1
|
Montalvo ALE, Bembi B, Donnarumma M, Filocamo M, Parenti G, Rossi M, Merlini L, Buratti E, De Filippi P, Dardis A, Stroppiano M, Ciana G, Pittis MG. Mutation profile of theGAA gene in 40 Italian patients with late onset glycogen storage disease type II. Hum Mutat 2006; 27:999-1006. [PMID: 16917947 DOI: 10.1002/humu.20374] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glycogen storage disease type II (GSDII) is a recessively inherited disorder due to the deficiency of acid alpha-glucosidase (GAA) that results in impaired glycogen degradation and its accumulation in the lysosomes. We report here the complete molecular analysis of the GAA gene performed on 40 Italian patients with late onset GSDII. Twelve novel alleles have been identified: missense mutations were functionally characterized by enzyme activity and protein processing in a human GAA-deficient cell line while splicing mutations were studied by RT-PCR and in silico analysis. A complex allele was also identified carrying three different alterations in cis. The c.-32-13T > G was the most frequent mutation, present as compound heterozygote in 85% of the patients (allele frequency 42.3%), as described in other late onset GSDII Caucasian populations. Interestingly, the c.-32-13T > G was associated with the c.2237G > A (p.W746X) in nine of the 40 patients. Genotype-phenotype correlations are discussed with particular emphasis on the subgroup carrying the c.-32-13T > G/c.2237G > A genotype.
Collapse
|
|
19 |
94 |
2
|
Bruno C, Bertini E, Federico A, Tonoli E, Lispi ML, Cassandrini D, Pedemonte M, Santorelli FM, Filocamo M, Dotti MT, Schenone A, Malandrini A, Minetti C. Clinical and molecular findings in patients with giant axonal neuropathy (GAN). Neurology 2004; 62:13-6. [PMID: 14718689 DOI: 10.1212/01.wnl.0000101676.41505.a7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Giant axonal neuropathy (GAN) is a rare autosomal recessive neurodegenerative disorder of early onset, clinically characterized by a progressive involvement of both peripheral and CNS. The diagnosis is based on the presence of characteristic giant axons, filled with neurofilaments, on nerve biopsy. Recently, the defective protein, gigaxonin, has been identified and different pathogenic mutations in the gigaxonin gene have been reported as the underlying genetic defect. Gigaxonin, a member of the BTB/kelch superfamily proteins, seems to play a crucial role in the cross talk between the intermediate filaments and the membrane network. The authors report clinical and molecular findings in five Italian patients with GAN. This study shows the allelic heterogeneity of GAN and expands the spectrum of mutations in the GAN gene. The frequent occurrence of private mutations stresses the importance of a complete gene analysis.
Collapse
|
|
21 |
53 |
3
|
Pittis MG, Donnarumma M, Montalvo ALE, Dominissini S, Kroos M, Rosano C, Stroppiano M, Bianco MG, Donati MA, Parenti G, D'Amico A, Ciana G, Di Rocco M, Reuser A, Bembi B, Filocamo M. Molecular and functional characterization of eight novel GAA mutations in Italian infants with Pompe disease. Hum Mutat 2008; 29:E27-36. [DOI: 10.1002/humu.20753] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
17 |
41 |
4
|
Pittis MG, Ricci V, Guerci VI, Marçais C, Ciana G, Dardis A, Gerin F, Stroppiano M, Vanier MT, Filocamo M, Bembi B. Acid sphingomyelinase: identification of nine novel mutations among Italian Niemann Pick type B patients and characterization of in vivo functional in-frame start codon. Hum Mutat 2004; 24:186-7. [PMID: 15241805 DOI: 10.1002/humu.9263] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Niemann Pick disease (NPD) is an autosomal recessive disorder due to the deficit of lysosomal acid sphingomyelinase, which results in intracellular accumulation of sphingomyelin. In the present work we studied 18 patients with NPD type B, including five individuals who presented an intermediate phenotype characterised by different levels of neurological involvement. We identified nine novel mutations in the SMPD1 gene including six single base changes c.2T>G, c.96G>A, c.308T>C, c.674T>C, c.732G>C, c.841G>A (p.M1_W32del, p.W32X, p.L103P, p.L225P, p.W244C, p.A281T) and three frameshift mutations c.100delC, c.565dupC, c.575dupC (p.G34fsX42, p.P189fsX1 and p.P192fsX14). The