1
|
Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998; 273:30336-43. [PMID: 9804796 DOI: 10.1074/jbc.273.46.30336] [Citation(s) in RCA: 1489] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) has been found to have various functions on endothelial cells, the most prominent of which is the induction of proliferation and differentiation. In this report we demonstrate that VEGF or a mutant, selectively binding to the Flk-1/KDR receptor, displayed high levels of survival activity, whereas Flt-1-specific ligands failed to promote survival of serum-starved primary human endothelial cells. This activity was blocked by the phosphatidylinositol 3'-kinase (PI3-kinase)-specific inhibitors wortmannin and LY294002. Endothelial cells cultured in the presence of VEGF and the Flk-1/KDR-selective VEGF mutant induced phosphorylation of the serine-threonine kinase Akt in a PI3-kinase-dependent manner. Akt activation was not detected in response to stimulation with placenta growth factor or an Flt-1-selective VEGF mutant. Furthermore, a constitutively active Akt was sufficient to promote survival of serum-starved endothelial cells in transient transfection experiments. In contrast, overexpression of a dominant-negative form of Akt blocked the survival effect of VEGF. These findings identify the Flk-1/KDR receptor and the PI3-kinase/Akt signal transduction pathway as crucial elements in the processes leading to endothelial cell survival induced by VEGF. Inhibition of apoptosis may represent a major aspect of the regulatory activity of VEGF on the vascular endothelium.
Collapse
|
|
27 |
1489 |
2
|
Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 1996; 93:14862-7. [PMID: 8962146 PMCID: PMC26227 DOI: 10.1073/pnas.93.25.14862] [Citation(s) in RCA: 1139] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/1996] [Indexed: 02/03/2023] Open
Abstract
The genome of the Kaposi sarcoma-associated herpesvirus (KSHV or HHV8) was mapped with cosmid and phage genomic libraries from the BC-1 cell line. Its nucleotide sequence was determined except for a 3-kb region at the right end of the genome that was refractory to cloning. The BC-1 KSHV genome consists of a 140.5-kb-long unique coding region flanked by multiple G + C-rich 801-bp terminal repeat sequences. A genomic duplication that apparently arose in the parental tumor is present in this cell culture-derived strain. At least 81 ORFs, including 66 with homology to herpesvirus saimiri ORFs, and 5 internal repeat regions are present in the long unique region. The virus encodes homologs to complement-binding proteins, three cytokines (two macrophage inflammatory proteins and interleukin 6), dihydrofolate reductase, bcl-2, interferon regulatory factors, interleukin 8 receptor, neural cell adhesion molecule-like adhesin, and a D-type cyclin, as well as viral structural and metabolic proteins. Terminal repeat analysis of virus DNA from a KS lesion suggests a monoclonal expansion of KSHV in the KS tumor.
Collapse
|
research-article |
29 |
1139 |
3
|
Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR, Templeton DJ. Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 1994; 372:798-800. [PMID: 7997270 DOI: 10.1038/372798a0] [Citation(s) in RCA: 602] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A kinase distinct from the MEK activator Raf, termed MEK kinase-1 (MEKK), was originally identified by virtue of its homology to kinases involved in yeast mating signal cascades. Like Raf, MEKK is capable of activating MEK in vitro. High-level expression of MEKK in COS-7 cells or using vaccinia virus vectors also activates MEK and MAPK, indicating that MEKK and Raf provide alternative means of activating the MAPK signalling pathway. We have derived NIH3T3 cell sublines that can be induced to express active MEKK. Here we show that induction of MEKK does not result in the activation of MAPK, but instead stimulates the stress-activated protein kinases (SAPKs) which are identical to a Jun amino-terminal kinase. We find that MEKK regulates a new signalling cascade by phosphorylating an SAPK activator, SEK1 which in turn phosphorylates and activates SAPK.
