1
|
Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, Friez MJ, Funke BH, Hegde MR, Lyon E. ACMG clinical laboratory standards for next-generation sequencing. Genet Med 2013; 15:733-47. [PMID: 23887774 PMCID: PMC4098820 DOI: 10.1038/gim.2013.92] [Citation(s) in RCA: 641] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 01/01/2023] Open
Abstract
Next-generation sequencing technologies have been and continue to be deployed in clinical laboratories, enabling rapid transformations in genomic medicine. These technologies have reduced the cost of large-scale sequencing by several orders of magnitude, and continuous advances are being made. It is now feasible to analyze an individual's near-complete exome or genome to assist in the diagnosis of a wide array of clinical scenarios. Next-generation sequencing technologies are also facilitating further advances in therapeutic decision making and disease prediction for at-risk patients. However, with rapid advances come additional challenges involving the clinical validation and use of these constantly evolving technologies and platforms in clinical laboratories. To assist clinical laboratories with the validation of next-generation sequencing methods and platforms, the ongoing monitoring of next-generation sequencing testing to ensure quality results, and the interpretation and reporting of variants found using these technologies, the American College of Medical Genetics and Genomics has developed the following professional standards and guidelines.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
641 |
2
|
Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP, Hambuch T, Lu F, Lyon E, Voelkerding KV, Zehnbauer BA, Agarwala R, Bennett SF, Chen B, Chin ELH, Compton JG, Das S, Farkas DH, Ferber MJ, Funke BH, Furtado MR, Ganova-Raeva LM, Geigenmüller U, Gunselman SJ, Hegde MR, Johnson PLF, Kasarskis A, Kulkarni S, Lenk T, Liu CSJ, Manion M, Manolio TA, Mardis ER, Merker JD, Rajeevan MS, Reese MG, Rehm HL, Simen BB, Yeakley JM, Zook JM, Lubin IM. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol 2013; 30:1033-6. [PMID: 23138292 DOI: 10.1038/nbt.2403] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
Research Support, U.S. Gov't, P.H.S. |
12 |
344 |
3
|
Aziz N, Zhao Q, Bry L, Driscoll DK, Funke B, Gibson JS, Grody WW, Hegde MR, Hoeltge GA, Leonard DGB, Merker JD, Nagarajan R, Palicki LA, Robetorye RS, Schrijver I, Weck KE, Voelkerding KV. College of American Pathologists' Laboratory Standards for Next-Generation Sequencing Clinical Tests. Arch Pathol Lab Med 2015; 139:481-93. [DOI: 10.5858/arpa.2014-0250-cp] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
10 |
265 |
4
|
Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 2014; 17:444-51. [PMID: 25232854 DOI: 10.1038/gim.2014.122] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/07/2014] [Indexed: 12/18/2022] Open
Abstract
Next-generation sequencing is changing the paradigm of clinical genetic testing. Today there are numerous molecular tests available, including single-gene tests, gene panels, and exome sequencing or genome sequencing. As a result, ordering physicians face the conundrum of selecting the best diagnostic tool for their patients with genetic conditions. Single-gene testing is often most appropriate for conditions with distinctive clinical features and minimal locus heterogeneity. Next-generation sequencing-based gene panel testing, which can be complemented with array comparative genomic hybridization and other ancillary methods, provides a comprehensive and feasible approach for heterogeneous disorders. Exome sequencing and genome sequencing have the advantage of being unbiased regarding what set of genes is analyzed, enabling parallel interrogation of most of the genes in the human genome. However, current limitations of next-generation sequencing technology and our variant interpretation capabilities caution us against offering exome sequencing or genome sequencing as either stand-alone or first-choice diagnostic approaches. A growing interest in personalized medicine calls for the application of genome sequencing in clinical diagnostics, but major challenges must be addressed before its full potential can be realized. Here, we propose a testing algorithm to help clinicians opt for the most appropriate molecular diagnostic tool for each scenario.