novel c.2T>G (p.M1_W32del) mutation inactivates the first in-frame translation start site of the SMPD1 gene and in the homozygous status causes NPD type B indicating that in'vivo translation of wild type SMPD1 initiates from the first in-frame ATG. Moreover, the new c.96G>A (p.W32X) introduces a premature stop codon before the second in-frame ATG. As a consequence of either c.2T>G (p.M1_W32del) or c.96G>A (p.W32X), impaired translation from the first in-frame ATG results in a mild NPD-B phenotype instead of the severe phenotype expected for a complete deficiency of the enzyme, suggesting that when the first ATG is not functional, the second initiation codon (ATG33) still produces a fairly functional sphingomyelinase. Analysis of the patients'clinical and molecular data demonstrated that all five patients with the intermediate phenotype carried at least one severe mutation. No association between the onset of pulmonary symptoms and genotype was observed. Finally, the presence of c.96G>A (p.W32X), the most frequent allele among Italian NPD type B population, and c.1799G>C (p.R600P) as compound heterozygotes in association with severe mutations suggested a beneficial effect for both mutations.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
41 |
5
|
Venturi N, Rovelli A, Parini R, Menni F, Brambillasca F, Bertagnolio F, Uziel G, Gatti R, Filocamo M, Donati MA, Biondi A, Goldwurm S. Molecular analysis of 30 mucopolysaccharidosis type I patients: evaluation of the mutational spectrum in Italian population and identification of 13 novel mutations. Hum Mutat 2002; 20:231. [PMID: 12203999 DOI: 10.1002/humu.9051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mucopolysaccharidosis type I (MPS-I orMPS1) is an autosomal recessive condition characterized by a broad range of clinical symptoms. Molecular diagnosis of MPS-I is important for analyzing genotype-phenotype correlation and for selecting patients for innovative therapies. In this study we analyzed 30 Italian MPS-I patients with different phenotypes (20 severe, 6 intermediate, 4 mild) in an attempt to recognize the mutational spectrum in our population and to identify major DNA alterations specific to our country. We identified 93% of mutated alleles (56 out of 60) with the reconstruction of the complete genotype in 26 patients out of 30. Twenty-three different mutations were found, 13 of which are novel while the remaining 10 have been already described. Among the novel mutations we found 5 non conservative missense mutations (A160D, E178K, P183R, G197D, D349Y), one nonsense mutation (C53X), 6 deletions (468-470del3, 486-491del6, 755-759del5, 1251delC, 1839-1867del29, 1902-1903del2), and one splice site mutation (IVS11+5G>A). No common mutation for MPS-I is present in our country. Frequently (40% of the alleles), mutations were found in just one or two patients. However, Q70X, P533R, G51D, and W402X mutations were present in several patients (15%, 13.3%, 13.3%, and 11.6% of the alleles respectively) suggesting a Mediterranean origin of the P533R and G51D mutations. In most cases the patients' genotypes were unique combinations of mutations. The great heterogeneity found in our MPS-I population hampers mutation detection and hinders the genotype-phenotype correlation.
Collapse
|
|
23 |
33 |
6
|
Morana G, Biancheri R, Dirocco M, Filocamo M, Marazzi MG, Pessagno A, Rossi A. Enhancing cranial nerves and cauda equina: an emerging magnetic resonance imaging pattern in metachromatic leukodystrophy and krabbe disease. Neuropediatrics 2009; 40:291-4. [PMID: 20446225 DOI: 10.1055/s-0030-1249654] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We report on three cases of infantile Krabbe disease and one case of infantile metachromatic leukodystrophy showing magnetic resonance (MR) imaging findings of diffuse and coexistent cranial nerve and cauda equina nerve roots enhancement. Such findings may be simultaneous, or even precede, typical white matter abnormalities and, in the appropriate clinical context, may facilitate an earlier diagnosis. There is a rational for the use of contrast agents and craniospinal MR imaging during the first imaging of children with a history of psychomotor regression and clinical evidence of peripheral nerve involvement to exclude differential diagnoses.
