1
|
Inestrosa NC, Alvarez A, Pérez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron 1996; 16:881-91. [PMID: 8608006 DOI: 10.1016/s0896-6273(00)80108-7] [Citation(s) in RCA: 833] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimer's brain.
Collapse
|
|
29 |
833 |
2
|
Abstract
When cells of E. coli reach a certain critical length, which is constant in all growth conditions and eqqal to twice the minimum cell length, they abruptly increase their rate of elongation and divide about 20 min later. Chromosome replication terminates at about this same cell length but is not the signal for the change in rate of cell elongation.
Collapse
|
|
49 |
172 |
3
|
Rivas G, López A, Mingorance J, Ferrándiz MJ, Zorrilla S, Minton AP, Vicente M, Andreu JM. Magnesium-induced linear self-association of the FtsZ bacterial cell division protein monomer. The primary steps for FtsZ assembly. J Biol Chem 2000; 275:11740-9. [PMID: 10766796 DOI: 10.1074/jbc.275.16.11740] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial cell division protein FtsZ from Escherichia coli has been purified with a new calcium precipitation method. The protein contains one GDP and one Mg(2+) bound, it shows GTPase activity, and requires GTP and Mg(2+) to polymerize into long thin filaments at pH 6.5. FtsZ, with moderate ionic strength and low Mg(2+) concentrations, at pH 7.5, is a compact and globular monomer. Mg(2+) induces FtsZ self-association into oligomers, which has been studied by sedimentation equilibrium over a wide range of Mg(2+) and FtsZ concentrations. The oligomer formation mechanism is best described as an indefinite self-association, with binding of an additional Mg(2+) for each FtsZ monomer added to the growing oligomer, and a slight gradual decrease of the affinity of addition of a protomer with increasing oligomer size. The sedimentation velocity of FtsZ oligomer populations is compatible with a linear single-stranded arrangement of FtsZ monomers and a spacing of 4 nm. It is proposed that these FtsZ oligomers and the polymers formed under assembly conditions share a similar axial interaction between monomers (like in the case of tubulin, the eukaryotic homolog of FtsZ). Similar mechanisms may apply to FtsZ assembly in vivo, but additional factors, such as macromolecular crowding, nucleoid occlusion, or specific interactions with other cellular components active in septation have to be invoked to explain FtsZ assembly into a division ring.
Collapse
|
|
25 |
158 |
4
|
Villanueva A, García C, Paules AB, Vicente M, Megías M, Reyes G, de Villalonga P, Agell N, Lluís F, Bachs O, Capellá G. Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene 1998; 17:1969-78. [PMID: 9788440 DOI: 10.1038/sj.onc.1202118] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Resistance to TGF-beta1 occurred in pancreatic cancer cells suggesting that inactivation of TGF-beta inhibitory signaling pathways may play an important role in human pancreatic cancer. The aim of our study was to determine the presence of alterations in the main putative components of the TGF-beta inhibitory signaling pathways (p15, Smad4, Smad2, TGFbeta-RII, CDC25A). A panel of human carcinomas of the exocrine pancreas orthotopically implanted and perpetuated in nude mice and pancreatic cancer cell lines were studied. p15 gene alterations, mainly homozygous deletions that involved exons 1 and/or 2, were found in the 62.5% (5 of 8) of pancreatic xenografts whereas Smad4 gene aberrations were found in one of eight xenografts and in two of seven cell lines. Additional aberrations in these genes were acquired during in vivo perpetuation and distal dissemination. Paradoxically, TGFbeta-RII overexpression and a decrease in CDC25A protein levels were found in all tumors and cell lines. In one cell line, resistance to TGF-beta1 occurred in the absence of alterations in the genes analysed so far. We conclude that all human pancreatic tumor cells analysed herein have non-functional TGF-beta pathways. The majority of cells harbor alterations in at least one of the putative components of TGF-beta pathways, mainly in p15 and Smad4 genes. These results suggest that inactivation of TGF-beta signaling pathways plays an important role in human pancreatic tumorigenesis.