Collapse
|
|
31 |
602 |
4
|
Yan M, Brady JR, Chan B, Lee WP, Hsu B, Harless S, Cancro M, Grewal IS, Dixit VM. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol 2001; 11:1547-52. [PMID: 11591325 DOI: 10.1016/s0960-9822(01)00481-x] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BLyS (also called BAFF, TALL-1, THANK, and zTNF4), a TNF superfamily member, binds two receptors, TACI and BCMA, and regulates humoral immune responses [1-7]. These two receptors also bind APRIL [7-10], another TNF superfamily member. The results from TACI(-/-) and BCMA(-/-) mice suggest the existence of additional receptor(s) for BLyS. The TACI knockout gives the paradoxical result of B cells being hyperresponsive, suggesting an inhibitory role for this receptor [11, 12], while BCMA null mice have no discernable phenotype [13]. Here we report the identification of a third BLyS receptor (BR3; BLyS receptor 3). This receptor is unique in that, in contrast to TACI and BCMA, BR3 only binds BLyS. Treatment of antigen-challenged mice with BR3-Fc inhibited antibody production, indicating an essential role for BLyS, but not APRIL, in this response. A critical role for BR3 in B cell ontogeny is underscored by our data showing that the BR3 gene had been inactivated by a discrete, approximately 4.7 kb gene insertion event that disrupted the 3' end of the BR3 gene in A/WySnJ mice, which lack peripheral B cells.
Collapse
|
|
24 |
332 |
5
|
Yan M, Wang H, Chan B, Roose-Girma M, Erickson S, Baker T, Tumas D, Grewal IS, Dixit VM. Activation and accumulation of B cells in TACI-deficient mice. Nat Immunol 2001; 2:638-43. [PMID: 11429549 DOI: 10.1038/89790] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The tumor necrosis factor (TNF)-related ligand B lymphocyte stimulator (BLyS) binds two TNF receptor family members, transmembrane activator and calcium-modulating and cyclophilin ligand interactor (TACI) and B cell maturation molecule (BCMA). Mice that are transgenic for BLyS show B cell accumulation, activation and autoimmune lupus-like nephritis. The existence of at least two distinct BLyS receptors raises the question of the relative contribution of each to B cell functions. We therefore generated mice that were deficient in TACI. TACI-/- mice showed increased B cell accumulation and marked splenomegaly. Isolated TACI-/- B cells hyperproliferated and produced increased amounts of immunoglobulins in vitro. In vivo antigen challenge resulted in enhanced antigen-specific antibody production. Thus, TACI may play an unexpected inhibitory role in B cell activation that helps maintain immunological homeostasis.
Collapse
|
|
24 |
319 |
6
|
Tarshis LC, Yan M, Poulter CD, Sacchettini JC. Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution. Biochemistry 1994; 33:10871-7. [PMID: 8086404 DOI: 10.1021/bi00202a004] [Citation(s) in RCA: 305] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The synthesis of farnesyl diphosphate (FPP), a key intermediate in the isoprenoid biosynthetic pathway required for the synthesis of cholesterol and in the formation of prenylated proteins, is catalyzed by the enzyme farnesyl diphosphate synthase (FPS). The crystal structure of avian recombinant FPS, the first three-dimensional structure for any prenyltransferase, was determined to 2.6-A resolution. The enzyme exhibits a novel fold composed entirely of alpha-helices joined by connecting loops. The enzyme's most prominent structural feature is the arrangement of 10 core helices around a large central cavity. Two aspartate-rich sequences that are highly conserved among the isoprenyl diphosphate synthase family of prenyltransferases, and are essential for enzymatic activity, were found on opposite walls of this cavity, with the aspartate side chains approximately 12 A apart and facing each other. The location and metal ion binding properties of these sequences suggest that the conserved aspartate residues participate in substrate binding of catalysis.
Collapse
|
|
31 |
305 |
7
|
Marsters SA, Yan M, Pitti RM, Haas PE, Dixit VM, Ashkenazi A. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr Biol 2000; 10:785-8. [PMID: 10898980 DOI: 10.1016/s0960-9822(00)00566-2] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BLyS (also called TALL-1, THANK, or BAFF) [1] [2] [3] [4] is a member of the tumor necrosis factor (TNF) gene family that stimulates proliferation and immunoglobulin production by B cells. BLyS interacts with the TNF receptor (TNFR) homologue TACI (transmembrane activator and CAML-interactor) [5], and treatment of mice with a TACI-Fc fusion protein abolishes germinal center formation after antigenic challenge [6]. Here we report a novel interaction between BLyS and another TNFR homologue, BCMA (B cell maturation antigen) [7] [8]. Further, the TNF homologue APRIL [9], a close relative of BLyS, also bound to BCMA and TACI. BLyS or APRIL activated nuclear factor-kappaB (NF-kappaB) through TACI and BCMA, and each ligand stimulated immunoglobulin M (IgM) production by peripheral blood B cells. These results define a dual ligand-receptor system that may play an important role in humoral immunity.