Collapse
|
Case Reports |
16 |
32 |
7
|
Santamaria F, Parenti G, Guidi G, Filocamo M, Strisciuglio P, Grillo G, Farina V, Sarnelli P, Rizzolo MG, Rotondo A, Andria G. Pulmonary manifestations of Gaucher disease: an increased risk for L444P homozygotes? Am J Respir Crit Care Med 1998; 157:985-9. [PMID: 9517621 DOI: 10.1164/ajrccm.157.3.9706057] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pulmonary disease is a complication of Gaucher disease (GD), a lysosomal disorder due to the deficiency of glucocerebrosidase. Lung involvement was investigated through chest radiography, high-resolution computed tomography of the chest, pulmonary function tests (PFT), and oxygen saturation (SaO2) at 21% FI(O2) in 13 Italian GD patients, six homoallelic for the L444P mutation (Group A), seven with various genotypes (Group B). Echocardiography and transcutaneous oxygen tension measurement at room air and after breathing 100% oxygen were performed to exclude pulmonary hypertension and/or intrapulmonary shunts. A score index (SI) including lung involvement evaluated the severity of GD. In three Group A patients with respiratory symptoms and in an asymptomatic male interstitial involvement was demonstrated; one child died of aspiration pneumonia. Group B patients had no signs of lung damage; PFT were normal in all cases but one. SaO2 was normal in both groups. Pulmonary vascular disease was ruled out in three cases with respiratory symptoms. In Groups A and B the median SI were 22 and 13, respectively (p < 0.01). L444P homozygotes appear at major risk for developing pulmonary disease, even at earlier ages. A comprehensive evaluation of lung involvement is recommended primarily in these subjects.
Collapse
|
|
27 |
32 |
8
|
Lucchiari S, Pagliarani S, Salani S, Filocamo M, Di Rocco M, Melis D, Rodolico C, Musumeci O, Toscano A, Bresolin N, Comi GP. Hepatic and neuromuscular forms of glycogenosis type III: nine mutations in AGL. Hum Mutat 2006; 27:600-1. [PMID: 16705713 DOI: 10.1002/humu.9426] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glycogenosis type III (Cori disease) is an autosomal recessive disorder caused by the deficiency of the glycogen debranching enzyme, encoded by the AGL gene, and existing in six isoforms alternately spliced in a tissue-specific way. Generally, disease onset occurs early on starting from the first year of life, with hepatomegaly, hypoglycemia, hyperlipidemia, increased CK levels, and, in some cases, short stature and slight mental retardation. Frequently, hepatomegaly tends to resolve spontaneously and inexplicably during childhood, when myopathy, often associated with cardiomyopathy, arises. This disease is known to lack almost invariably clear links between the genotype and clinical phenotype. We describe nine new mutations in Italian patients: four nonsense (p.Arg285X, p.Lys422X, p.Arg910X, p.Arg977X), three frameshift (c.442delA, c.753_756delGACA, c.3963delG), and two missense (p.Ala1120Pro, p.Arg524His). Particularly, the nonsense p.Arg285X is linked to an exonic splicing enhancer and it was found to produce two species of transcripts at the same time. Moreover, we discuss a subgroup of subjects carrying c.2681+1G>A, which has proven to be the most frequent mutation among our patients. The previously described c.664+3A>G was also detected in two patients, both homozygous. The present work is yet another confirmation that the individual genetic background plays a pivotal role in influencing the phenotypes, as occurs in other metabolic diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
30 |
9
|
Di Rocco M, Rossi A, Parenti G, Allegri AEM, Filocamo M, Pessagno A, Tortori-Donati P, Minetti C, Biancheri R. Different molecular mechanisms leading to white matter hypomyelination in infantile onset lysosomal disorders. Neuropediatrics 2005; 36:265-9. [PMID: 16138252 DOI: 10.1055/s-2005-865863] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hypomyelinating leukoencephalopathies may be related to a primary disturbance in the formation of myelin or may be caused by neuronal, oligodendrocytic or astrocytic dysfunction, leading to a failure of myelination. Abnormal myelination related to a direct metabolic damage on oligodendrocytes has been shown to occur in some animal models of lysosomal storage diseases. To demonstrate that cerebral white matter hypomyelination may occur also in humans affected by early-onset lysosomal storage diseases, we report three cases with infantile-onset lysosomal storage disorders (type 1 GM1 gangliosidosis, globoid cell leukodystrophy or Krabbe's disease, and type A Niemann-Pick disease) showing white matter hypomyelination. Hypomyelinating leukoencephalopathy may therefore represent a feature of lysosomal storage disorders with onset in the first months of life, when the process of myelination is particularly active, indicating that neuronal storage disorders may be primarily responsible for central nervous system hypomyelination.