Collapse
|
Review |
11 |
237 |
5
|
Green RC, Berg JS, Berry GT, Biesecker LG, Dimmock DP, Evans JP, Grody WW, Hegde MR, Kalia S, Korf BR, Krantz I, McGuire AL, Miller DT, Murray MF, Nussbaum RL, Plon SE, Rehm HL, Jacob HJ. Exploring concordance and discordance for return of incidental findings from clinical sequencing. Genet Med 2012; 14:405-10. [PMID: 22422049 DOI: 10.1038/gim.2012.21] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The aim of this study was to explore specific conditions and types of genetic variants that specialists in genetics recommend should be returned as incidental findings in clinical sequencing. METHODS Sixteen specialists in clinical genetics and/or molecular medicine selected variants in 99 common conditions to return to the ordering physician if discovered incidentally through whole-genome sequencing. For most conditions, the specialists independently considered three molecular scenarios for both adults and minor children: a known pathogenic mutation, a truncating variant presumed pathogenic (where other truncating variants are known to be pathogenic), and a missense variant predicted in silico to be pathogenic. RESULTS On average, for adults and children, respectively, each specialist selected 83.5 and 79.0 conditions or genes of 99 in the known pathogenic mutation categories, 57.0 and 53.5 of 72 in the truncating variant categories, and 33.4 and 29.7 of 72 in the missense variant categories. Concordance in favor of disclosure within the adult/known pathogenic mutation category was 100% for 21 conditions or genes and 80% or higher for 64 conditions or genes. CONCLUSION Specialists were highly concordant for the return of findings for 64 conditions or genes if discovered incidentally during whole-exome sequencing or whole-genome sequencing.Genet Med 2012:14(4):405-410.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
140 |
6
|
Ankala A, da Silva C, Gualandi F, Ferlini A, Bean LJH, Collins C, Tanner AK, Hegde MR. A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield. Ann Neurol 2014; 77:206-14. [PMID: 25380242 DOI: 10.1002/ana.24303] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Neuromuscular diseases (NMDs) are a group of >200 highly genetically as well as clinically heterogeneous inherited genetic disorders that affect the peripheral nervous and muscular systems, resulting in gross motor disability. The clinical and genetic heterogeneities of NMDs make disease diagnosis complicated and expensive, often involving multiple tests. METHODS To expedite the molecular diagnosis of NMDs, we designed and validated several next generation sequencing (NGS)-based comprehensive gene panel tests that include complementary deletion and duplication testing through comparative genomic hybridization arrays. Our validation established the targeted gene panel test to have 100% sensitivity and specificity for single nucleotide variant detection. To compare the clinical diagnostic yields of single gene (NMD-associated) tests with the various NMD NGS panel tests, we analyzed data from all clinical tests performed at the Emory Genetics Laboratory from October 2009 through May 2014. We further compared the clinical utility of the targeted NGS panel test with that of exome sequencing (ES). RESULTS We found that NMD comprehensive panel testing has a 3-fold greater diagnostic yield (46%) than single gene testing (15-19%). Sanger fill-in of low-coverage exons, copy number variation analysis, and thorough in-house validation of the assay all complement panel testing and allow the detection of all types of causative pathogenic variants, some of which (about 18%) may be missed by ES. INTERPRETATION Our results strongly indicate that for molecular diagnosis of heterogeneous disorders such as NMDs, targeted panel testing has the highest clinical yield and should therefore be the preferred first-tier approach.