Collapse
|
|
27 |
155 |
5
|
Galceran J, Ameijide A, Carulla M, Mateos A, Quirós JR, Rojas D, Alemán A, Torrella A, Chico M, Vicente M, Díaz JM, Larrañaga N, Marcos-Gragera R, Sánchez MJ, Perucha J, Franch P, Navarro C, Ardanaz E, Bigorra J, Rodrigo P, Bonet RP. Cancer incidence in Spain, 2015. Clin Transl Oncol 2017; 19:799-825. [PMID: 28093701 DOI: 10.1007/s12094-016-1607-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/29/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Periodic cancer incidence estimates of Spain from all existing population-based cancer registries at any given time are required. The objective of this study was to present the current situation of cancer incidence in Spain. METHODS The Spanish Network of Cancer Registries (REDECAN) estimated the numbers of new cancer cases occurred in Spain in 2015 by applying the incidence-mortality ratios method. In the calculus, incidence data from population-based cancer registries and mortality data of all Spain were used. RESULTS In 2015, nearly a quarter of a million new invasive cancer cases were diagnosed in Spain, almost 149,000 in men (60.0%) and 99,000 in women. Globally, the five most common cancers were those of colon-rectum, prostate, lung, breast and urinary bladder. By gender, the four most common cancers in men were those of prostate (22.4%), colon-rectum (16.6%), lung (15.1%) and urinary bladder (11.7%). In women, the most common ones were those of breast (28.0%), colon-rectum (16.9%), corpus uteri (6.2%) and lung (6.0%). In recent years, cancer incidence in men seems to have stabilized due to the fact that the decrease in tobacco-related cancers compensates for the increase in other types of cancer like those of colon and prostate. In women, despite the stabilization of breast cancer incidence, increased incidence is due, above all, to the rise of colorectal and tobacco-related cancers. CONCLUSION To reduce these incident cancer cases, improvement of smoking control policies and extension of colorectal cancer screening should be the two priorities in cancer prevention for the next years.
Collapse
|
|
8 |
143 |
6
|
Sutton MD, Carr KM, Vicente M, Kaguni JM. Escherichia coli DnaA protein. The N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin. J Biol Chem 1998; 273:34255-62. [PMID: 9852089 DOI: 10.1074/jbc.273.51.34255] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of DNA replication at the Escherichia coli chromosomal origin occurs through an ordered series of events that depends first on the binding of DnaA protein, the replication initiator, to DnaA box sequences followed by unwinding of an AT-rich region. A step that follows is the binding of DnaB helicase at oriC so that it is properly positioned at each replication fork. We show that DnaA protein actively mediates the entry of DnaB at oriC. One region (amino acids 111-148) transiently binds to DnaB as determined by surface plasmon resonance. A second functional domain, possibly involving formation of a unique nucleoprotein structure, promotes the stable binding of DnaB during the initiation process and is inactivated in forming an intermediate termed the prepriming complex by removal of the N-terminal 62 residues. Based on similarities in the replication process between prokaryotes and eukaryotes, these results suggest that a similar mechanism may load the eukaryotic replicative helicase.
Collapse
|
|
27 |
135 |
7
|
Aldea M, Garrido T, Pla J, Vicente M. Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters. EMBO J 1990; 9:3787-94. [PMID: 1698623 PMCID: PMC552138 DOI: 10.1002/j.1460-2075.1990.tb07592.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The cell division ftsQAZ cluster and the ftsZ-dependent bolA morphogene of Escherichia coli are found to be driven by gearboxes, a distinct class of promoters characterized by showing an activity that is inversely dependent on growth rate. These promoters contain specific sequences upstream from the mRNA start point, and their -10 region is essential for the inverse growth rate dependence. Gearbox promoters are essential for driving ftsQAZ and bolA gene expression so that the encoded products are synthesized at constant amounts per cell independently of cell size. This mode of regulation would be expected for the expression of proteins that either play a regulatory role in cell division or form a stoichiometric component of the septum, a structure that, independently of cell size and growth rate, is produced once per cell cycle.