Collapse
|
Case Reports |
20 |
29 |
10
|
Filocamo M, Bonuccelli G, Corsolini F, Mazzotti R, Cusano R, Gatti R. Molecular analysis of 40 Italian patients with mucopolysaccharidosis type II: New mutations in the iduronate-2-sulfatase (IDS) gene. Hum Mutat 2001; 18:164-5. [PMID: 11462244 DOI: 10.1002/humu.1169] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mucopolysaccharidosis type II (MPS2, or Hunter syndrome), rare X-linked lysosomal storage disorder, results from deleterious mutations in the iduronate-2-sulfatase (IDS) gene. We report here the mutational analysis of a total of 40 unrelated Italian MPS II patients ranging from mild to severe phenotype. We are able to assign the genotype to 29 of them (72.5%), identifying 22 different mutations, five of which are unpublished (c.533delTT, W12X, N265I, c.1131-1142del, c.1131-1305del). A total of 55.2% of the molecularly characterised patients resulted from missense mutations, 20.7% from nonsense mutations, and another 13.8% of patients from small deletions (<20pb) or splice mutations, whereas 10.3% of the cases carried major structural alterations such as large deletion and rearrangements. The results reported here support the evidence of the mutational heterogeneity of the IDS gene as well as the difficulty to correlate genotype and phenotype in the patients with MPSII. However, the molecular characterisation of the patients is advantageous, making the carrier detection feasible for the females in the family at risk and improving the reliability of prenatal diagnosis techniques. Moreover, it provides a good foundation for therapeutic strategies.
Collapse
|
|
24 |
28 |
11
|
Caciotti A, Di Rocco M, Filocamo M, Grossi S, Traverso F, d'Azzo A, Cavicchi C, Messeri A, Guerrini R, Zammarchi E, Donati MA, Morrone A. Type II sialidosis: review of the clinical spectrum and identification of a new splicing defect with chitotriosidase assessment in two patients. J Neurol 2009; 256:1911-5. [PMID: 19568825 DOI: 10.1007/s00415-009-5213-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 06/08/2009] [Indexed: 11/30/2022]
Abstract
Sialidosis is a lysosomal storage disease caused by the deficiency of alpha-N-acetyl neuraminidase-1 (NEU1). Sialidosis is classified into two main clinical variants: Type I, the milder form of the disease, and Type II, which can in turn be subdivided into three forms: congenital, infantile and juvenile. We report herein the clinical, biochemical and molecular characterisation of two patients with Type II sialidosis exhibiting the congenital (P1) and infantile forms (P2). We also review clinical data on the rare Type II forms of sialidosis in the hope of improving understanding of the disorder and facilitating its diagnosis. The genetic characterization of the two patients showed one known [c. 679G > A (p.G227R)] NEU1 missense mutation (detected in P2), and the new c.807 + 1G > A splicing defect (detected in P1), a genetic lesion that is extremely rare in this disease. Interestingly, P2 presented an extremely elevated level of chitotriosidase in plasma. This is the first pathological detection of chitotriosidase in sialidosis patients.
Collapse
|
Review |
16 |
28 |
12
|
Gatti R, DiNatale P, Villani GR, Filocamo M, Muller V, Guo XH, Nelson PV, Scott HS, Hopwood JJ. Mutations among Italian mucopolysaccharidosis type I patients. J Inherit Metab Dis 1997; 20:803-6. [PMID: 9427149 DOI: 10.1023/a:1005323918923] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A group of 27 Italian patients was screened for alpha-L-iduronidase mucopolysaccharidosis type I mutations. Mutations were found in 18 patients, with 28 alleles identified. The two most common mutations in northern Europeans (W402X and Q70X) accounted for 11% and 13% of the alleles, respectively. The R89Q mutation, uncommon in Europeans, was found only in one patient, accounting for 1 of 54 alleles (1.9%). The other mutations, P533R, A327P and G51D, accounted for 11%, 5.6% and 9.3% of the total alleles, respectively. Interestingly, the high frequency of the P533R mutation seems to be confined to Sicily and is higher than the 3% reported in a British/Australian study.
