1
|
Amorim A, Bauböck M, Berger JP, Brandner W, Clénet Y, Coudé du Foresto V, de Zeeuw PT, Dexter J, Duvert G, Ebert M, Eckart A, Eisenhauer F, Förster Schreiber NM, Garcia P, Gao F, Gendron E, Genzel R, Gillessen S, Habibi M, Haubois X, Henning T, Hippler S, Horrobin M, Hubert Z, Jiménez Rosales A, Jocou L, Kervella P, Lacour S, Lapeyrère V, Le Bouquin JB, Léna P, Ott T, Paumard T, Perraut K, Perrin G, Pfuhl O, Rabien S, Rodríguez-Coira G, Rousset G, Scheithauer S, Sternberg A, Straub O, Straubmeier C, Sturm E, Tacconi LJ, Vincent F, von Fellenberg S, Waisberg I, Widmann F, Wieprecht E, Wiezorrek E, Yazici S. Test of the Einstein Equivalence Principle near the Galactic Center Supermassive Black Hole. PHYSICAL REVIEW LETTERS 2019; 122:101102. [PMID: 30932663 DOI: 10.1103/physrevlett.122.101102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 06/09/2023]
Abstract
During its orbit around the four million solar mass black hole Sagittarius A* the star S2 experiences significant changes in gravitational potential. We use this change of potential to test one part of the Einstein equivalence principle: the local position invariance (LPI). We study the dependency of different atomic transitions on the gravitational potential to give an upper limit on violations of the LPI. This is done by separately measuring the redshift from hydrogen and helium absorption lines in the stellar spectrum during its closest approach to the black hole. For this measurement we use radial velocity data from 2015 to 2018 and combine it with the gravitational potential at the position of S2, which is calculated from the precisely known orbit of S2 around the black hole. This results in a limit on a violation of the LPI of |β_{He}-β_{H}|=(2.4±5.1)×10^{-2}. The variation in potential that we probe with this measurement is six magnitudes larger than possible for measurements on Earth, and a factor of 10 larger than in experiments using white dwarfs. We are therefore testing the LPI in a regime where it has not been tested before.
Collapse
|
|
6 |
2 |
2
|
Abuter R, Allouche F, Amorim A, Bailet C, Berdeu A, Berger JP, Berio P, Bigioli A, Boebion O, Bolzer ML, Bonnet H, Bourdarot G, Bourget P, Brandner W, Cao Y, Conzelmann R, Comin M, Clénet Y, Courtney-Barrer B, Davies R, Defrère D, Delboulbé A, Delplancke-Ströbele F, Dembet R, Dexter J, de Zeeuw PT, Drescher A, Eckart A, Édouard C, Eisenhauer F, Fabricius M, Feuchtgruber H, Finger G, Förster Schreiber NM, Garcia P, Garcia Lopez R, Gao F, Gendron E, Genzel R, Gil JP, Gillessen S, Gomes T, Gonté F, Gouvret C, Guajardo P, Guieu S, Hackenberg W, Haddad N, Hartl M, Haubois X, Haußmann F, Heißel G, Henning T, Hippler S, Hönig SF, Horrobin M, Hubin N, Jacqmart E, Jocou L, Kaufer A, Kervella P, Kolb J, Korhonen H, Lacour S, Lagarde S, Lai O, Lapeyrère V, Laugier R, Le Bouquin JB, Leftley J, Léna P, Lewis S, Liu D, Lopez B, Lutz D, Magnard Y, Mang F, Marcotto A, Maurel D, Mérand A, Millour F, More N, Netzer H, Nowacki H, Nowak M, Oberti S, Ott T, Pallanca L, Paumard T, Perraut K, Perrin G, Petrov R, Pfuhl O, Pourré N, Rabien S, Rau C, Riquelme M, Robbe-Dubois S, Rochat S, Salman M, et alAbuter R, Allouche F, Amorim A, Bailet C, Berdeu A, Berger JP, Berio P, Bigioli A, Boebion O, Bolzer ML, Bonnet H, Bourdarot G, Bourget P, Brandner W, Cao Y, Conzelmann R, Comin M, Clénet Y, Courtney-Barrer B, Davies R, Defrère D, Delboulbé A, Delplancke-Ströbele F, Dembet R, Dexter J, de Zeeuw PT, Drescher A, Eckart A, Édouard C, Eisenhauer F, Fabricius M, Feuchtgruber H, Finger G, Förster Schreiber NM, Garcia P, Garcia Lopez R, Gao F, Gendron E, Genzel R, Gil JP, Gillessen S, Gomes T, Gonté F, Gouvret C, Guajardo P, Guieu S, Hackenberg W, Haddad N, Hartl M, Haubois X, Haußmann F, Heißel G, Henning T, Hippler S, Hönig SF, Horrobin M, Hubin N, Jacqmart E, Jocou L, Kaufer A, Kervella P, Kolb J, Korhonen H, Lacour S, Lagarde S, Lai O, Lapeyrère V, Laugier R, Le Bouquin JB, Leftley J, Léna P, Lewis S, Liu D, Lopez B, Lutz D, Magnard Y, Mang F, Marcotto A, Maurel D, Mérand A, Millour F, More N, Netzer H, Nowacki H, Nowak M, Oberti S, Ott T, Pallanca L, Paumard T, Perraut K, Perrin G, Petrov R, Pfuhl O, Pourré N, Rabien S, Rau C, Riquelme M, Robbe-Dubois S, Rochat S, Salman M, Sanchez-Bermudez J, Santos DJD, Scheithauer S, Schöller M, Schubert J, Schuhler N, Shangguan J, Shchekaturov P, Shimizu TT, Sevin A, Soulez F, Spang A, Stadler E, Sternberg