Collapse
|
|
25 |
298 |
8
|
Zhang Q, Siebert R, Yan M, Hinzmann B, Cui X, Xue L, Rakestraw KM, Naeve CW, Beckmann G, Weisenburger DD, Sanger WG, Nowotny H, Vesely M, Callet-Bauchu E, Salles G, Dixit VM, Rosenthal A, Schlegelberger B, Morris SW. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet 1999; 22:63-8. [PMID: 10319863 DOI: 10.1038/8767] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphomas most frequently involve the gastrointestinal tract and are the most common subset of extranodal non-Hodgkin lymphoma (NHL). Here we describe overexpression of BCL10, a novel apoptotic signalling gene that encodes an amino-terminal caspase recruitment domain (CARD), in MALT lymphomas due to the recurrent t(1;14)(p22;q32). BCL10 cDNAs from t(1;14)-positive MALT tumours contained a variety of mutations, most resulting in truncations either in or carboxy terminal to the CARD. Wild-type BCL10 activated NF-kappaB but induced apoptosis of MCF7 and 293 cells. CARD-truncation mutants were unable to induce cell death or activate NF-kappaB, whereas mutants with C-terminal truncations retained NF-kappaB activation but did not induce apoptosis. Mutant BCL10 overexpression might have a twofold lymphomagenic effect: loss of BCL10 pro-apoptosis may confer a survival advantage to MALT B-cells, and constitutive NF-kappaB activation may provide both anti-apoptotic and proliferative signals mediated via its transcriptional targets.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- B-Cell CLL-Lymphoma 10 Protein
- Binding Sites
- Blotting, Northern
- Caspases/metabolism
- Cell Death/genetics
- Cell Line
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 14/genetics
- DNA/chemistry
- DNA/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- In Situ Hybridization, Fluorescence
- Lymphoma, B-Cell, Marginal Zone/genetics
- Male
- Molecular Sequence Data
- Mutation
- NF-kappa B/metabolism
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Structure, Tertiary
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
|
|
26 |
282 |
9
|
Huser T, Yan M, Rothberg LJ. Single chain spectroscopy of conformational dependence of conjugated polymer photophysics. Proc Natl Acad Sci U S A 2000; 97:11187-91. [PMID: 11027327 PMCID: PMC17175 DOI: 10.1073/pnas.97.21.11187] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single molecule confocal fluorescence microscopy was used to perform photoluminescence spectroscopy on single, isolated molecules of the conjugated polymer poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene-vinylene] (MEH-PPV). We show that the fluorescence from single chains of this electroluminescent polymer depends strongly on chain conformation. The time evolution of the spectra, emission intensity, and polarization all provide direct evidence that memory of the chain conformation in solution is retained after solvent evaporation. Chains cast from toluene solution are highly folded and show memory of the excitation polarization. Exciton funneling to highly aggregated low energy regions causes the chain to mimic the photophysical behavior of a single chromophore. Chains cast from chloroform, however, behave as multichromophore systems, and no sudden discrete spectral or intensity jumps are observed. These also exhibit different spectroscopy from the folded chromophores.
Collapse
|
research-article |
25 |
281 |
10
|
Bader DA, Moret BM, Yan M. A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J Comput Biol 2002; 8:483-91. [PMID: 11694179 DOI: 10.1089/106652701753216503] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hannenhalli and Pevzner gave the first polynomial-time algorithm for computing the inversion distance between two signed permutations, as part of the larger task of determining the shortest sequence of inversions needed to transform one permutation into the other. Their algorithm (restricted to distance calculation) proceeds in two stages: in the first stage, the overlap graph induced by the permutation is decomposed into connected components; then, in the second stage, certain graph structures (hurdles and others) are identified. Berman and Hannenhalli avoided the explicit computation of the overlap graph and gave an O(nalpha(n)) algorithm, based on a Union-Find structure, to find its connected components, where alpha is the inverse Ackerman function. Since for all practical purposes alpha(n) is a constant no larger than four, this algorithm has been the fastest practical algorithm to date. In this paper, we present a new linear-time algorithm for computing the connected components, which is more efficient than that of Berman and Hannenhalli in both theory and practice. Our algorithm uses only a stack and is very easy to implement. We give the results of computational experiments over a large range of permutation pairs produced through simulated evolution; our experiments show a speed-up by a factor of 2 to 5 in the computation of the connected components and by a factor of 1.3 to 2 in the overall distance computation.