Collapse
|
|
28 |
27 |
13
|
Caroli F, Biancheri R, Seri M, Rossi A, Pessagno A, Bugiani M, Corsolini F, Savasta S, Romano S, Antonelli C, Romano A, Pareyson D, Gambero P, Uziel G, Ravazzolo R, Ceccherini I, Filocamo M. GFAP mutations and polymorphisms in 13 unrelated Italian patients affected by Alexander disease. Clin Genet 2007; 72:427-33. [PMID: 17894839 DOI: 10.1111/j.1399-0004.2007.00869.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alexander disease (AD), a rare neurodegenerative disorder of the central nervous system, is characterized by the accumulation of cytoplasmic protein aggregates (Rosenthal fibers) composed of glial fibrillary acidic protein (GFAP) and small heat-shock proteins within astrocytes. To date, more than 40 different GFAP mutations have been reported in AD. The present study is aimed at the molecular diagnosis of Italian patients suspected to be affected by AD. By analyzing the GFAP gene of 13 unrelated patients (eight with infantile form, two with juvenile form and three with adult form), we found 11 different alleles, including four new ones. Among the novel mutations, three (p.R70Q, p.R73K, and p.R79P) were identified in exon 1 and p.L359P in exon 6. The sequence analysis also detected six different single nucleotide polymorphic variants, including two previously unreported ones, spread throughout non-coding regions (introns 2, 3, 5, 6, and 3'UTR) of the gene. All patients were heterozygous for the mutations, thus confirming their dominant effect.
Collapse
|
|
18 |
25 |
14
|
Biancheri R, Rossi A, Di Rocco M, Filocamo M, Pronk JC, van der Knaap MS, Tortori-Donati P. Leukoencephalopathy with vanishing white matter:: An adult onset case. Neurology 2003; 61:1818-9. [PMID: 14694060 DOI: 10.1212/01.wnl.0000098994.35677.3c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
22 |
25 |
15
|
Regis S, Filocamo M, Corsolini F, Caroli F, Keulemans JL, van Diggelen OP, Gatti R. An Asn > Lys substitution in saposin B involving a conserved amino acidic residue and leading to the loss of the single N-glycosylation site in a patient with metachromatic leukodystrophy and normal arylsulphatase A activity. Eur J Hum Genet 1999; 7:125-30. [PMID: 10196694 DOI: 10.1038/sj.ejhg.5200266] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Sphingolipid activator proteins are small glycoproteins required for the degradation of sphingolipids by specific lysosomal hydrolases. Four of them, called saposins, are encoded by the prosaposin gene, the product of which is proteolytically cleaved into the four mature saposin proteins (saposins A, B, C, D). One of these, saposin B, is necessary in the hydrolysis of sulphatide by arylsulphatase A where it presents the solubilised substrate to the enzyme. As an alternative to arylsulphatase A deficiency, deficiency of saposin B causes metachromatic leukodystrophy. We identified a previously undescribed mutation (N215K) in the prosaposin gene of a patient with metachromatic leukodystrophy but with normal arylsulphatase A activity and elevated sulphatide in urine. The mutation involves a highly conserved amino acidic residue and abolishes the only N-glycosylation site of saposin B.
Collapse
|
Case Reports |
26 |
24 |
16
|
Gatti R, Lombardo C, Filocamo M, Borrone C, Porro E. Comparative study of 15 lysosomal enzymes in chorionic villi and cultured amniotic fluid cells. Early prenatal diagnosis in seven pregnancies at risk for lysosomal storage diseases. Prenat Diagn 1985; 5:329-36. [PMID: 3934658 DOI: 10.1002/pd.1970050505] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large number of chorionic villi samples obtained from women undergoing elective first trimester termination of pregnancy was analysed by enzyme assays similar to those applied to cultured amniotic cells. The levels of 15 lysosomal enzymes were compared to those observed in tissue cultures of amniotic cells obtained through amniocentesis at 16-18 weeks of pregnancy and the results were discussed in order to assess the usefulness of trophoblast biopsy for first trimester diagnosis of hereditary lysosomal diseases. The data suggest the applicability of this source of fetal cells for prenatal diagnosis of fifteen respective genetically determined enzyme deficiencies with the probable exception of alpha-L-iduronidase deficiency. Enzyme determinations were performed on chorionic villi samples of two pregnancies at risk for Tay-Sachs disease, three pregnancies for GM1 gangliosidosis type 1, one for mucopolysaccharidosis type VI and one for Wolman's disease.
