1
|
Kurkuri MD, Aminabhavi TM. Poly(vinyl alcohol) and poly(acrylic acid) sequential interpenetrating network pH-sensitive microspheres for the delivery of diclofenac sodium to the intestine. J Control Release 2004; 96:9-20. [PMID: 15063025 DOI: 10.1016/j.jconrel.2003.12.025] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2003] [Accepted: 12/18/2003] [Indexed: 11/30/2022]
Abstract
Sequential interpenetrating network (IPN) of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) were prepared and crosslinked with glutaraldehyde (GA) to form pH-sensitive microspheres by the water-in-oil (w/o) emulsification method. Microspheres were used to deliver a model anti-inflammatory drug, diclofenac sodium (DS), to the intestine. The formed IPN was analyzed by Fourier transform infrared spectroscopy (FTIR). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses were done on the drug-loaded microspheres to confirm the polymorphism of DS. Results indicated a molecular level dispersion of DS in the IPN. Microspheres formed were spherical with the smooth surfaces as evidenced by scanning electron microscopy (SEM). Particle size and size distribution was studied using laser light diffraction particle size analyzer. Particle size analysis was also done by optical microscope for the selected microspheres; the change in diameter of the microspheres when soaked in different media at different time intervals was measured by optical microscope. Microspheres showed a pulsatile swelling behavior when the pH of the swelling media was changed. The swelling data were fitted to an empirical equation to understand the phenomenon of water transport as well as to calculate the diffusion coefficient (D). Values of D in acidic media were lower than those found in basic media. The values of D decrease with increasing crosslinking of the matrix. In-vitro release studies have been performed in 1.2 and 7.4 pH media to simulate gastric and intestinal conditions. The results indicated a dependence on the pH of the release media, extent of crosslinking and the amount of drug loading.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
131 |
2
|
Rego RM, Kuriya G, Kurkuri MD, Kigga M. MOF based engineered materials in water remediation: Recent trends. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123605. [PMID: 33264853 DOI: 10.1016/j.jhazmat.2020.123605] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
The significant upsurge in the demand for freshwater has prompted various developments towards water sustainability. In this context, several materials have gained remarkable interest for the removal of emerging contaminants from various freshwater sources. Among the currently investigated materials for water treatment, metal organic frameworks (MOFs), a developing class of porous materials, have provided excellent platforms for the separation of several pollutants from water. The structural modularity and the striking chemical/physical properties of MOFs have provided more room for target-specific environmental applications. However, MOFs limit their practical applications in water treatment due to poor processability issues of the intrinsically fragile and powdered crystalline forms. Nevertheless, growing efforts are recognized to impart macroscopic shapability to render easy handling shapes for real-time industrial applications. Furthermore, efforts have been devoted to improve the stabilities of MOFs that are subjected to fragile collapse in aqueous environments expanding their use in water treatment. Advances made in MOF based material design have headed towards the use of MOF based aerogels/hydrogels, MOF derived carbons (MDCs), hydrophobic MOFs and magnetic framework composites (MFCs) to remediate water from contaminants and for the separation of oils from water. This review is intended to highlight some of the recent trends followed in MOF based material engineering towards effective water regeneration.