Collapse
|
Journal Article |
11 |
128 |
7
|
Schwarze U, Cundy T, Pyott SM, Christiansen HE, Hegde MR, Bank RA, Pals G, Ankala A, Conneely K, Seaver L, Yandow SM, Raney E, Babovic-Vuksanovic D, Stoler J, Ben-Neriah Z, Segel R, Lieberman S, Siderius L, Al-Aqeel A, Hannibal M, Hudgins L, McPherson E, Clemens M, Sussman MD, Steiner RD, Mahan J, Smith R, Anyane-Yeboa K, Wynn J, Chong K, Uster T, Aftimos S, Sutton VR, Davis EC, Kim LS, Weis MA, Eyre D, Byers PH. Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Hum Mol Genet 2013; 22:1-17. [PMID: 22949511 PMCID: PMC3606010 DOI: 10.1093/hmg/dds371] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 08/17/2012] [Accepted: 08/30/2012] [Indexed: 01/21/2023] Open
Abstract
Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis-trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
107 |
8
|
Hegde MR, Chin ELH, Mulle JG, Okou DT, Warren ST, Zwick ME. Microarray-based mutation detection in the dystrophin gene. Hum Mutat 2008; 29:1091-9. [PMID: 18663755 DOI: 10.1002/humu.20831] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene affecting approximately 1 in 3,500 males. The human dystrophin gene spans>2,200 kb, or roughly 0.1% of the genome, and is composed of 79 exons. The mutational spectrum of disease-causing alleles, including exonic copy number variations (CNVs), is complex. Deletions account for approximately 65% of DMD mutations and 85% of BMD mutations. Duplications occur in approximately 6 to 10% of males with either DMD or BMD. The remaining 30 to 35% of mutations consist of small deletions, insertions, point mutations, or splicing mutations, most of which introduce a premature stop codon. Laboratory analysis of dystrophin can be used to confirm a clinical diagnosis of DMD, characterize the type of dystrophin mutation, and perform prenatal testing and carrier testing for females. Current dystrophin diagnostic assays involve a variety of methodologies, including multiplex PCR, Southern blot analysis, multiplex ligation-dependent probe amplification (MLPA), detection of virtually all mutations-SSCP (DOVAM-S), and single condition amplification/internal primer sequencing (SCAIP); however, these methods are time-consuming, laborious, and do not accurately detect duplication mutations in the dystrophin gene. Furthermore, carrier testing in females is often difficult when a related affected male is unavailable. Here we describe the development, design, validation, and implementation of a high-resolution comparative genomic hybridization (CGH) microarray-based approach capable of accurately detecting both deletions and duplications in the dystrophin gene. This assay can be readily adopted by clinical molecular testing laboratories and represents a rapid, cost-effective approach for screening a large gene, such as dystrophin.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
81 |
9
|
Hegde MR, Chong B, Blazo ME, Chin LHE, Ward PA, Chintagumpala MM, Kim JY, Plon SE, Richards CS. A homozygous mutation in MSH6 causes Turcot syndrome. Clin Cancer Res 2005; 11:4689-93. [PMID: 16000562 DOI: 10.1158/1078-0432.ccr-04-2025] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heterozygous mutations in one of the DNA mismatch repair genes cause hereditary nonpolyposis colorectal cancer (MIM114500). Turcot syndrome (MIM276300) has been described as the association of central nervous system malignant tumors and familial colorectal cancer and has been reported to be both a dominant and recessive disorder. Homozygous and compound heterozygous mutations in APC, MLH1, MSH2, and PMS2 genes have been reported in five families. Here we describe a nonconsanguineous Pakistani family, including a son with lymphoma and colorectal cancer diagnosed at ages 5 and 8, respectively, and an 8-year-old daughter with glioblastoma multiforme. Both children had features of neurofibromatosis type 1 including atypical café au lait spots and axillary freckling without a family history consistent with neurofibromatosis type 1, familial adenomatous polyposis, or hereditary nonpolyposis colorectal cancer. Mutational analysis was done for MLH1, MSH2, and MSH6 using denaturing high-performance liquid chromatography and sequencing of a blood sample from the daughter. A novel homozygous single base insertion mutation was identified (3634insT) resulting in a premature stop at codon 1,223 in exon 7 of the MSH6 gene. Both parents were found to be heterozygous for the 3634insT mutation. Microsatellite instability testing showed instability in the glioblastoma sample. We report here the first identification of a homozygous mutation in MSH6 in a family with childhood-onset brain tumor, lymphoma, colorectal cancer, and neurofibromatosis type 1 phenotype. Our findings support a role for MSH6 in Turcot syndrome and are consistent with an autosomal recessive mode of inheritance.