Collapse
|
|
35 |
132 |
8
|
Aldea M, Garrido T, Hernández-Chico C, Vicente M, Kushner SR. Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene. EMBO J 1989; 8:3923-31. [PMID: 2684651 PMCID: PMC402084 DOI: 10.1002/j.1460-2075.1989.tb08573.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The bolA gene, which is involved in the morphogenetic pathways of Escherichia coli, was sequenced and two potential promoters were identified. Expression from promoter P1, proximal to the bolA structural gene is specifically induced during the transition to the stationary phase of growth. This promoter contains an unusual--10 region (CGGCTAGTA), which defines a new class of E. coli promoters necessary for the dramatic increase in the rate of synthesis of a large set of proteins during the cessation of logarithmic growth. This conclusion was confirmed by identifying two additional E. coli promoters and one plasmid promoter, which also were induced during the transition to the stationary phase of growth. Analysis of proteins produced during the exponential and stationary phases of growth in a bolA null mutant suggest a possible role for the BolA protein in the induction of the expression of penicillin-binding protein 6 (PBP6) in the transition to the stationary phase. Supporting this hypothesis is the presence of a putative DNA-binding domain within the bolA coding sequence.
Collapse
|
|
36 |
129 |
9
|
Santos JM, Freire P, Vicente M, Arraiano CM. The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol Microbiol 1999; 32:789-98. [PMID: 10361282 DOI: 10.1046/j.1365-2958.1999.01397.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli morphogene bolA causes round morphology when overexpressed. The expression of bolA is mainly regulated by a sigmas-dependent gearbox promoter bolA1p. Such regulation results in increased relative levels of expression at slow growth rates, as seen with those attained at the onset of stationary phase. We demonstrate that bolA1p is also induced during early logarithmic growth in response to several forms of stress, and that this induction can be partially sigmas independent. Sudden carbon starvation results in a 17-fold increase in mRNA levels derived from bolA1p 1 h after stress imposition. Increased osmolarity results in a more than 20-fold increase after the same period. Considerable increases in bolA1p mRNA levels were also detected as a result of heat shock, acidic stress and oxidative stress, which has been shown to inhibit sigmas translation. The orders of magnitude of bolA1p induction in log phase due to sudden starvation, osmotic shock and oxidative stress surpass the levels reached in stationary phase. Under sudden carbon starvation and osmotic shock, the cells changed their morphology, resembling those cells in which bolA is overexpressed in stationary phase. Increased expression and morphological changes due to sudden carbon starvation and osmotic shock still occur when sigmaS is not present in a rpoS- background. The results show that expression of bolA is not confined to stationary phase, but it can also play an important role in general stress response. We propose that bolA1p stress induction overrides the normal regulation imposed by growth rate, which is strictly the result of sigmaS-directed transcription.
Collapse
|
|
26 |
106 |
10
|
Aldea M, Hernández-Chico C, de la Campa AG, Kushner SR, Vicente M. Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol 1988; 170:5169-76. [PMID: 3053647 PMCID: PMC211586 DOI: 10.1128/jb.170.11.5169-5176.1988] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A newly found morphogene of Escherichia coli, bolA, mapping at min 10 of the genetic map, was cloned in a 7.2-kilobase BamHI fragment and identified by its ability to produce osmotically stable spherical cells when overexpressed. This gene codes for a polypeptide of 13 kilodaltons. Overexpression of bolA+ was achieved in low-copy-number vectors with operon fusions to the tet and lac promoters, indicating a clockwise direction of transcription. While no modification of any of the penicillin-binding proteins was observed, morphological effects due to overexpression of bolA+ were shown to be dependent on the presence of an active ftsZ gene product. Our results suggest the existence of a mechanism mediated by FtsZ for modifying the conformation of nascent murein in the early steps of septum formation.
Collapse
|
research-article |
37 |
99 |
11
|
Tamames J, González-Moreno M, Mingorance J, Valencia A, Vicente M. Bringing gene order into bacterial shape. Trends Genet 2001; 17:124-6. [PMID: 11226588 DOI: 10.1016/s0168-9525(00)02212-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A different arrangement of a cluster of genes involved in division and cell-wall synthesis separates bacilli from other bacteria in a phylogenetic analysis. We conclude that the relationships between these genes are not random and might reflect significant events in the evolution of the coupling between growth and division in bacteria.