Collapse
|
Review |
4 |
121 |
3
|
Kurkuri MD, Toti US, Aminabhavi TM. Syntheses and characterization of blend membranes of sodium alginate and poly(vinyl alcohol) for the pervaporation separation of water + isopropanol mixtures. J Appl Polym Sci 2002. [DOI: 10.1002/app.11312] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
23 |
113 |
4
|
Rego RM, Sriram G, Ajeya KV, Jung HY, Kurkuri MD, Kigga M. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125941. [PMID: 34492868 DOI: 10.1016/j.jhazmat.2021.125941] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Herein, we demonstrate the use of cerium (Ce)-UiO-66 metal organic framework (MOF) for the removal of a variety of potentially toxic pollutants. The Ce-UiO-66 MOF, with similar framework topologies to Zr-UiO-66, has not been explored for its adsorptive properties in water remediation. The replacement of Zr metal center with Ce yields a MOF that can be synthesized in shorter durations with lesser energy consumptions and with excellent multipollutant adsorption properties. Further, the Ce-UiO-66 MOF was also studied for its adsorption abilities in the binary component system. Interestingly, the adsorbent showed higher adsorption capacities in the presence of other pollutants. Removal studies for other potentially toxic anionic and cationic dyes showed that the Ce-UiO-66 MOF has a wide range of contaminant removal abilities. Investigations of individual adsorption capacities revealed that the Ce-UiO-66 MOF has a maximum adsorption capacity of 793.7 mg/g for congo red (CR), 110 mg/g for methylene blue (MB), 66.1 mg/g for fluoride (F-), 30 mg/g for Cr6+ and 485.4 mg/g for the pharmaceutical waste diclofenac sodium (DCF). To imply the practical applications of the Ce-UiO-66 MOF we have also demonstrated an adaptable filter that could separate all the potentially toxic pollutants.
Collapse
|
|
4 |
91 |
5
|
Kumeria T, Bariana M, Altalhi T, Kurkuri M, Gibson CT, Yang W, Losic D. Graphene oxide decorated diatom silica particles as new nano-hybrids: towards smart natural drug microcarriers. J Mater Chem B 2013; 1:6302-6311. [DOI: 10.1039/c3tb21051k] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
12 |
83 |
6
|
Uthappa U, Brahmkhatri V, Sriram G, Jung HY, Yu J, Kurkuri N, Aminabhavi TM, Altalhi T, Neelgund GM, Kurkuri MD. Nature engineered diatom biosilica as drug delivery systems. J Control Release 2018; 281:70-83. [DOI: 10.1016/j.jconrel.2018.05.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 02/08/2023]
|
|
7 |
58 |
7
|
Kurkuri MD, Driever C, Johnson G, McFarland G, Thissen H, Voelcker NH. Multifunctional Polymer Coatings for Cell Microarray Applications. Biomacromolecules 2009; 10:1163-72. [DOI: 10.1021/bm801417s] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
|
16 |
51 |
8
|
Rego RM, Kurkuri MD, Kigga M. A comprehensive review on water remediation using UiO-66 MOFs and their derivatives. CHEMOSPHERE 2022; 302:134845. [PMID: 35525446 DOI: 10.1016/j.chemosphere.2022.134845] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are a versatile class of porous materials offering unprecedented scope for chemical and structural tunability. On account of their synthetic versatility, tunable and exceptional host-guest chemistry they are widely utilized in many prominent water remediation techniques. However, some of the MOFs present low structural stabilities specifically in aqueous and harsh chemical conditions which impedes their potential application in the field. Among the currently explored MOFs, UiO-66 exhibits structural robustness and has gained immense scientific popularity. Built with a zirconium-terephthalate framework, the strong Zr-O bond coordination contributes to its stability in aqueous, chemical, and thermal conditions. Moreover, other exceptional features such as high surface area and uniform pore size add to the grand arena of porous nanomaterials. As a result of its stable nature, UiO-66 offers relaxed admittance towards various functionalization, including synthetic and post-synthetic modifications. Consequently, the adsorptive properties of these highly stable frameworks have been modulated by the addition of various functionalities. Moreover, due to the presence of catalytically active sites, the use of UiO-66 has also been extended towards the degradation of pollutants. Furthermore, to solve the practical handling issues of the crystalline powdered forms, UiO-66 has been incorporated into various membrane supports. The incorporation of UiO-66 in various matrices has enhanced the rejection, permeate flux, and anti-fouling properties of membranes. The combination of such exceptional characteristics of UiO-66 MOF has expanded its scope in targeted purification techniques. Subsequently, this review highlights the role of UiO-66 in major water purification techniques such as adsorption, photocatalytic degradation, and membrane separation. This comprehensive review is expected to shed light on the existing developments and guide the inexhaustible futuristic scope of UiO-66 MOF.