Collapse
|
Journal Article |
20 |
67 |
10
|
Sabatini LM, Mathews C, Ptak D, Doshi S, Tynan K, Hegde MR, Burke TL, Bossler AD. Genomic Sequencing Procedure Microcosting Analysis and Health Economic Cost-Impact Analysis: A Report of the Association for Molecular Pathology. J Mol Diagn 2016; 18:319-328. [PMID: 27080370 PMCID: PMC7212689 DOI: 10.1016/j.jmoldx.2015.11.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/13/2015] [Accepted: 11/13/2015] [Indexed: 01/07/2023] Open
Abstract
The increasing use of advanced nucleic acid sequencing technologies for clinical diagnostics and therapeutics has made vital understanding the costs of performing these procedures and their value to patients, providers, and payers. The Association for Molecular Pathology invested in a cost and value analysis of specific genomic sequencing procedures (GSPs) newly coded by the American Medical Association Current Procedural Terminology Editorial Panel. Cost data and work effort, including the development and use of data analysis pipelines, were gathered from representative laboratories currently performing these GSPs. Results were aggregated to generate representative cost ranges given the complexity and variability of performing the tests. Cost-impact models for three clinical scenarios were generated with assistance from key opinion leaders: impact of using a targeted gene panel in optimizing care for patients with advanced non-small-cell lung cancer, use of a targeted gene panel in the diagnosis and management of patients with sensorineural hearing loss, and exome sequencing in the diagnosis and management of children with neurodevelopmental disorders of unknown genetic etiology. Each model demonstrated value by either reducing health care costs or identifying appropriate care pathways. The templates generated will aid laboratories in assessing their individual costs, considering the value structure in their own patient populations, and contributing their data to the ongoing dialogue regarding the impact of GSPs on improving patient care.
Collapse
|
Review |
9 |
66 |
11
|
Berauer JP, Mezina AI, Okou DT, Sabo A, Muzny DM, Gibbs RA, Hegde MR, Chopra P, Cutler DJ, Perlmutter DH, Bull LN, Thompson RJ, Loomes KM, Spinner NB, Rajagopalan R, Guthery SL, Moore B, Yandell M, Harpavat S, Magee JC, Kamath BM, Molleston JP, Bezerra JA, Murray KF, Alonso EM, Rosenthal P, Squires RH, Wang KS, Finegold MJ, Russo P, Sherker AH, Sokol RJ, Karpen SJ. Identification of Polycystic Kidney Disease 1 Like 1 Gene Variants in Children With Biliary Atresia Splenic Malformation Syndrome. Hepatology 2019; 70:899-910. [PMID: 30664273 PMCID: PMC6642859 DOI: 10.1002/hep.30515] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022]
Abstract
Biliary atresia (BA) is the most common cause of end-stage liver disease in children and the primary indication for pediatric liver transplantation, yet underlying etiologies remain unknown. Approximately 10% of infants affected by BA exhibit various laterality defects (heterotaxy) including splenic abnormalities and complex cardiac malformations-a distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) syndrome. We hypothesized that genetic factors linking laterality features with the etiopathogenesis of BA in BASM patients could be identified through whole-exome sequencing (WES) of an affected cohort. DNA specimens from 67 BASM subjects, including 58 patient-parent trios, from the National Institute of Diabetes and Digestive and Kidney Diseases-supported Childhood Liver Disease Research Network (ChiLDReN) underwent WES. Candidate gene variants derived from a prespecified set of 2,016 genes associated with ciliary dysgenesis and/or dysfunction or cholestasis were prioritized according to pathogenicity, population frequency, and mode of inheritance. Five BASM subjects harbored rare and potentially deleterious biallelic variants in polycystic kidney disease 1 like 1 (PKD1L1), a gene associated with ciliary calcium signaling and embryonic laterality determination in fish, mice, and humans. Heterozygous PKD1L1 variants were found in 3 additional subjects. Immunohistochemical analysis of liver from the one BASM subject available revealed decreased PKD1L1 expression in bile duct epithelium when compared to normal livers and livers affected by other noncholestatic diseases. Conclusion: WES identified biallelic and heterozygous PKD1L1 variants of interest in 8 BASM subjects from the ChiLDReN data set; the dual roles for PKD1L1 in laterality determination and ciliary function suggest that PKD1L1 is a biologically plausible, cholangiocyte-expressed candidate gene for the BASM syndrome.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
56 |
12
|
