bending at 4mm radius, up to~80% photocurrent is maintained. Washability tests show~72% of initial photocurrent after 30 cycles, promising for wearable applications.
Collapse
|
|
1 |
|
24
|
Malik S, Zhao Y, He Y, Zhao X, Li H, Yi W, Occhipinti LG, Wang M, Akhavan S. Spray-lithography of hybrid graphene-perovskite paper-based photodetectors for sustainable electronics. NANOTECHNOLOGY 2024; 35:325301. [PMID: 38640909 DOI: 10.1088/1361-6528/ad40b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
Paper is an ideal substrate for the development of flexible and environmentally sustainable ubiquitous electronic systems. When combined with nanomaterial-based devices, it can be harnessed for various Internet-of-Things applications, ranging from wearable electronics to smart packaging. However, paper remains a challenging substrate for electronics due to its rough and porous nature. In addition, the absence of established fabrication methods is impeding its utilization in wearable applications. Unlike other paper-based electronics with added layers, in this study, we present a scalable spray-lithography on a commercial paper substrate. We present a non-vacuum spray-lithography of chemical vapor deposition (CVD) single-layer graphene (SLG), carbon nanotubes (CNTs) and perovskite quantum dots (QDs) on a paper substrate. This approach combines the advantages of two large-area techniques: CVD and spray-coating. The first technique allows for the growth of SLG, while the second enables the spray coating of a mask to pattern CVD SLG, electrodes (CNTs), and photoactive (QDs) layers. We harness the advantages of perovskite QDs in photodetection, leveraging their strong absorption coefficients. Integrating them with the graphene enhances the photoconductive gain mechanism, leading to high external responsivity. The presented device shows high external responsivity of ∼520 A W-1at 405 nm at <1 V bias due to the photoconductive gain mechanism. The prepared paper-based photodetectors (PDs) achieve an external responsivity of 520 A W-1under 405 nm illumination at <1 V operating voltage. To the best of our knowledge, our devices have the highest external responsivity among paper-based PDs. By fabricating arrays of PDs on a paper substrate in the air, this work highlights the potential of this scalable approach for enabling ubiquitous electronics on paper.
Collapse
|
|
1 |
|
25
|
Wang H, Huang S, Kuang H, Zou T, Rajagopalan P, Wang X, Li Y, Jin H, Dong S, Zhou H, Hasan T, Occhipinti LG, Kim JM, Luo J. Coexistence of Contact Electrification and Dynamic p-n Junction Modulation Effects in Triboelectrification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30410-30419. [PMID: 35758022 DOI: 10.1021/acsami.2c06374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The triboelectric effect occurs when two dissimilar materials are in physical contact, attributed to the combination of contact electrification (CE) and electrostatic induction. It has been extensively explored for the development of high-performance triboelectric nanogenerators (TENGs). In this paper, we report on, besides the CE-related charge generation, an additional charge generation phenomenon associated with the modulation of the p-n junction when two semiconductor materials [methylammonium lead iodide (MAPI) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)] are put in contact and separated dynamically. The electrical outputs generated by the CE effect are determined by the surface potential difference between the two friction materials, while the ones induced by the p-n junction modulation are determined by the dynamic variations in the depletion widths of the two semiconductor friction materials. The outputs generated by the CE effect and the p-n junction effect are well separated in time scale; the p-n junction modulation contributes ∼20% of the total charge generated and could be varied by changing the chemical composition of the semiconductors. The results may provide an alternative method for the development of high-performance TENGs by utilizing this additional p-n junction modulation effect.
Collapse
|
|
3 |
|