Collapse
|
Review |
3 |
47 |
9
|
Jung HY, Cho KY, Sung KA, Kim WK, Kurkuri M, Park JK. Sulfonated poly(arylene ether sulfone) as an electrode binder for direct methanol fuel cell. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2007.01.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
18 |
44 |
10
|
Madhuprasad, Bhat MP, Jung HY, Losic D, Kurkuri MD. Anion Sensors as Logic Gates: A Close Encounter? Chemistry 2016; 22:6148-78. [DOI: 10.1002/chem.201504396] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 12/22/2022]
|
|
9 |
43 |
11
|
Sriram G, Uthappa UT, Kigga M, Jung HY, Altalhi T, Brahmkhatri V, Kurkuri MD. Xerogel activated diatoms as an effective hybrid adsorbent for the efficient removal of malachite green. NEW J CHEM 2019. [DOI: 10.1039/c9nj00015a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface of a naturally available diatom was modified using a xerogel for the enhanced removal of malachite green from aqueous media.
Collapse
|
|
6 |
39 |
12
|
Kurkuri MD, Kumbar SG, Aminabhavi TM. Synthesis and characterization of polyacrylamide-grafted sodium alginate copolymeric membranes and their use in pervaporation separation of water and tetrahydrofuran mixtures. J Appl Polym Sci 2002. [DOI: 10.1002/app.10948] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
23 |
39 |
13
|
Kurkuri MD, Al-Ejeh F, Shi JY, Palms D, Prestidge C, Griesser HJ, Brown MP, Thierry B. Plasma functionalized PDMS microfluidic chips: towards point-of-care capture of circulating tumor cells. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10317b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
|
14 |
33 |
14
|
Uthappa UT, Sriram G, Brahmkhatri V, Kigga M, Jung HY, Altalhi T, Neelgund GM, Kurkuri MD. Xerogel modified diatomaceous earth microparticles for controlled drug release studies. NEW J CHEM 2018. [DOI: 10.1039/c8nj01238e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alternative facile approach for the surface modification of naturally available diatoms with xerogel for controlled drug release applications.
Collapse
|
|
7 |
33 |
15
|
Bhat S, Uthappa UT, Altalhi T, Jung HY, Kurkuri MD. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater Sci Eng 2021; 8:4039-4076. [PMID: 34499471 DOI: 10.1021/acsbiomaterials.1c00438] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely used in tissue engineering applications at an increasing rate in recent years. The increased clinical demand for safe scaffolds, as well as the diversity and availability of biomaterials, has sparked rapid interest in fabricating diverse scaffolds to make significant progress in tissue engineering. Hydroxyapatite (HAP) has drawn substantial attention in recent years owing to its excellent physical, chemical, and biological properties and facile adaptable surface functionalization with other innumerable essential materials. This focused review spotlights a brief introduction on HAP, scope, a historical outline, basic structural features/properties, various synthetic strategies, and their scientific applications concentrating on functionalized HAP in the diverse area of tissue engineering fields such as bone, skin, periodontal, bone tissue fixation, cartilage, blood vessel, liver, tendon/ligament, and corneal are emphasized. Besides clinical translation aspects, the future challenges and prospects of HAP based biomaterials involved in tissue engineering are also discussed. Furthermore, it is expected that researchers may find this review expedient in gaining an overall understanding of the latest advancement of HAP based biomaterials.
Collapse
|
|
4 |
32 |
16
|
Patil P, Madhuprasad M, Kumeria T, Losic D, Kurkuri M. Isolation of circulating tumour cells by physical means in a microfluidic device: a review. RSC Adv 2015. [DOI: 10.1039/c5ra16489c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Isolation and enumeration of circulating tumour cells (CTCs) from human blood has a huge significance in diagnosis and prognosis of cancer.