Collapse
|
|
24 |
93 |
12
|
Sánchez M, Valencia A, Ferrándiz MJ, Sander C, Vicente M. Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. EMBO J 1994; 13:4919-25. [PMID: 7957059 PMCID: PMC395432 DOI: 10.1002/j.1460-2075.1994.tb06819.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cell division protein FtsA, predicted to belong to the actin family, is present in different cell compartments depending on its phosphorylation state. The FtsA fraction isolated from the cytoplasm is phosphorylated and capable of binding ATP, while the membrane-bound form is unphosphorylated and does not bind ATP. A variant of the protein FtsA102, in which the nucleotide binding site was destroyed by mutagenesis of a highly conserved residue predicted to be needed for the binding, does not bind ATP. Another variant, FtsA104, cannot be phosphorylated because the predicted phosphorylatable residue has been replaced by a non-phosphorylatable one. This protein although unable to bind ATP in vitro, is able to rescue the reversible ftsA2, the irreversible ftsA3 and, almost with the same efficiency, the ftsA16 amber alleles. Consequently, phosphorylation and ATP binding may not be essential for the function of FtsA. Alternatively they may have a regulatory role on the action of FtsA in the septator.
Collapse
|
|
31 |
92 |
13
|
Mingorance J, Rueda S, Gómez-Puertas P, Valencia A, Vicente M. Escherichia coli FtsZ polymers contain mostly GTP and have a high nucleotide turnover. Mol Microbiol 2001; 41:83-91. [PMID: 11454202 DOI: 10.1046/j.1365-2958.2001.02498.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cell division protein FtsZ is a GTPase structurally related to tubulin and, like tubulin, it assembles in vitro into filaments, sheets and other structures. To study the roles that GTP binding and hydrolysis play in the dynamics of FtsZ polymerization, the nucleotide contents of FtsZ were measured under different polymerizing conditions using a nitrocellulose filter-binding assay, whereas polymerization of the protein was followed in parallel by light scattering. Unpolymerized FtsZ bound 1 mol of GTP mol(-1) protein monomer. At pH 7.5 and in the presence of Mg(2+) and K(+), there was a strong GTPase activity; most of the bound nucleotide was GTP during the first few minutes but, later, the amount of GTP decreased in parallel with depolymerization, whereas the total nucleotide contents remained invariant. These results show that the long FtsZ polymers formed in solution contain mostly GTP. Incorporation of nucleotides into the protein was very fast either when the label was introduced at the onset of the reaction or subsequently during polymerization. Molecular modelling of an FtsZ dimer showed the presence of a cleft between the two subunits maintaining the nucleotide binding site open to the medium. These results show that the FtsZ polymers are highly dynamic structures that quickly exchange the bound nucleotide, and this exchange can occur in all the subunits.
Collapse
|
|
24 |
82 |
14
|
Tormo A, Ayala JA, de Pedro MA, Aldea M, Vicente M. Interaction of FtsA and PBP3 proteins in the Escherichia coli septum. J Bacteriol 1986; 166:985-92. [PMID: 3011758 PMCID: PMC215222 DOI: 10.1128/jb.166.3.985-992.1986] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutations in the ftsA gene of Escherichia coli conferred a higher resistance to lysis induced by penicillin or by a combination of cefsulodin and furazlocillin. The ftsA2 allele codes for an FtsA protein which is inactive at 42 degrees C but is able to regain its activity once it is transferred back to 30 degrees C; ftsA2 filaments formed at 42 degrees C in the presence of penicillin divided once the penicillin was removed and the temperature was lowered to 30 degrees C. Potential septation sites in the filaments of wild-type cells treated in the same way remained inactive. The binding of a radioactively labeled derivative of ampicillin to penicillin-binding protein 3 (PBP3) was significantly decreased in strain D-3, containing the mutant allele ftsA3, when the binding assay was performed at the restrictive temperature. A molecular species able to cross-react with an anti-PBP3 serum was nevertheless found to be present in the envelope of D-3 cells. These observations suggested that the FtsA protein, a protein with a structural and regulatory role in septation, and PBP3, a protein enzymatically active in the synthesis of murein for septation, interact with each other.