A, Straubmeier C, Sturm E, Sykes C, Tacconi LJ, Tristram KRW, Vincent F, von Fellenberg S, Uysal S, Widmann F, Wieprecht E, Wiezorrek E, Woillez J, Zins G. A dynamical measure of the black hole mass in a quasar 11 billion years ago. Nature 2024; 627:281-285. [PMID: 38286342 PMCID: PMC11636685 DOI: 10.1038/s41586-024-07053-4] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Tight relationships exist in the local Universe between the central stellar properties of galaxies and the mass of their supermassive black hole (SMBH)1-3. These suggest that galaxies and black holes co-evolve, with the main regulation mechanism being energetic feedback from accretion onto the black hole during its quasar phase4-6. A crucial question is how the relationship between black holes and galaxies evolves with time; a key epoch to examine this relationship is at the peaks of star formation and black hole growth 8-12 billion years ago (redshifts 1-3)7. Here we report a dynamical measurement of the mass of the black hole in a luminous quasar at a redshift of 2, with a look back in time of 11 billion years, by spatially resolving the broad-line region (BLR). We detect a 40-μas (0.31-pc) spatial offset between the red and blue photocentres of the Hα line that traces the velocity gradient of a rotating BLR. The flux and differential phase spectra are well reproduced by a thick, moderately inclined disk of gas clouds within the sphere of influence of a central black hole with a mass of 3.2 × 108 solar masses. Molecular gas data reveal a dynamical mass for the host galaxy of 6 × 1011 solar masses, which indicates an undermassive black hole accreting at a super-Eddington rate. This suggests a host galaxy that grew faster than the SMBH, indicating a delay between galaxy and black hole formation for some systems.
Collapse
|
research-article |
1 |
|
3
|
Xuan JW, Mérand A, Thompson W, Zhang Y, Lacour S, Blakely D, Mawet D, Oppenheimer R, Kammerer J, Batygin K, Sanghi A, Wang J, Ruffio JB, Liu MC, Knutson H, Brandner W, Burgasser A, Rickman E, Bowens-Rubin R, Salama M, Balmer W, Blunt S, Bourdarot G, Caselli P, Chauvin G, Davies R, Drescher A, Eckart A, Eisenhauer F, Fabricius M, Feuchtgruber H, Finger G, Förster Schreiber NM, Garcia P, Genzel R, Gillessen S, Grant S, Hartl M, Haußmann F, Henning T, Hinkley S, Hönig SF, Horrobin M, Houllé M, Janson M, Kervella P, Kral Q, Kreidberg L, Le Bouquin JB, Lutz D, Mang F, Marleau GD, Millour F, More N, Nowak M, Ott T, Otten G, Paumard T, Rabien S, Rau C, Ribeiro DC, Sadun Bordoni M, Sauter J, Shangguan J, Shimizu TT, Sykes C, Soulain A, Spezzano S, Straubmeier C, Stolker T, Sturm E, Subroweit M, Tacconi LJ, van Dishoeck EF, Vigan A, Widmann F, Wieprecht E, Winterhalder TO, Woillez J. The cool brown dwarf Gliese 229 B is a close binary. Nature 2024; 634:1070-1074. [PMID: 39415016 DOI: 10.1038/s41586-024-08064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Owing to their similarities with giant exoplanets, brown dwarf companions of stars provide insights into the fundamental processes of planet formation and evolution. From their orbits, several brown dwarf companions are found to be more massive than theoretical predictions given their luminosities and the ages of their host stars1-3. Either the theory is incomplete or these objects are not single entities. For example, they could be two brown dwarfs each with a lower mass and intrinsic luminosity1,4. The most problematic example is Gliese 229 B (refs. 5,6), which is at least 2-6 times less luminous than model predictions given its dynamical mass of 71.4 ± 0.6 Jupiter masses (MJup) (ref. 1). We observed Gliese 229 B with the GRAVITY interferometer and, separately, the CRIRES+ spectrograph at the Very Large Telescope. Both sets of observations independently resolve Gliese 229 B into two components, Gliese 229 Ba and Bb, settling the conflict between theory and observations. The two objects have a flux ratio of 0.47 ± 0.03 at a wavelength of 2 μm and masses of 38.1 ± 1.0 and 34.4 ± 1.5 MJup, respectively. They orbit each other every 12.1 days with a semimajor axis of 0.042 astronomical units (AU). The discovery of Gliese 229 BaBb, each only a few times more massive than the most massive planets, and separated by 16 times the Earth-moon distance, raises new questions about the formation and prevalence of tight binary brown dwarfs around stars.
Collapse
|
|
1 |
|