Collapse
|
Comparative Study |
40 |
24 |
17
|
Fiumara A, Barone R, Arena A, Filocamo M, Lissens W, Pavone L, Sorge G. Krabbe leukodystrophy in a selected population with high rate of late onset forms: longer survival linked to c.121G>A (p.Gly41Ser) mutation. Clin Genet 2010; 80:452-8. [DOI: 10.1111/j.1399-0004.2010.01572.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
15 |
24 |
18
|
Tessitore A, Villani GR, Di Domenico C, Filocamo M, Gatti R, Di Natale P. Molecular defects in the alpha-N-acetylglucosaminidase gene in Italian Sanfilippo type B patients. Hum Genet 2000; 107:568-76. [PMID: 11153910 DOI: 10.1007/s004390000429] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sanfilippo syndrome type B (mucopolysaccharidosis IIIB) is a rare autosomal recessive disorder characterized by the inability to degrade heparan sulfate because of a deficiency of the lysosomal enzyme alpha-N-acetylglucosaminidase (NAGLU). We performed mutation screening in a group of 20 patients, identyifing 28 mutations, 14 of which were novel (L35F, 204delC, 221insGCGCG, G82D, W156C, 507delC, IVS3+1G-->A, E336X, V501G, R520W, S534Y, W649C, 1953insGCCA, 2185delAGA). Four of these mutations were found in homozygosity and only one was seen in two different patients, showing the remarkable molecular heterogeneity of the disease. Mutation IVS3+1G-->A produces aberrant RNA splicing: it represents a base substitution from G to A of the invariant GT dinucleotides at the splicing donor site of intron 3 resulting in the skipping of exon 3 and both exons 2 and 3. Transient transfection of COS cells, by DNA mutagenized with NAGLU mutations, produced enzymatic molecules without activity, demonstrating the deleterious nature of the defects. Metabolic labeling of transfected mutants suggested a normal synthesis of the involved polypeptide for missense alterations, whereas increased protein or mRNA instability was shown for nonsense and most of the frameshift mutations.
Collapse
|
|
25 |
24 |
19
|
Tappino B, Regis S, Corsolini F, Filocamo M. An Alu insertion in compound heterozygosity with a microduplication in GNPTAB gene underlies Mucolipidosis II. Mol Genet Metab 2008; 93:129-33. [PMID: 17964840 DOI: 10.1016/j.ymgme.2007.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 11/22/2022]
Abstract
Mucolipidosis type II (ML II) is a fatal, autosomal recessive, lysosomal storage disorder characterized by severe clinical and radiologic features. ML II results from mutations in alpha and beta subunits, encoded by the GlcNAc-1-phosphotransferase gene (GNPTAB). Most of the 40 different GNPTAB mutations reported so far are insertions and deletions predicting diverse types of aberrant proteins. Alu mobile elements have however never been involved in these events up to now. The Italian ML II patient of our study showed an Alu retrotrasposition in GNPTAB exon 5. The Alu insertion mutation (NM_024312.3:c.555_556insHSU14569) generated a transcript with a skipping of the target exon 5 and a frameshift p.S122fs, causing a premature translation termination codon at position 123. This insertion mutation was found in compound heterozygosity with the frameshift p.S887KfsX33, resulting from a new mono-nucleotide duplication (c.2659dupA) that occurred in GNPTAB exon 13. A possible involvement of cis-splicing elements having an exonic location, such as exon enhancers (ESEs), is discussed as mechanism that led to the production of the aberrant mRNA splicing.