Collapse
|
research-article |
39 |
82 |
15
|
Valdivia A, Lopez-Alcalde J, Vicente M, Pichiule M, Ruiz M, Ordobas M. Monitoring influenza activity in Europe with Google Flu Trends: comparison with the findings of sentinel physician networks - results for 2009-10. ACTA ACUST UNITED AC 2010; 15. [PMID: 20667303 DOI: 10.2807/ese.15.29.19621-en] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The number of Internet searches has recently been used by Google to estimate the influenza incidence in the United States. We examined the correlation between the Google Flu Trends tool and sentinel networks estimates in several European countries during the 2009 influenza A(H1N1) pandemic and found a good correlation between estimates and peak incidence timing, with the highest peaks in countries where Internet is most frequently used for health-related searching. Although somehow limited, Google could be a valuable tool for syndromic surveillance.
Collapse
|
Journal Article |
15 |
80 |
16
|
Garrido T, Sánchez M, Palacios P, Aldea M, Vicente M. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli. EMBO J 1993; 12:3957-65. [PMID: 8404863 PMCID: PMC413678 DOI: 10.1002/j.1460-2075.1993.tb06073.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The FtsZ protein is a key element controlling cell division in Escherichia coli. A powerful transcription titration assay was used to quantify the ftsZ mRNA present in synchronously dividing cells. The ftsZ mRNA levels oscillate during the cell cycle reaching a maximum at about the time DNA replication initiates. This cell cycle dependency is specifically due to the two proximal ftsZ promoters. A strain was constructed in which expression of ftsZ could be modulated by an exogenous inducer. In this strain cell size and cell division frequency were sensitive to the cellular FtsZ contents, demonstrating the rate-limiting role of this protein in cell division. Transcriptional activity of the ftsZ promoters was found to be independent of DnaA, indicating that DNA replication and cell division may be independently controlled at the time when new rounds of DNA replication are initiated. This suggests a parallelism between the prokaryotic cell cycle signals and the START point of eukaryotic cell cycles.
Collapse
|
|
32 |
78 |
17
|
Pla J, Sánchez M, Palacios P, Vicente M, Aldea M. Preferential cytoplasmic location of FtsZ, a protein essential for Escherichia coli septation. Mol Microbiol 1991; 5:1681-6. [PMID: 1943703 DOI: 10.1111/j.1365-2958.1991.tb01915.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An ftsZ thermonull mutant has been constructed in which the ftsZ gene has been deleted from the Escherichia coli chromosome while maintaining a wild-type copy of the gene in a thermosensitive plasmid. Under conditions in which the ftsZ+ allele is unable to be replicated at the same pace as the chromosome, the cells become non-viable and grow as filaments, indicating that, contrary to other reports, FtsZ performs a function essential for cell survival. Antibodies raised against FtsZ have been used to detect the cellular location of FtsZ and its contents per cell. Fractionation experiments indicate that most of the total FtsZ present in the cell stays in the cytoplasm.
Collapse
|
|
34 |
70 |
18
|
Vicente M, Kushner SR, Garrido T, Aldea M. The role of the 'gearbox' in the transcription of essential genes. Mol Microbiol 1991; 5:2085-91. [PMID: 1766382 DOI: 10.1111/j.1365-2958.1991.tb02137.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regulation of transcription occurs at different levels, one being in the presence of sequences specifically recognized by different forms of RNA polymerase, i.e. the promoters. Three different kinds of promoter are defined according, among other things, to their dependence on the growth rate of the cell: the 'house-keeper' promoter of many metabolic genes, the stringent promoter found at several rRNA and ribosomal protein genes, and the 'gearbox' at genes whose products are required at higher relative amounts at lower growth rates. The identified gearbox promoters of Escherichia coli share specific homologies in the -10, -35 and upstream regions. Although there may be different types of gearbox promoters, the -10 sequence of one of these promoters has been found to be essential for functioning as a gearbox. This suggests the existence of specific sigma factors for its transcription. RpoS (KatF) is a likely candidate for being one of these sigma factors. Computer simulation allows us to predict that such sigma factors should, in turn, be expressed following a gearbox mode, which would then imply the existence of self-regulated loops contributing to the expression of some genes of bacterial division.