Jones MA, Ng BG, Bhide S, Chin E, Rhodenizer D, He P, Losfeld ME, He M, Raymond K, Berry G, Freeze HH, Hegde MR. DDOST mutations identified by whole-exome sequencing are implicated in congenital disorders of glycosylation. Am J Hum Genet 2012; 90:363-8. [PMID: 22305527 DOI: 10.1016/j.ajhg.2011.12.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/12/2011] [Accepted: 12/30/2011] [Indexed: 01/16/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are inherited autosomal-recessive diseases that impair N-glycosylation. Approximately 20% of patients do not survive beyond the age of 5 years old as a result of widespread organ dysfunction. Although most patients receive a CDG diagnosis based on abnormal glycosylation of transferrin, this test cannot provide a genetic diagnosis; indeed, many patients with abnormal transferrin do not have mutations in any known CDG genes. Here, we combined biochemical analysis with whole-exome sequencing (WES) to identify the genetic defect in an untyped CDG patient, and we found a 22 bp deletion and a missense mutation in DDOST, whose product is a component of the oligosaccharyltransferase complex that transfers the glycan chain from a lipid carrier to nascent proteins in the endoplasmic reticulum lumen. Biochemical analysis with three biomarkers revealed that N-glycosylation was decreased in the patient's fibroblasts. Complementation with wild-type-DDOST cDNA in patient fibroblasts restored glycosylation, indicating that the mutations were pathological. Our results highlight the power of combining WES and biochemical studies, including a glyco-complementation system, for identifying and confirming the defective gene in an untyped CDG patient. This approach will be very useful for uncovering other types of CDG as well.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
50 |
13
|
Ankala A, Kohn JN, Hegde A, Meka A, Ephrem CLH, Askree SH, Bhide S, Hegde MR. Aberrant firing of replication origins potentially explains intragenic nonrecurrent rearrangements within genes, including the human DMD gene. Genome Res 2011; 22:25-34. [PMID: 22090376 DOI: 10.1101/gr.123463.111] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), and microhomology-mediated replication-dependent recombination (MMRDR) have all been put forward as mechanisms to explain DNA rearrangements associated with genomic disorders. However, many nonrecurrent rearrangements in humans remain unexplained. To further investigate the mutation mechanisms of these copy number variations (CNVs), we performed breakpoint mapping analysis for 62 clinical cases with intragenic deletions in the human DMD gene (50 cases) and other known disease-causing genes (one PCCB, one IVD, one DBT, three PAH, one STK11, one HEXB, three DBT, one HRPT1, and one EMD cases). While repetitive elements were found in only four individual cases, three involving DMD and one HEXB gene, microhomologies (2-10 bp) were observed at breakpoint junctions in 56% and insertions ranging from 1 to 48 bp were seen in 16 of the total 62 cases. Among these insertions, we observed evidence for tandem repetitions of short segments (5-20 bp) of reference sequence proximal to the breakpoints in six individual DMD cases (six repeats in one, four repeats in three, two repeats in one, and one repeat in one case), strongly indicating attempts by the replication machinery to surpass the stalled replication fork. We provide evidence of a novel template slippage event during replication rescue. With a deeper insight into the complex process of replication and its rescue during origin failure, brought forward by recent studies, we propose a hypothesis based on aberrant firing of replication origins to explain intragenic nonrecurrent rearrangements within genes, including the DMD gene.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
49 |
14
|
Bean LJ, Tinker SW, da Silva C, Hegde MR. Free the Data: One Laboratory's Approach to Knowledge-Based Genomic Variant Classification and Preparation for EMR Integration of Genomic Data. Hum Mutat 2013; 34:1183-8. [DOI: 10.1002/humu.22364] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 06/03/2013] [Indexed: 11/08/2022]
|
|
12 |
44 |
15
|
Goldlust IS, Hermetz KE, Catalano LM, Barfield RT, Cozad R, Wynn G, Ozdemir AC, Conneely KN, Mulle JG, Dharamrup S, Hegde MR, Kim KH, Angle B, Colley A, Webb AE, Thorland EC, Ellison JW, Rosenfeld JA, Ballif BC, Shaffer LG, Demmer LA, Rudd MK. Mouse model implicates GNB3 duplication in a childhood obesity syndrome. Proc Natl Acad Sci U S A 2013; 110:14990-4. [PMID: 23980137 PMCID: PMC3773733 DOI: 10.1073/pnas.1305999110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity is a highly heritable condition and a risk factor for other diseases, including type 2 diabetes, cardiovascular disease, hypertension, and cancer. Recently, genomic copy number variation (CNV) has been implicated in cases of early onset obesity that may be comorbid with intellectual disability. Here, we describe a recurrent CNV that causes a syndrome associated with intellectual disability, seizures, macrocephaly, and obesity. This unbalanced chromosome translocation leads to duplication of over 100 genes on chromosome 12, including the obesity candidate gene G protein β3 (GNB3). We generated a transgenic mouse model that carries an extra copy of GNB3, weighs significantly more than its wild-type littermates, and has excess intraabdominal fat accumulation. GNB3 is highly expressed in the brain, consistent with G-protein signaling involved in satiety and/or metabolism. These functional data connect GNB3 duplication and overexpression to elevated body mass index and provide evidence for a genetic syndrome caused by a recurrent CNV.