Collapse
|
|
23 |
237 |
11
|
Wetterau JR, Gregg RE, Harrity TW, Arbeeny C, Cap M, Connolly F, Chu CH, George RJ, Gordon DA, Jamil H, Jolibois KG, Kunselman LK, Lan SJ, Maccagnan TJ, Ricci B, Yan M, Young D, Chen Y, Fryszman OM, Logan JV, Musial CL, Poss MA, Robl JA, Simpkins LM, Slusarchyk WA, Sulsky R, Taunk P, Magnin DR, Tino JA, Lawrence RM, Dickson JK, Biller SA. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science 1998; 282:751-4. [PMID: 9784135 DOI: 10.1126/science.282.5389.751] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Patients with abetalipoproteinemia, a disease caused by defects in the microsomal triglyceride transfer protein (MTP), do not produce apolipoprotein B-containing lipoproteins. It was hypothesized that small molecule inhibitors of MTP would prevent the assembly and secretion of these atherogenic lipoproteins. To test this hypothesis, two compounds identified in a high-throughput screen for MTP inhibitors were used to direct the synthesis of a highly potent MTP inhibitor. This molecule (compound 9) inhibited the production of lipoprotein particles in rodent models and normalized plasma lipoprotein levels in Watanabe-heritable hyperlipidemic (WHHL) rabbits, which are a model for human homozygous familial hypercholesterolemia. These results suggest that compound 9, or derivatives thereof, has potential applications for the therapeutic lowering of atherogenic lipoprotein levels in humans.
Collapse
|
|
27 |
231 |
12
|
Yan M, Wang LC, Hymowitz SG, Schilbach S, Lee J, Goddard A, de Vos AM, Gao WQ, Dixit VM. Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 2000; 290:523-7. [PMID: 11039935 DOI: 10.1126/science.290.5491.523] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ectodysplasin, a member of the tumor necrosis factor family, is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by loss of hair, sweat glands, and teeth. EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that differ only by an insertion of two amino acids. This insertion functions to determine receptor binding specificity, such that EDA-A1 binds only the receptor EDAR, whereas EDA-A2 binds only the related, but distinct, X-linked ectodysplasin-A2 receptor (XEDAR). In situ binding and organ culture studies indicate that EDA-A1 and EDA-A2 are differentially expressed and play a role in epidermal morphogenesis.
Collapse
|
|
25 |
228 |
13
|
Yu T, Li J, Yan M, Liu L, Lin H, Zhao F, Sun L, Zhang Y, Cui Y, Zhang F, Li J, He X, Yao M. MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene 2014; 34:413-23. [PMID: 24469061 DOI: 10.1038/onc.2013.574] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
Abstract
The metastatic cascade is a complex and multistep process with many potential barriers. Recent evidence has shown that microRNAs (miRNAs) are involved in carcinogenesis and tumor progression in non-small-cell lung cancer (NSCLC). In this study, by comparing the miRNA expression profiles of SPC-A-1sci (high metastatic) and SPC-A-1 (weakly metastatic) cells, we demonstrated that the downregulation and function of miR-193a-3p and miR-193a-5p in NSCLC metastasis and the expression of these miRNAs was suppressed in NSCLC compared with corresponding non-tumorous tissues. Decreased miR-193a-3p/5p expression was significantly associated with tumor node metastasis (TNM) and lymph node metastasis. Furthermore, functional assays showed that the overexpression of miR-193a-3p/5p inhibited NSCLC cell migration, invasion and epithelial-mesenchymal transition (EMT) in vitro and lung metastasis formation in vivo. In addition, we discovered that ERBB4 and S6K2 were the direct targets of miR-193a-3p and that PIK3R3 and mTOR were the direct targets of miR-193a-5p in NSCLC. We also observed that miR-193a-3p/5p could inactivate the AKT/mTOR signaling pathway. Thus, miR-193a-3p/5p functions as a tumor suppressor and has an important role in NSCLC metastasis through ERBB signaling pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
211 |
14
|
Yan M, Marsters SA, Grewal IS, Wang H, Ashkenazi A, Dixit VM. Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nat Immunol 2000; 1:37-41. [PMID: 10881172 DOI: 10.1038/76889] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
B lymphocyte stimulator (BLyS) is a member of the tumor necrosis factor (TNF) superfamily. BLyS stimulates proliferation of, and immunoglobulin production by, B cells. However, the relative importance of BLyS in physiological B cell activation is unclear. We identified a B cell receptor for BLyS through expression cloning as TACI, an orphan TNF receptor homologue of unknown function. Binding of BLyS to TACI activated signaling by nuclear factor-kappa B (NF-kappa B). In vitro soluble TACI-Fc fusion protein blocked BLyS-induced NF-kappa B activation in B lymphoma cells and IgM production in peripheral blood B cells. In vivo treatment of immunized mice with TACI-Fc inhibited production of antigen-specific IgM and IgGI antibodies and abolished splenic germinal center (GC) formation. Thus, BLyS activity must play a critical role in the humoral immune response.
