1
|
Bindels S, Mestdagt M, Vandewalle C, Jacobs N, Volders L, Noël A, van Roy F, Berx G, Foidart JM, Gilles C. Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene 2006; 25:4975-85. [PMID: 16568083 DOI: 10.1038/sj.onc.1209511] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The expression of Smad interacting protein-1 (SIP1; ZEB2) and the de novo expression of vimentin are frequently involved in epithelial-to-mesenchymal transitions (EMTs) under both normal and pathological conditions. In the present study, we investigated the potential role of SIP1 in the regulation of vimentin during the EMT associated with breast tumor cell migration and invasion. Examining several breast tumor cell lines displaying various degrees of invasiveness, we found SIP1 and vimentin expression only in invasive cell lines. Also, using a model of cell migration with human mammary MCF10A cells, we showed that SIP1 is induced specifically in vimentin-positive migratory cells. Furthermore, transfection of SIP1 cDNA in MCF10A cells increased their vimentin expression both at the mRNA and protein levels and enhanced their migratory abilities in Boyden Chamber assays. Inversely, inhibition of SIP1 expression by RNAi strategies in BT-549 cells and MCF10A cells decreased vimentin expression. We also showed that SIP1 transfection did not activate the TOP-FLASH reporter system, suggesting that the beta-catenin/TCF pathway is not implicated in the regulation of vimentin by SIP1. Our results therefore implicate SIP1 in the regulation of vimentin observed in the EMT associated with breast tumor cell migration, a pathway that may contribute to the metastatic progression of breast cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
142 |
2
|
Polette M, Mestdagt M, Bindels S, Nawrocki-Raby B, Hunziker W, Foidart JM, Birembaut P, Gilles C. Beta-catenin and ZO-1: shuttle molecules involved in tumor invasion-associated epithelial-mesenchymal transition processes. Cells Tissues Organs 2007; 185:61-5. [PMID: 17587809 DOI: 10.1159/000101304] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cytoplasmic/nuclear relocalization of beta-catenin and ZO-1 from the adherens and tight junctions are common processes of the epithelial-mesenchymal transition (EMT) associated with tumor invasion. Data are now accumulating to demonstrate that these molecules, which shuttle between the plasma membrane and the nucleus or the cytosol, are involved in signaling pathways, and contribute to the regulation of genes such as vimentin or matrix metalloproteinase-14 which are turned on during EMT.
Collapse
|
Review |
18 |
108 |
3
|
Abot A, Fontaine C, Buscato M, Solinhac R, Flouriot G, Fabre A, Drougard A, Rajan S, Laine M, Milon A, Muller I, Henrion D, Adlanmerini M, Valéra MC, Gompel A, Gerard C, Péqueux C, Mestdagt M, Raymond-Letron I, Knauf C, Ferriere F, Valet P, Gourdy P, Katzenellenbogen BS, Katzenellenbogen JA, Lenfant F, Greene GL, Foidart JM, Arnal JF. The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation. EMBO Mol Med 2015; 6:1328-46. [PMID: 25214462 PMCID: PMC4287935 DOI: 10.15252/emmm.201404112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Estetrol (E4) is a natural estrogen with a long half-life produced only by the human fetal liver during pregnancy. The crystal structures of the estrogen receptor α (ERα) ligand-binding domain bound to 17β-estradiol (E2) and E4 are very similar, as well as their capacity to activate the two activation functions AF-1 and AF-2 and to recruit the coactivator SRC3. In vivo administration of high doses of E4 stimulated uterine gene expression, epithelial proliferation, and prevented atheroma, three recognized nuclear ERα actions. However, E4 failed to promote endothelial NO synthase activation and acceleration of endothelial healing, two processes clearly dependent on membrane-initiated steroid signaling (MISS). Furthermore, E4 antagonized E2 MISS-dependent effects in endothelium but also in MCF-7 breast cancer cell line. This profile of ERα activation by E4, uncoupling nuclear and membrane activation, characterizes E4 as a selective ER modulator which could have medical applications that should now be considered further.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
