Rocha Neto JBM, Lima GG, Fiamingo A, Germiniani LGL, Taketa TB, Bataglioli RA, da Silveira GAT, da Silva JVL, Campana-Filho SP, Oliveira ON, Beppu MM. Controlling antimicrobial activity and drug loading capacity of chitosan-based layer-by-layer films.
Int J Biol Macromol 2021;
172:154-161. [PMID:
33428951 DOI:
10.1016/j.ijbiomac.2020.12.218]
[Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022]
Abstract
We report on layer-by-layer (LbL) films of chitosans (CHI) and hyaluronic acid (HA) whose properties could be controlled by employing chitosans with different degrees of deacetylation (DD¯ ≈ 85%; 65%; 40%) and high average molecular weight (ca. 106 g/mol). In spite of their high molecular weight, these chitosans are soluble within a wide pH range, including physiological pH. HA/CHI LbL films produced from polymer solutions at pH 4.5 were thinner, smoother, more hydrophilic than those prepared at pH 7.2. This is attributed to the more extended conformation adopted by chitosan due to its very high charge density at low pH, favoring a compact chain packing during the film formation and resulting in lower film thickness and roughness. The smoother HA/CHI LbL films obtained at pH 4.5 were effective against Escherichia coli, while the thicker, rougher LbL films fabricated at pH 7.2 could be used in the controlled released of Rose Bengal dye. In summary, the tuning of only two parameters, i.e. solution pH and DD¯ of chitosans, provides access to a library of HA/CHI LbL films for tailored, diversified applications.
Collapse