Collapse
|
|
25 |
193 |
15
|
Yan M, Rothberg LJ, Papadimitrakopoulos F, Galvin ME, Miller TM. Defect quenching of conjugated polymer luminescence. PHYSICAL REVIEW LETTERS 1994; 73:744-747. [PMID: 10057526 DOI: 10.1103/physrevlett.73.744] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
|
31 |
183 |
16
|
Wang H, Marsters SA, Baker T, Chan B, Lee WP, Fu L, Tumas D, Yan M, Dixit VM, Ashkenazi A, Grewal IS. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nat Immunol 2001; 2:632-7. [PMID: 11429548 DOI: 10.1038/89782] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interactions of the tumor necrosis factor superfamily members B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) with their receptors-transmembrane activator and CAML interactor (TACI) and B cell maturation molecule (BCMA)-on B cells play an important role in the humoral immune response. Whereas BCMA is restricted to B cells, TACI is also expressed on activated T cells; we show here that TACI-Fc blocks the activation of T cells in vitro and inhibits antigen-specific T cell activation and priming in vivo. In a mouse model for rheumatoid arthritis (RA), an autoimmune disease that involves both B and T cell components, TACI-Fc treatment substantially inhibited inflammation, bone and cartilage destruction and disease development. Thus, BLyS and/or APRIL are important not only for B cell function but for T cell-mediated immune responses. Inhibition of these ligands might have therapeutic benefits for autoimmune diseases, such as RA, that involve both B and T cells.
Collapse
|
|
24 |
170 |
17
|
Yan M, Rothberg LJ, Papadimitrakopoulos F, Galvin ME, Miller TM. Spatially indirect excitons as primary photoexcitations in conjugated polymers. PHYSICAL REVIEW LETTERS 1994; 72:1104-1107. [PMID: 10056618 DOI: 10.1103/physrevlett.72.1104] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
|
31 |
161 |
18
|
Yan M, Rothberg LJ, Kwock EW, Miller TM. Interchain Excitations in Conjugated Polymers. PHYSICAL REVIEW LETTERS 1995; 75:1992-1995. [PMID: 10059181 DOI: 10.1103/physrevlett.75.1992] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
|
30 |
157 |
19
|
Cannon TD, van Erp TG, Huttunen M, Lönnqvist J, Salonen O, Valanne L, Poutanen VP, Standertskjöld-Nordenstam CG, Gur RE, Yan M. Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. ARCHIVES OF GENERAL PSYCHIATRY 1998; 55:1084-91. [PMID: 9862551 DOI: 10.1001/archpsyc.55.12.1084] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Cortical gray matter volume reductions and cerebrospinal fluid (CSF) volume increases are robust correlates of schizophrenia, but their sources have not been established conclusively. METHODS Structured diagnostic interviews and magnetic resonance imaging scans of the brain were obtained on 75 psychotic probands (63 with schizophrenia and 12 with schizoaffective disorder), ascertained so as to be representative of all such probands in a Helsinki, Finland, birth cohort; 60 of their nonpsychotic full siblings; and 56 demographically similar control subjects without a personal or family history of treated psychiatric morbidity. RESULTS Patients with schizophrenia and their siblings exhibited significant reductions in cortical gray matter volume and significant increases in sulcal CSF volume compared with controls. The patients, but not their siblings, also exhibited significant reductions in white matter volume and significant increases in ventricular CSF volume. Regional effects were most robust when component volumes were expressed as percentages of overall regional volumes; in this case, for patient and sibling groups, gray matter volume reductions and sulcal CSF volume increases were significantly more pronounced in the frontal and temporal lobes than in the remainder of the brain. None of the group differences varied significantly by sex or hemisphere. CONCLUSIONS Structural alterations of the cerebral cortex, particularly in the frontal and temporal lobes, are present in patients with schizophrenia and in some of their siblings without schizophrenia; such changes are thus likely to reflect genetic (or shared environmental) effects. Ventricular enlargement is unique to the clinical phenotype and is thus likely to be affected primarily by nonshared causative factors.