89 |
4
|
Colette S, Lousse J, Defrere S, Curaba M, Heilier J, Van Langendonckt A, Mestdagt M, Foidart J, Loumaye E, Donnez J. Absence of aromatase protein and mRNA expression in endometriosis. Hum Reprod 2009; 24:2133-41. [DOI: 10.1093/humrep/dep199] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
|
16 |
67 |
5
|
Mestdagt M, Polette M, Buttice G, Noël A, Ueda A, Foidart JM, Gilles C. Transactivation of MCP-1/CCL2 by beta-catenin/TCF-4 in human breast cancer cells. Int J Cancer 2005; 118:35-42. [PMID: 16003740 PMCID: PMC2965755 DOI: 10.1002/ijc.21291] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The loss of E-cadherin expression and the translocation of beta-catenin to the nucleus are frequently associated with the metastatic conversion of epithelial cells. In the nucleus, beta-catenin binds to the TCF/LEF-1 (T-cell factor/ lymphoid enhancer factor) transcription factor family resulting in the activation of several genes, some of them having important implications in tumour progression. In our study, we investigated the potential regulation of monocyte chemotactic protein-1 (MCP-1/CCL2) expression by the beta-catenin/TCF pathway. This CC-chemokine has been implicated in tumour progression events such as angiogenesis or tumour associated macrophage (TAM) infiltration. We thus demonstrated that MCP-1 expression correlates with the reorganization of the E-cadherin/beta-catenin complexes. Indeed, MCP-1 was expressed by invasive breast cancer cells (MDA-MB-231, BT549 and Hs578T), which do not express E-cadherin but was not produced by noninvasive breast cancer cell lines (MCF7 and T47D) expressing high level of E-cadherin. In addition, the MCP-1 promoter was activated in BT549 breast cancer cells transfected with beta-catenin and TCF-4 cDNAs. The MCP-1 mRNA level was similarly upregulated. Moreover, we showed that MCP-1 mRNA was downregulated after transfection with a siRNA against beta-catenin in both BT549 and Hs578T cells. Our results therefore identify MCP-1 as a target of the beta-catenin/TCF/LEF pathway in breast tumour cells, a regulation which could play a key role in breast tumour progression.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
64 |
6
|
Gérard C, Blacher S, Communal L, Courtin A, Tskitishvili E, Mestdagt M, Munaut C, Noel A, Gompel A, Péqueux C, Foidart JM. Estetrol is a weak estrogen antagonizing estradiol-dependent mammary gland proliferation. J Endocrinol 2015; 224:85-95. [PMID: 25359896 DOI: 10.1530/joe-14-0549] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estetrol (E4) is a natural estrogen produced exclusively by the human fetal liver during pregnancy. Its physiological activity remains unknown. In contrast to ethinyl estradiol and estradiol (E2), E4 has a minimal impact on liver cell activity and could provide a better safety profile in contraception or hormone therapy. The aim of this study was to delineate if E4 exhibits an activity profile distinct from that of E2 on mammary gland. Compared with E2, E4 acted as a low-affinity estrogen in both human in vitro and murine in vivo models. E4 was 100 times less potent than E2 to stimulate the proliferation of human breast epithelial (HBE) cells and murine mammary gland in vitro and in vivo respectively. This effect was prevented by fulvestrant and tamoxifen, supporting the notion that ERα (ESR1) is the main mediator of the estrogenic effect of E4 on the breast. Interestingly, when E4 was administered along with E2, it significantly antagonized the strong stimulatory effect of E2 on HBE cell proliferation and on the growth of mammary ducts. This study characterizes for the first time the impact of E4 on mammary gland. Our results highlight that E4 is less potent than E2 and exhibits antagonistic properties toward the proliferative effect of E2 on breast epithelial cells. These data support E4 as a potential new estrogen for clinical use with a reduced impact on breast proliferation.