Collapse
|
Review |
34 |
67 |
19
|
Vicente M, Cánovas JL. Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants. J Bacteriol 1973; 116:908-14. [PMID: 4745434 PMCID: PMC285462 DOI: 10.1128/jb.116.2.908-914.1973] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A number of mutants in which glucolysis is impaired have been isolated from Pseudomonas putida. The study of their behavior shows that this organism possesses a single glucolytic pathway with physiological significance. The first step of the pathway consists in the oxidation of glucose into gluconate. Two proteins with glucose dehydrogenase activity appear to exist in P. putida but the reasons for this duplicity are not clear. The process continues with the formation of 2-ketogluconate which is in turn converted into gluconate-6-phosphate. This is proved by the fact that mutants unable to form gluconate-6-phosphate from 2-ketogluconate show extremely slow growth on glucose or gluconate (generation times are increased more than 100 times). Other possible routes for the conversion of glucose into gluconate-6-phosphate, the glucose-6-phosphate pathway, or the direct phosphorylation of the gluconate formed by glucose oxidation are only minor shunts in P. putida. The Entner-Doudoroff enzymes, which catalyze the conversion of gluconate-6-phosphate into pyruvate and triosephosphate, appear to be essential to grow on glucose and also on gluconate and 2-ketogluconate. A significative role of the pentose route in the catabolism of these substrates is not apparent from this study. In contrast, P. putida strains showing no activity of the Entner-Doudoroff enzymes grow readily on fructose, although there is evidence that this hexose is at least partially catabolized via gluconate-6-phosphate.
Collapse
|
research-article |
52 |
64 |
20
|
Vicente M, Gomez MJ, Ayala JA. Regulation of transcription of cell division genes in the Escherichia coli dcw cluster. Cell Mol Life Sci 1998; 54:317-24. [PMID: 9614967 PMCID: PMC11147420 DOI: 10.1007/s000180050158] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Escherichia coli dcw cluster contains cell division genes, such as the phylogenetically ubiquitous ftsZ, and genes involved in peptidoglycan synthesis. Transcription in the cluster proceeds in the same direction as the progress of the replication fork along the chromosome. Regulation is exerted at the transcriptional and post-transcriptional levels. The absence of transcriptional termination signals may, in principle, allow extension of the transcripts initiated at the up-stream promoter (mraZ1p) even to the furthest down-stream gene (envA). Complementation tests suggest that they extend into ftsW in the central part of the cluster. In addition, the cluster contains other promoters individually regulated by cis- and trans-acting signals. Dissociation of the expression of the ftsZ gene, located after ftsQ and A near the 3' end of the cluster, from its natural regulatory signals leads to an alteration in the physiology of cell division. The complexities observed in the regulation of gene expression in the cluster may then have an important biological role. Among them, LexA-binding SOS boxes have been found at the 5' end of the cluster, preceding promoters which direct the expression of ftsI (coding for PBP3, the penicillin-binding protein involved in septum formation). A gearbox promoter, ftsQ1p, forms part of the signals regulating the transcription of ftsQ, A and Z. It is an inversely growth-dependent mechanism driven by RNA polymerase containing sigma s, the factor involved in the expression of stationary phase-specific genes. Although the dcw cluster is conserved to a different extent in a variety of bacteria, the regulation of gene expression, the presence or absence of individual genes, and even the essentiality of some of them, show variations in the phylogenetic scale which may reflect adaptation to specific life cycles.
Collapse
|
Review |
27 |
62 |
21
|
Yim L, Vandenbussche G, Mingorance J, Rueda S, Casanova M, Ruysschaert JM, Vicente M. Role of the carboxy terminus of Escherichia coli FtsA in self-interaction and cell division. J Bacteriol 2000; 182:6366-73. [PMID: 11053380 PMCID: PMC94782 DOI: 10.1128/jb.182.22.6366-6373.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the carboxy terminus of the Escherichia coli cell division protein FtsA in bacterial division has been studied by making a series of short sequential deletions spanning from residue 394 to 420. Deletions as short as 5 residues destroy the biological function of the protein. Residue W415 is essential for the localization of the protein into septal rings. Overexpression of the ftsA alleles harboring these deletions caused a coiled cell phenotype previously described for another carboxy-terminal mutation (Gayda et al., J. Bacteriol. 174:5362-5370, 1992), suggesting that an interaction of FtsA with itself might play a role in its function. The existence of such an interaction was demonstrated using the yeast two-hybrid system and a protein overlay assay. Even these short deletions are sufficient for impairing the interaction of the truncated FtsA forms with the wild-type protein in the yeast two-hybrid system. The existence of additional interactions between FtsA molecules, involving other domains, can be postulated from the interaction properties shown by the FtsA deletion mutant forms, because although unable to interact with the wild-type and with FtsADelta1, they can interact with themselves and cross-interact with each other. The secondary structures of an extensive deletion, FtsADelta27, and the wild-type protein are indistinguishable when analyzed by Fourier transform infrared spectroscopy, and moreover, FtsADelta27 retains the ability to bind ATP. These results indicate that deletion of the carboxy-terminal 27 residues does not alter substantially the structure of the protein and suggest that the loss of biological function of the carboxy-terminal deletion mutants might be related to the modification of their interacting properties.