Collapse
|
Comparative Study |
27 |
144 |
20
|
Zou W, Yan M, Xu W, Huo H, Sun L, Zheng Z, Liu X. Cobalt chloride induces PC12 cells apoptosis through reactive oxygen species and accompanied by AP-1 activation. J Neurosci Res 2001; 64:646-53. [PMID: 11398189 DOI: 10.1002/jnr.1118] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reactive oxygen species (ROS) are supposed to play an important role in hypoxia- and ischemia/reperfusion-mediated neuronal injury with the characteristics of apoptosis. There are many reports showing that cobalt chloride (CoCl(2)) could mimic the hypoxic responses in some aspects including production of ROS in cultured cells. The cytotoxicity of CoCl(2) and its molecular mechanisms have yet to be elucidated. We report that CoCl(2) triggered neuronal PC12 cells apoptosis in a dose- and time-dependent manner. Apoptosis was demonstrated by morphological changes and DNA fragmentation, and was dependent on macromolecular synthesis. Apoptosis was also confirmed by the decrease of the expression of Bcl-X(L). To our knowledge, this is the first documentation of the apoptotic induction of CoCl(2) on PC12 cells. Furthermore, ROS production in PC12 cells was increased during CoCl(2) treatment. Antioxidants, which could inhibit ROS production, significantly blocked CoCl(2)-induced apoptosis, suggesting that apoptosis is mediated by ROS production. We also observed a significant increase of the DNA-binding activity of AP-1 in response to CoCl(2) and this increase was blocked by antioxidants, showing that CoCl(2)-induced apoptosis is accompanied by ROS-activated AP-1. CoCl(2)-treated PC12 cells may serve as an in vitro model for studies of molecular mechanisms in ROS-linked neuronal disorders.
Collapse
|
|
24 |
136 |
21
|
Bokemeyer D, Sorokin A, Yan M, Ahn NG, Templeton DJ, Dunn MJ. Induction of mitogen-activated protein kinase phosphatase 1 by the stress-activated protein kinase signaling pathway but not by extracellular signal-regulated kinase in fibroblasts. J Biol Chem 1996; 271:639-42. [PMID: 8557667 DOI: 10.1074/jbc.271.2.639] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The intracellular mechanisms involved in the activation of extracellular signal-regulated kinase (ERK) are relatively well understood. However, the intracellular signaling pathways which regulate the termination of ERK activity remain to be elucidated. Mitogen-activated protein kinase phosphatase 1 (MKP-1) has been shown to dephosphorylate and inactivate ERK in vitro and in vivo. In the present study, we show in NIH3T3 fibroblasts that activation of the stress-activated protein kinase (SAPK) pathway by either specific extracellular stress stimuli or via induction of MEKK, an upstream kinase of SAPK, results in MKP-1 gene expression. In contrast, selective stimulation of the ERK pathway by 12-O-tetradecanoylphorbol-13-acetate or following expression of constitutively active MEK, the upstream dual specificity kinase of ERK did not induce the transcription of MKP-1. Hence, these findings demonstrate the existence of cross-talk between the ERK and SAPK signaling cascades since activation of SAPK induced the expression of MKP-1 that can inactivate ERK. This mechanism may modulate the cellular response to stimuli which employ the SAPK signal transduction pathway.