Collapse
|
Case Reports |
12 |
29 |
16
|
Jones MA, Rhodenizer D, da Silva C, Huff IJ, Keong L, Bean LJH, Coffee B, Collins C, Tanner AK, He M, Hegde MR. Molecular diagnostic testing for congenital disorders of glycosylation (CDG): detection rate for single gene testing and next generation sequencing panel testing. Mol Genet Metab 2013; 110:78-85. [PMID: 23806237 DOI: 10.1016/j.ymgme.2013.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 11/19/2022]
Abstract
Congenital disorders of glycosylation (CDG) are comprised of over 60 disorders with the majority of defects residing within the N-glycosylation pathway. Approximately 20% of patients do not survive beyond five years of age due to widespread organ dysfunction. A diagnosis of CDG is based on abnormal glycosylation of transferrin but this method cannot identify the specific gene defect. For many individuals diagnosed with CDG the gene defect remains unknown. To improve the molecular diagnosis of CDG we developed molecular testing for 25 CDG genes including single gene testing and next generation sequencing (NGS) panel testing. From March 2010 through November 2012, a total of 94 samples were referred for single gene testing and 68 samples were referred for NGS panel testing. Disease causing mutations were identified in 24 patients resulting in a molecular diagnosis rate of 14.8%. Coverage of the 24 CDG genes using panel testing and whole exome sequencing (WES) was compared and it was determined that many exons of these genes were not adequately covered using a WES approach and a panel approach may be the preferred first option for CDG patients. A collaborative effort between physicians, researchers and diagnostic laboratories will be very important as NGS testing using panels and exome becomes more widespread. This technology will ultimately improve the molecular diagnosis of patients with CDG in hard to solve cases.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
29 |
17
|
Ankala A, Kohn JN, Dastur R, Gaitonde P, Khadilkar SV, Hegde MR. Ancestral founder mutations in calpain-3 in the Indian Agarwal community: historical, clinical, and molecular perspective. Muscle Nerve 2013; 47:931-7. [PMID: 23666804 DOI: 10.1002/mus.23763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2012] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Clinical heterogeneity of limb-girdle muscular dystrophies (LGMDs, 24 known subtypes), which includes overlapping phenotypes and varying ages of onset and morbidity, adds complexity to clinical and molecular diagnoses. METHODS To diagnose LGMD subtype, protein analysis, using immunohistochemistry (IHC) and immunoblotting, was followed by gene sequencing through a panel approach (simultaneous sequencing of known LGMD genes) in 9 patients from unrelated families of the Indian Agarwal community. Haplotype studies were performed by targeted SNP genotyping to establish mutation segregation. RESULTS We identified 2 founder mutations in CAPN3, a missense (c.2338G>C; p.D780H) and a splice-site (c.2099-1G>T) mutation, on 2 different haplotype backgrounds. The patients were either heterozygous for both or homozygous for either of these mutations. CONCLUSIONS Founder mutations have immediate clinical application, at least in selected population groups. Clinically available gene panels may provide a definitive molecular diagnosis for heterogeneous disorders such as LGMD.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
23 |
18
|
Williams LC, Hegde MR, Herrera G, Stapleton PM, Love DR. Comparative semi-automated analysis of (CAG) repeats in the Huntington disease gene: use of internal standards. Mol Cell Probes 1999; 13:283-9. [PMID: 10441201 DOI: 10.1006/mcpr.1999.0248] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Huntington disease (HD) belongs to the group of neurodegenerative disorders characterized by unstable expanded trinucleotide repeats. In the case of HD, the expansion of a CAG repeat occurs in the IT15 gene. The detection of the expanded CAG repeats has usually involved the electrophoretic separation of polymerase chain reaction (PCR) amplification products using conventional agarose and acrylamide gel electrophoresis. We have undertaken the comparative analysis of sizing CAG repeats of the IT15 gene using radioactive and fluorescent PCR amplification, and the subsequent separation of these products by slab gel and capillary electrophoresis. The assays have been performed on both cloned and sequenced CAG repeats, as well as genomic DNA from HD patients with a wide range of repeat lengths. The mobility of the CAG repeat amplification products of the IT15 gene is greater using capillary electrophoresis compared to slab gel electrophoresis. The analysis of 40 DNA samples from HD patients indicates that the mobility difference increases with the length of the repeat. However, we have devised an allele ladder for sizing the CAG repeats. This ladder provides a mandatory internal calibration system for diagnostic purposes and enables the confident use of either capillary or slab gel electrophoresis for sizing HD alleles.