Collapse
|
|
10 |
50 |
7
|
Gérard C, Mestdagt M, Tskitishvili E, Communal L, Gompel A, Silva E, Arnal JF, Lenfant F, Noel A, Foidart JM, Péqueux C. Combined estrogenic and anti-estrogenic properties of estetrol on breast cancer may provide a safe therapeutic window for the treatment of menopausal symptoms. Oncotarget 2016; 6:17621-36. [PMID: 26056044 PMCID: PMC4627333 DOI: 10.18632/oncotarget.4184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/02/2015] [Indexed: 01/06/2023] Open
Abstract
Increased risk of breast cancer is a critical side effect associated with the use of a menopausal hormone therapy (MHT). Estetrol (E4) is a natural estrogen produced by the human fetal liver and is a promising compound for clinical use in MHT. However, its impact on breast cancer is controversial and poorly defined. In this preclinical study, we show that E4 acts as a weak estrogen by stimulating the growth of hormone-dependent breast cancer only at concentrations exceeding menopausal therapeutic needs. E4 presents also an antitumor activity by decreasing the strong proliferative effect of estradiol (E2). While estrogen receptor alpha (ERα) is the predominant receptor mediating its effects, the dual weak-estrogenic/anti-estrogenic feature of E4 results from differential signaling pathways activation. Both nuclear and rapid extra-nuclear signaling pathway are necessary for a complete estrogenic effect of E4. However, the antitumor action of E4 is not due to a capacity to antagonize E2-induced nuclear activity. Altogether, our results highlight that E4 has a limited impact on breast cancer and may offer a safe therapeutic window for the treatment of menopausal symptoms.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
26 |
8
|
Maillard C, Bouquet C, Petitjean M, Mestdagt M, Frau E, Jost M, Masset A, Opolon P, Beermann F, Abitbol M, Foidart J, Perricaudet M, Noel A. Reduction of brain metastases in plasminogen activator inhibitor-1-deficient mice with transgenic ocular tumors. Carcinogenesis 2008; 29:2236-42. [DOI: 10.1093/carcin/bgn204] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
17 |
24 |
9
|
Brysse A, Mestdagt M, Polette M, Luczka E, Hunziker W, Noël A, Birembaut P, Foidart JM, Gilles C. Regulation of CXCL8/IL-8 Expression by Zonula Occludens-1 in Human Breast Cancer Cells. Mol Cancer Res 2011; 10:121-32. [DOI: 10.1158/1541-7786.mcr-11-0180] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
14 |
22 |
10
|
Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM. TRANSACTIVATION OF VIMENTIN BY BETA-CATENIN IN HUMAN BREAST CANCER CELLS. Int J Gynecol Cancer 2003. [DOI: 10.1136/ijgc-00009577-200303001-00219] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
|
22 |
14 |
11
|
Krier F, Riva R, Defrère S, Mestdagt M, Van Langendonckt A, Drion P, Dehoux JP, Donnez J, Foidart JM, Jérome C, Evrard B. Device-based controlled local delivery of anastrozol into peritoneal cavity: in vitro and in vivo evaluation. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50032-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
11 |
4 |
12
|
Fontaine C, Abot A, Solinhac R, Drougard A, Fabre A, Buscato M, Milon A, Rajan S, Laine M, Henrion D, Mestdagt M, Raymond-Letron I, Flouriot G, Knauf C, Katzenellenbogen BS, Katzenellenbogen JA, Lenfant F, Greene GL, Foidart JM, Arnal JF. 0218: The uterine and vascular actions of estetrol delineate an original distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2014. [DOI: 10.1016/s1878-6480(14)71283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
11 |
|
13
|
Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res 2003; 63:2658-64. [PMID: 12750294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The cytoplasmic and nuclear redistribution of beta-catenin and the de novo expression of vimentin are frequently involved in the epithelial-to-mesenchymal transition associated with increased invasive/migratory properties of epithelial cells. Because beta-catenin can act as a coactivator of transcription through its binding to the T-cell factor (TCF)/lymphoid enhancer factor 1 transcription factor family, we have explored the possibility that beta-catenin/TCF could directly transactivate vimentin. We first compared vimentin expression in relation with the localization of beta-catenin in eight breast cancer cell lines displaying various degrees of invasiveness and in a model of cell migration using human mammary MCF10A cells. We could thus show a cytoplasmic and/or nuclear distribution of beta-catenin in invasive/migratory cells expressing vimentin, but not in noninvasive/stationary vimentin-negative cell lines. In addition, the human vimentin promoter was found to be up-regulated by beta-catenin and TCF-4 cotransfection. Varying with the cellular background, a diminution of this up-regulation was observed when the putative beta-catenin/TCF binding site of the vimentin promoter was mutated. Our results therefore demonstrate that the vimentin promoter is a target of the beta-catenin/TCF pathway and strongly suggest an implication of this regulation in epithelial cell migration/invasion.
Collapse
|
|
22 |
|