Collapse
|
|
29 |
132 |
22
|
Zeng W, Lee MG, Yan M, Diaz J, Benjamin I, Marino CR, Kopito R, Freedman S, Cotton C, Muallem S, Thomas P. Immuno and functional characterization of CFTR in submandibular and pancreatic acinar and duct cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C442-55. [PMID: 9277342 DOI: 10.1152/ajpcell.1997.273.2.c442] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cystic fibrosis results from defective Cl- channel activity mediated by the cystic fibrosis transmembrane conductance regulator (CFTR) gene product. In the gastrointestinal tract this is manifested in abnormal salivary secretion and pancreatic insufficiency. This is generally attributed to defective Cl- transport by the ductal system of the glands. We provide the first immunocytochemical and functional evidence for expression of CFTR protein and Cl- current in rat and mouse submandibular gland (SMG) and pancreatic acinar cells, a site proximal to the ductal system of these secretory glands. Monoclonal and polyclonal antibodies recognizing COOH-terminal epitopes of CFTR show that duct and acinar cells from the two glands express CFTR in the luminal membrane. Specificity of the polyclonal antibody was verified by absence of staining in duct and acinar cells of the SMG of cf-/cf- and delta F/delta F mice. Identification of CFTR in acinar cells was aided by demonstrating coexpression of CFTR and type 3 inositol 1,4,5-trisphosphate receptors in the luminal pole of acini and absence of type 3 inositol 1,4,5-trisphosphate receptors in ducts. Electrophysiological characterization in single SMG duct and acinar cells shows the presence of a protein kinase A-activated, voltage- and time-independent, ohmic Cl- current and absence of repolarization-dependent tail currents, all of which are kinetic properties of the CFTR-dependent Cl- channel. In addition, the channel was activated by the nonhydrolyzable ATP analog 5'-adenylylimidodiphosphate and the benzimidazalone NS-004. Channels activated by all activators were inhibited by glibenclamide and a known inhibitory antiserum [anti-CFTR-(505-511)]. Combined immunologic, functional, and pharmacological evidence allows us to conclude that acinar cells of the SMG and pancreas express functional CFTR-dependent Cl- channels. Because this site is proximal to the duct, modification of activity of this channel in acinar cells is likely to contribute to abnormal salivary secretion and pancreatic insufficiency typical of cystic fibrosis.
Collapse
|
|
28 |
121 |
23
|
Sevilla MD, Becker D, Yan M. The formation and structure of the sulfoxyl radicals RSO(.), RSOO(.), RSO2(.), and RSO2OO(.) from the reaction of cysteine, glutathione and penicillamine thiyl radicals with molecular oxygen. Int J Radiat Biol 1990; 57:65-81. [PMID: 1967295 DOI: 10.1080/09553009014550351] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This work reports an electron spin resonance study of the reactions of cysteine, glutathione and penicillamine thiyl radicals with molecular oxygen in frozen aqueous solutions at low temperatures. For all three thiols, the thiyl radical, RS., is found to react with oxygen to form the thiol peroxyl radical, RSOO(.). On the absorption of visible light, RSOO(.) photoisomerizes to the sulfonyl radical, RSO2(.), which subsequently reacts with molecular oxygen to form RSO2OO(.), the sulfonyl peroxyl radical. The identities of the sulfonyl and sulfonyl peroxyl radicals were confirmed by their production by a different route, from sulfinic acid. Sulfinyl radicals, RSO(.), are found as the final radical species in the reactions of thiyl radicals and oxygen. Parallel 17O hyperfine couplings (A parallel) are reported for each sulfoxyl radical and a correlation between the spin density on oxygen and the reactivity of the radical is suggested. As a result of this correlation sulfonyl peroxyl radicals are predicted to be far more reactive than thiol peroxyl radicals. We also report molecular orbital calculations on the nature of the spin density distribution and the molecular geometry of the model radicals CH3SO2(.) and CH3SO2OO(.).
Collapse
|
|
35 |
102 |
24
|
Yan M, Lee LC, Priest ER. Fast magnetic reconnection with small shock angles. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/92ja00170] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
33 |
99 |
25
|
Yan M, Lee J, Schilbach S, Goddard A, Dixit V. mE10, a novel caspase recruitment domain-containing proapoptotic molecule. J Biol Chem 1999; 274:10287-92. [PMID: 10187815 DOI: 10.1074/jbc.274.15.10287] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptotic signaling is mediated by homophilic interactions between conserved domains present in components of the death pathway. The death domain, death effector domain, and caspase recruitment domain (CARD) are examples of such interaction motifs. We have identified a novel mammalian CARD-containing adaptor molecule termed mE10 (mammalian E10). The N-terminal CARD of mE10 exhibits significant homology (47% identity and 64% similarity) to the CARD of a gene from Equine Herpesvirus type 2. The C-terminal region is unique. Overexpression of mE10 in MCF-7 human breast carcinoma cells induces apoptosis. Mutational analysis indicates that CARD-mediated mE10 oligomerization is essential for killing activity. The C terminus of mE10 bound to the zymogen form of caspase-9 and promoted its processing to the active dimeric species. Taken together, these data suggest a model where autoproteolytic activation of pro-caspase-9 is mediated by mE10-induced oligomerization.
Collapse
|
|
26 |
99 |