Collapse
|
Comparative Study |
26 |
21 |
19
|
Ankala A, Tamhankar PM, Valencia CA, Rayam KK, Kumar MM, Hegde MR. Clinical Applications and Implications of Common and Founder Mutations in Indian Subpopulations. Hum Mutat 2014; 36:1-10. [DOI: 10.1002/humu.22704] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
|
|
11 |
18 |
20
|
Bean LJH, Hegde MR. Gene Variant Databases and Sharing: Creating a Global Genomic Variant Database for Personalized Medicine. Hum Mutat 2016; 37:559-63. [PMID: 26931283 DOI: 10.1002/humu.22982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 01/08/2023]
Abstract
Revolutionary changes in sequencing technology and the desire to develop therapeutics for rare diseases have led to the generation of an enormous amount of genomic data in the last 5 years. Large-scale sequencing done in both research and diagnostic laboratories has linked many new genes to rare diseases, but has also generated a number of variants that we cannot interpret today. It is clear that we remain a long way from a complete understanding of the genomic variation in the human genome and its association with human health and disease. Recent studies identified susceptibility markers to infectious diseases and also the contribution of rare variants to complex diseases in different populations. The sequencing revolution has also led to the creation of a large number of databases that act as "keepers" of data, and in many cases give an interpretation of the effect of the variant. This interpretation is based on reports in the literature, prediction models, and in some cases is accompanied by functional evidence. As we move toward the practice of genomic medicine, and consider its place in "personalized medicine," it is time to ask ourselves how we can aggregate this wealth of data into a single database for multiple users with different goals.
Collapse
|
Journal Article |
9 |
17 |
21
|
Williams LC, Hegde MR, Nagappan R, Faull RL, Giles J, Winship I, Snow K, Love DR. Null alleles at the Huntington disease locus: implications for diagnostics and CAG repeat instability. GENETIC TESTING 2000; 4:55-60. [PMID: 10794362 DOI: 10.1089/109065700316480] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PCR amplification of the CAG repeat in exon 1 of the IT15 gene is routinely undertaken to confirm a clinical diagnosis of Huntington disease (HD) and to provide predictive testing for at-risk relatives of affected individuals. Our studies have detected null alleles on the chromosome carrying the expanded repeat in three of 91 apparently unrelated HD families. Sequence analysis of these alleles has revealed the same mutation event, leading to the juxtaposition of uninterrupted CAG and CCG repeats. These data suggest that a mutation-prone region exists in the IT15 gene bounded by the CAG and CCG repeats and that caution should be exercised in designing primers that anneal to the region bounded by these repeats. Two of the HD families segregated null alleles with expanded uninterrupted CAG repeats at the lower end of the zone of reduced penetrance. The expanded repeats are meiotically unstable in these families, although this instability is within a small range of repeat lengths. The haplotypes of the disease-causing chromosomes in these two families differ, only one of which is similar to that reported previously as being specific for new HD mutations. Finally, no apparent mitotic instability of the uninterrupted CAG repeat was observed in the brain of one of the HD individuals.