Collapse
|
research-article |
25 |
53 |
22
|
Abstract
The length growth rate of an exponentially growing population of Escherichia coli B/r was calculated from the population length and birth length distributions. Cell elongation took place at a constant rate that doubled at a certain length. This change in rate was responsible for a sudden drop in the frequency of classes of cells longer than that length. Asymmetry in cell partition was able to generate cells both shorter and longer than the expected twofold range, but did not greatly modify the length distribution in between.
Collapse
|
research-article |
47 |
53 |
23
|
Alvarez A, Bronfman F, Pérez CA, Vicente M, Garrido J, Inestrosa NC. Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides. Neurosci Lett 1995; 201:49-52. [PMID: 8830310 DOI: 10.1016/0304-3940(94)12127-c] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acetylcholinesterase (AChE) colocalizes with amyloid-beta peptide (A beta) deposits present in the brain of Alzheimer's patients. Recent studies showed that A beta 1-40 can adopt two different conformational states in solution (an amyloidogenic conformer, A beta ac, and a non-amyloidogenic conformer, A beta nac) which have distinct abilities to form amyloid fibrils. We report here that AChE binds A beta nac and accelerates amyloid formation by the same peptide. No such effect was observed with A beta ac, the amyloidogenic conformer, suggesting that AChE acts as a 'pathological chaperone' inducing a conformational transition from A beta nac into A beta ac in vitro.
Collapse
|
|
30 |
52 |
24
|
Buddelmeijer N, Aarsman ME, Kolk AH, Vicente M, Nanninga N. Localization of cell division protein FtsQ by immunofluorescence microscopy in dividing and nondividing cells of Escherichia coli. J Bacteriol 1998; 180:6107-16. [PMID: 9829918 PMCID: PMC107694 DOI: 10.1128/jb.180.23.6107-6116.1998] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The localization of cell division protein FtsQ in Escherichia coli wild-type cells was studied by immunofluorescence microscopy with specific monoclonal antibodies. FtsQ could be localized to the division site in constricting cells. FtsQ could also localize to the division site in ftsQ1(Ts) cells grown at the permissive temperature. A hybrid protein in which the cytoplasmic domain and the transmembrane domain were derived from the gamma form of penicillin-binding protein 1B and the periplasmic domain was derived from FtsQ was also able to localize to the division site. This result indicates that the periplasmic domain of FtsQ determines the localization of FtsQ, as has also been concluded by others for the periplasmic domain of FtsN. Noncentral FtsQ foci were found in the area of the cell where the nucleoid resides and were therefore assumed to represent sites where the FtsQ protein is synthesized and simultaneously inserted into the cytoplasmic membrane.
Collapse
|
research-article |
27 |
51 |
25
|
Pla J, Dopazo A, Vicente M. The native form of FtsA, a septal protein of Escherichia coli, is located in the cytoplasmic membrane. J Bacteriol 1990; 172:5097-102. [PMID: 2203741 PMCID: PMC213167 DOI: 10.1128/jb.172.9.5097-5102.1990] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antisera able to recognize FtsA, one of the septal proteins of Escherichia coli, have been obtained and used to show that native FtsA, when expressed at levels ranging from physiological to induced from lambda pR, is located in the inner membrane. Experiments of trypsin accessibility to FtsA in membranes, spheroplasts, and vesicles indicated that FtsA is located such that it faces the cytoplasm. This location is consistent with current knowledge about the participation of FtsA in a molecular complex active in cell division called septator.
Collapse
|
research-article |
35 |
47 |