Collapse
|
|
10 |
31 |
17
|
Kurkuri MD, Aminabhavi TM. Pervaporation separation of water and dioxane mixtures with sodium alginate-g-polyacrylamide copolymeric membranes. J Appl Polym Sci 2003. [DOI: 10.1002/app.12087] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
22 |
29 |
18
|
Kurkuri MD, Nussio MR, Deslandes A, Voelcker NH. Thermosensitive copolymer coatings with enhanced wettability switching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:4238-4244. [PMID: 18341365 DOI: 10.1021/la703668s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Expanded cross-linked copolymers of poly(N-isopropylacrylamide) (PNiPAAm) and poly(acrylic acid) (PAAc) of varying monomer ratios were grafted from a crystalline silicon surface. Surface-tethered polymerization was performed at a slightly basic pH, where electrostatic repulsion among acrylic acid monomer units forces the network into an expanded polymer conformation. The influence of this expanded conformation on switchability between a hydrophilic and a hydrophobic state was investigated. Characterization of the copolymer coating was carried out by means of X-ray photoelectron spectroscopy (XPS) ellipsometry, and diffuse reflectance IR. Lower critical solution temperatures (LCSTs) of the copolymer grafts on the silicon surfaces were determined by spectrophotometry. Temperature-induced wettability changes were studied using sessile drop contact angle measurements. The surface topography was investigated by atomic force microscopy (AFM) in Milli-Q water at 25 and 40 degrees C. The reversible attachment of a fluorescently labeled model protein was studied as a function of temperature using a fluorescence microscope and a fluorescence spectrometer. Maximum switching in terms of the contact angle change around the LCST was observed at a ratio of 36:1 PNiPAAm to PAAc. The enhanced control of biointerfaces achieved by these coatings may find applications in biomaterials, biochips, drug delivery, and microfluidics.
Collapse
|
|
17 |
27 |
19
|
Bhat MP, Thendral V, Uthappa UT, Lee KH, Kigga M, Altalhi T, Kurkuri MD, Kant K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. BIOSENSORS 2022; 12:220. [PMID: 35448280 PMCID: PMC9025399 DOI: 10.3390/bios12040220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 05/05/2023]
Abstract
CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In this regard, this review article focuses primarily on the various fabrication methodologies involved in microfluidic devices and techniques specifically used to capture and isolate CTCs using various physical and biological methods as well as their conceptual ideas, advantages and disadvantages.
Collapse
|
Review |
3 |
26 |
20
|
Anglin E, Davey R, Herrid M, Hope S, Kurkuri M, Pasic P, Hor M, Fenech M, Thissen H, Voelcker NH. Cell microarrays for the screening of factors that allow the enrichment of bovine testicular cells. Cytometry A 2010; 77:881-9. [DOI: 10.1002/cyto.a.20913] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
15 |
24 |
21
|
Sadhasivam T, Park MJ, Shim JY, Jin JE, Kim SC, Kurkuri MD, Roh SH, Jung HY. High charge acceptance through interface reaction on carbon coated negative electrode for advanced lead-carbon battery system. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
6 |
23 |
22
|
Thierry B, Kurkuri M, Shi JY, Lwin LEMP, Palms D. Herceptin functionalized microfluidic polydimethylsiloxane devices for the capture of human epidermal growth factor receptor 2 positive circulating breast cancer cells. BIOMICROFLUIDICS 2010; 4:32205. [PMID: 21045921 PMCID: PMC2967203 DOI: 10.1063/1.3480573] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/29/2010] [Indexed: 05/11/2023]
Abstract
Building on recent breakthroughs in the field of microfluidic-based capture of rare cancer cells circulating in the blood, the present article reports on the use of Herceptin functionalized PDMS devices designed to efficiently capture from blood cancer cells, overexpressing the tyrosine kinase human epidermal growth factor receptor (HER2). The identification of patients overexpressing HER2 is critical as it typically associates with an aggressive disease course in breast cancer and poor prognosis. Importantly, HER2 positive patients have been found to significantly benefit from Herceptin (Trastuzumab), a humanized monoclonal antibody (MAb) against HER2. Disposable PDMS devices prepared using standard soft lithography were functionalized by the plasma polymerization of an epoxy-containing monomer. The epoxy-rich thin film (AGEpp) thus created could be conjugated with Herceptin either directly or through a polyethylene glycol interlayer. The properties and reactivity toward the monoclonal antibody conjugation of these coatings were determined using x-ray photoelectron spectroscopy; direct conjugation provided a good compromise in reactivity and resistance to biologically nonspecific fouling and was selected. Using the breast cancer cell line SK-BR-3 as a model for cells overexpressing HER2, the immunocapture efficacy of the Herceptin functionalized PDMS was demonstrated in model studies. Validation studies confirmed the ability of the device to efficiently capture (∼80% capture yield) HER2 positive cells from full blood.