Collapse
|
Case Reports |
17 |
20 |
20
|
Ricci V, Stroppiano M, Corsolini F, Di Rocco M, Parenti G, Regis S, Grossi S, Biancheri R, Mazzotti R, Filocamo M. Screening of 25 Italian patients with Niemann-Pick A reveals fourteen new mutations, one common and thirteen private, in SMPD1. Hum Mutat 2004; 24:105. [PMID: 15221801 DOI: 10.1002/humu.9258] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Niemann-Pick disease (NPD) results from the deficiency of lysosomal acid sphingomyelinase (SMPD1). To date, out of more than 70-disease associated alleles only a few of them have a significant frequency in various ethnic groups. In contrast, the remainder of the mutations are rare or private. In this paper we report the molecular characterization of an Italian series consisting of twenty-five NPD patients with the severe neurodegenerative A phenotype. Mutation detection identified a total of nineteen different mutations, including 14 novel mutations and five previously reported lesions. The known p.P189fs and the novel p.T542fs were the most frequent mutations accounting for 34% and 18% of the alleles, respectively. Screening the alleles for the three common polymorphisms revealed the variant c.1516G>A (exon 6) and the repeat in exon 1, but not the variant c.965C>T (exon 2). In absence of frequent mutations, the prognostic value of genotyping is limited. However, new genotype/phenotype correlations were observed for this disorder that could in the future facilitate genetic counseling and guide selection of patients for therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
19 |
21
|
Regis S, Filocamo M, Mazzotti R, Cusano R, Corsolini F, Bonuccelli G, Stroppiano M, Gatti R. Prenatal diagnosis of Pelizaeus-Merzbacher disease: detection of proteolipid protein gene duplication by quantitative fluorescent multiplex PCR. Prenat Diagn 2001; 21:668-71. [PMID: 11536268 DOI: 10.1002/pd.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A prenatal diagnosis of Pelizaeus-Merzbacher disease (PMD) resulting from proteolipid protein gene (PLP) duplication was performed by a quantitative fluorescent multiplex PCR method. PLP gene copy number was determined in the proband, the pregnant mother, the male fetus and two aunts. Small amounts of genomic DNA extracted from peripheral blood and from chorionic villi were used. The fetus, in common with the proband, was identified as PMD-affected being a carrier of the PLP gene duplication, inherited from the mother, while the two aunts were non-carriers. The data obtained were confirmed by segregation analysis of a PLP-associated dinucleotide-repeat polymorphism amplified by the same multiplex PCR.
Collapse
|
Case Reports |
24 |
18 |
22
|
Regis S, Biancheri R, Bertini E, Burlina A, Lualdi S, Bianco MG, Devescovi R, Rossi A, Uziel G, Filocamo M. Genotype-phenotype correlation in five Pelizaeus-Merzbacher disease patients with PLP1 gene duplications. Clin Genet 2008; 73:279-87. [DOI: 10.1111/j.1399-0004.2007.00961.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
17 |
17 |
23
|
Garibaldi LR, Canini S, Superti-Furga A, Lamedica G, Filocamo M, Marchese N, Borrone C. Galactosemia caused by generalized uridine diphosphate galactose-4-epimerase deficiency. J Pediatr 1983; 103:927-30. [PMID: 6549612 DOI: 10.1016/s0022-3476(83)80719-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
Case Reports |
42 |
17 |
24
|
Durand P, Gatti R, Borrone C, Costantino G, Cavalieri S, Filocamo M, Romeo G. Detection of carriers and prenatal diagnosis for fucosidosis in Calabria. Hum Genet 1979; 51:195-201. [PMID: 511146 DOI: 10.1007/bf00287175] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A significant proportion of patients affected with fucosidosis have Italian ancestors. We assayed for alpha-fucosidase activity purified mononuclear cells and/or leukocytes obtained from 64 members of two large pedigrees from Calabria, in which seven children had been diagnosed as affected with fucosidosis. Of these 64 individuals, 22 were diagnosed as carriers, while the values for the remainder were within normal limits, indicating a clear bimodal distribution among individuals at risk. These data confirm that carrier detection for fucosidosis requires the measurement of alpha-L-fucosidase activity in purified mononuclear cells from peripheral blood. In addition, this program has made prenatal identification of an affected fetus possible.
Collapse
|
|
46 |
16 |
25
|
Lucchiari S, Donati MA, Melis D, Filocamo M, Parini R, Bresolin N, Comi GP. Mutational analysis of the AGL gene: five novel mutations in GSD III patients. Hum Mutat 2003; 22:337. [PMID: 12955720 DOI: 10.1002/humu.9177] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Total or partial lack of glycogen debranching enzyme (GDE or AGL, amylo-1,6-glucosidase, 4-alpha-glucanotransferase) is responsible for Glycogen Storage Disease type III (GSDIII), a rare autosomal recessive disorder of glycogen metabolism. The clinical and biochemical features of GSDIII subjects are quite heterogeneous, and this mirrors the genotype-phenotype heterogeneity among patients. In this paper, we report the molecular characterisation of five unrelated subjects, four Italian and one Tunisian. The following new mutations are described and confirm the genetic heterogeneity of this disease: p.R864X, p.R428K, c.3911 insA, p.G1087R and c.3512_3549dup+c.3512_3519del. The functional relevance of these mutations is discussed on the basis of the recently acquired knowledge about the boundaries and structures of the two catalytic domains.
Collapse
|
|
22 |
15 |