Collapse
|
Case Reports |
25 |
15 |
22
|
Shen JJ, Wortmann SB, de Boer L, Kluijtmans LAJ, Huigen MCDG, Koch J, Ross S, Collins CD, van der Lee R, van Karnebeek CDM, Hegde MR. The role of clinical response to treatment in determining pathogenicity of genomic variants. Genet Med 2020; 23:581-585. [PMID: 33087887 DOI: 10.1038/s41436-020-00996-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for the interpretation of sequence variants provide a framework to standardize terminology in the classification of variants uncovered through genetic testing. We aimed to assess the validity of utilizing clinical response to therapies specifically targeted to a suspected disease in clarifying variant pathogenicity. METHODS Five families with disparate clinical presentations and different genetic diseases evaluated and treated in multiple diagnostic settings are summarized. RESULTS Extended evaluations indicated possible genetic diagnoses and assigned candidate causal variants, but the cumulative clinical, biochemical, and molecular information in each instance was not completely consistent with the identified disease. Initiation of treatment specific to the suspected diagnoses in the affected individuals led to clinical improvement in all five families. CONCLUSION We propose that the effect of therapies that are specific and targeted to treatable genetic diseases embodies an in vivo physiological response and could be considered as additional criteria within the 2015 ACMG/AMP guidelines in determining genomic variant pathogenicity.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
14 |
23
|
Mulle JG, Patel VC, Warren ST, Hegde MR, Cutler DJ, Zwick ME. Empirical evaluation of oligonucleotide probe selection for DNA microarrays. PLoS One 2010; 5:e9921. [PMID: 20360966 PMCID: PMC2847945 DOI: 10.1371/journal.pone.0009921] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 12/04/2009] [Indexed: 12/04/2022] Open
Abstract
DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of 385,474 probes tiled in the Duchenne muscular dystrophy (DMD) region of the X chromosome. Our results demonstrate that probe melting temperature, single nucleotide polymorphisms (SNPs), and homocytosine motifs all have a strong effect on probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve microarray performance for a wide variety of applications.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
14 |
24
|
Bean LJH, Hegde MR. Clinical implications and considerations for evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Med 2017; 9:111. [PMID: 29254502 PMCID: PMC5733812 DOI: 10.1186/s13073-017-0508-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Clinical genetics laboratories have recently adopted guidelines for the interpretation of sequence variants set by the American College of Medical Genetics (ACMG) and Association for Molecular Pathology (AMP). The use of in silico algorithms to predict whether amino acid substitutions result in human disease is inconsistent across clinical laboratories. The clinical genetics community must carefully consider how in silico predictions can be incorporated into variant interpretation in clinical practice. Please see related Research article: https://doi.org/10.1186/s13059-017-1353-5
Collapse
|
Journal Article |
8 |
14 |
25
|
Ankala A, Nallamilli BR, Rufibach LE, Hwang E, Hegde MR. Diagnostic overview of blood-based dysferlin protein assay for dysferlinopathies. Muscle Nerve 2014; 50:333-9. [PMID: 24488599 DOI: 10.1002/mus.24195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/13/2014] [Accepted: 01/29/2014] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Dysferlin deficiency causes dysferlinopathies. Among peripheral blood mononuclear cells (PBMCs), the dysferlin protein is expressed specifically in CD14(+) monocytes. METHODS We quantified dysferlin protein levels in PBMC lysates of 77 individuals suspected clinically of having a dysferlinopathy to screen for true positives. Subsequent molecular confirmation was done by Sanger sequencing and comparative genomic hybridization arrays to establish diagnosis. RESULTS Of the 44 individuals who had significantly reduced dysferlin levels (≤10%), 41 underwent molecular testing. We identified at least 1 mutation in 85% (35 of 41), and 2 mutations, establishing a dysferlinopathy diagnosis, in 61% (25 of 41) of these individuals. Among those with dysferlin protein levels of >10% (33 of 77), only 1 individual (of 14 who underwent molecular testing) had a detectable mutation. CONCLUSIONS Our results suggest that dysferlin protein levels of ≤10% in PBMCs, are highly indicative of primary dysferlinopathies. However, this assay may not distinguish carriers from those with secondary dysferlin reduction.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
12 |