Collapse
|
other |
15 |
22 |
23
|
Bhat MP, Kurkuri M, Losic D, Kigga M, Altalhi T. New optofluidic based lab-on-a-chip device for the real-time fluoride analysis. Anal Chim Acta 2021; 1159:338439. [PMID: 33867030 DOI: 10.1016/j.aca.2021.338439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
A PDMS (Polydimethylsiloxane) microfluidic channel coupled with UV-vis fibre-optic spectrometer and new synthesized colorimetric probe was integrated into an optofluidic based Lab-on-a-chip device for highly sensitive and real-time quantitative measurements of fluoride ions (F¯). An 'S' shaped microchannel in a microfluidic device was designed to act as microreactor to facilitate the continuous reaction between synthetized colorimetric probe (sensor) and F¯ ions. Following this reaction, the UV-vis optical probe in the downstream detection zone of the microfluidic device was used to capture their spectrum and present as F¯ concentration in real-time conditions. An initial study of the developed colorimetric probe with multi-colour change with several binding and chromophore groups such as -OH, -NH and -NO2 groups confirmed its high sensitivity and selectivity for F¯ ions with a detection limit of 0.79 ppm. The performance of the developed optofluidic device was evaluated for the selective, sensitive detection of F¯ ions including real samples out-performing conventional methods. The technology has advantages such as low sample consumption, rapid analysis, high sensitivity and portability. Presented new Lab-on-a-chip device provides many competitive advantages for the real-time analysis of F¯ ions needed across broad sectors.
Collapse
|
|
4 |
22 |
24
|
Kabiri S, Kurkuri MD, Kumeria T, Losic D. Frit-free PDMS microfluidic device for chromatographic separation and on-chip detection. RSC Adv 2014. [DOI: 10.1039/c4ra01393j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple frit-free PDMS (polydimethylsiloxane) microfluidic chromatographic separation and detection device, packed with diatomaceous earth (DE) microparticles as a normal phase stationary material using iron oxide magnetic nanoparticles is described.
Collapse
|
|
11 |
20 |
25
|
Kurkuri MD, Kulkarni AR, Kariduraganavar MY, Aminabhavi TM. In vitro release study of verapamil hydrochloride through sodium alginate interpenetrating monolithic membranes. Drug Dev Ind Pharm 2001; 27:1107-14. [PMID: 11794813 DOI: 10.1081/ddc-100108373] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polymeric sodium alginate interpenetrating network membranes containing verapamil hydrochloride were fabricated for transdermal application. The membranes were evaluated for their physical properties, weight and thickness uniformity, water vapor transmission, as well as drug content uniformity. All the thin patches were transparent, smooth, and flexible. The drug-loaded membranes were analyzed by X-ray diffraction to understand the drug polymorphism inside the membrane. The transdermal patches were permeable to water vapor, indicating the permeability characteristics of the polymers. The in vitro drug release was performed in distilled water using a Keshary-Chien diffusion cell. The release data were analyzed to understand the mechanism of drug release.
Collapse
|
|
24 |
20 |