1
|
Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK, Hubbard SR, Schlessinger J. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 1997; 276:955-60. [PMID: 9139660 DOI: 10.1126/science.276.5314.955] [Citation(s) in RCA: 901] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new class of protein tyrosine kinase inhibitors was identified that is based on an oxindole core (indolinones). Two compounds from this class inhibited the kinase activity of fibroblast growth factor receptor 1 (FGFR1) and showed differential specificity toward other receptor tyrosine kinases. Crystal structures of the tyrosine kinase domain of FGFR1 in complex with the two compounds were determined. The oxindole occupies the site in which the adenine of adenosine triphosphate binds, whereas the moieties that extend from the oxindole contact residues in the hinge region between the two kinase lobes. The more specific inhibitor of FGFR1 induces a conformational change in the nucleotide-binding loop. This structural information will facilitate the design of new inhibitors for use in the treatment of cancer and other diseases in which cell signaling by tyrosine kinases plays a crucial role in disease pathogenesis.
Collapse
MESH Headings
- 3T3 Cells
- Adenosine Triphosphate/metabolism
- Amino Acid Sequence
- Animals
- Crystallography, X-Ray
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/metabolism
- Enzyme Inhibitors/pharmacology
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Hydrogen Bonding
- Mice
- Models, Molecular
- Phosphorylation
- Phosphotyrosine/metabolism
- Piperazines/chemistry
- Piperazines/metabolism
- Piperazines/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/metabolism
- Pyrroles/chemistry
- Pyrroles/metabolism
- Pyrroles/pharmacology
- Receptor Protein-Tyrosine Kinases
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Insulin/antagonists & inhibitors
- Receptor, Insulin/metabolism
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/chemistry
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors
- Receptors, Platelet-Derived Growth Factor/metabolism
Collapse
|
|
28 |
901 |
2
|
Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 2000; 6:743-50. [PMID: 11030354 DOI: 10.1016/s1097-2765(00)00073-3] [Citation(s) in RCA: 879] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The crystal structure of a dimeric 2:2:2 FGF:FGFR:heparin ternary complex at 3 A resolution has been determined. Within each 1:1 FGF:FGFR complex, heparin makes numerous contacts with both FGF and FGFR, thereby augmenting FGF-FGFR binding. Heparin also interacts with FGFR in the adjoining 1:1 FGF:FGFR complex to promote FGFR dimerization. The 6-O-sulfate group of heparin plays a pivotal role in mediating both interactions. The unexpected stoichiometry of heparin binding in the structure led us to propose a revised model for FGFR dimerization. Biochemical data in support of this model are also presented. This model provides a structural basis for FGFR activation by small molecule heparin analogs and may facilitate the design of heparin mimetics capable of modulating FGF signaling.
Collapse
|
|
25 |
879 |
3
|
Songyang Z, Carraway KL, Eck MJ, Harrison SC, Feldman RA, Mohammadi M, Schlessinger J, Hubbard SR, Smith DP, Eng C. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 1995; 373:536-9. [PMID: 7845468 DOI: 10.1038/373536a0] [Citation(s) in RCA: 740] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
How do distinct protein-tyrosine kinases activate specific down-stream events? Src-homology-2 (SH2) domains on tyrosine kinases or targets of tyrosine kinases recognize phosphotyrosine in a specific sequence context and thereby provide some specificity. The role of the catalytic site of tyrosine kinases in determining target specificity has not been fully investigated. Here we use a degenerate peptide library to show that each of nine tyrosine kinases investigated has a unique optimal peptide substrate. We find that the cytosolic tyrosine kinases preferentially phosphorylate peptides recognized by their own SH2 domains or closely related SH2 domains (group I; ref. 3), whereas receptor tyrosine kinases preferentially phosphorylate peptides recognized by subsets of group III SH2 domains. The importance of these findings for human disease is underscored by our observation that a point mutation in the RET receptor-type tyrosine kinase, which causes multiple endocrine neoplasia type 2B, results in a shift in peptide substrate specificity.
Collapse
|
|
30 |
740 |
4
|
Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A, Ullrich A, Schlessinger J. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 1991; 65:83-90. [PMID: 1849461 DOI: 10.1016/0092-8674(91)90410-z] [Citation(s) in RCA: 545] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel method has been developed to allow cloning of protein targets for receptors with tyrosine kinase activity. By utilizing the carboxy-terminal tail of EGF receptor (EGFR) as a probe to screen lambda gt11 expression libraries, several EGFR-binding proteins have been cloned; two have been analyzed and contain unique SH2 and SH3 domains. One gene (GRB-1) has been fully sequenced, is expressed in various tissues and cell lines, and has a molecular mass of 85 kd. Interestingly, GRB-1 encodes the human counterpart of the PI3 kinase-associated protein p85. Advantages of this technique include the ease of cloning tyrosine kinase receptor targets present at low levels and the ability to identify proteins that are related in their capacity to bind activated receptors but contain no significant DNA sequence homology. This method, termed CORT (for cloning of receptor targets), offers a general approach for the identification and cloning of various receptor targets.
Collapse
|
|
34 |
545 |
5
|
Skolnik EY, Batzer A, Li N, Lee CH, Lowenstein E, Mohammadi M, Margolis B, Schlessinger J. The function of GRB2 in linking the insulin receptor to Ras signaling pathways. Science 1993; 260:1953-5. [PMID: 8316835 DOI: 10.1126/science.8316835] [Citation(s) in RCA: 453] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Insulin-induced activation of extracellular signal-regulated kinases [ERKs, also known as mitogen-activated protein (MAP) kinases] is mediated by Ras. Insulin activates Ras primarily by increasing the rate of guanine nucleotide-releasing activity. Here, we show that insulin-induced activation of ERKs was enhanced by stable overexpression of growth factor receptor-bound protein 2 (GRB2) but not by overexpression of GRB2 proteins with point mutations in the Src homology 2 and 3 domains. Moreover, a dominant negative form of Ras (with Ser17 substituted with Asn) blocked insulin-induced activation of ERKs in cells that overexpressed GRB2. GRB2 overexpression led to increased formation of a complex between the guanine nucleotide-releasing factor Sos (the product of the mammalian homolog of son of sevenless gene) and GRB2. In response to insulin stimulation, this complex bound to tyrosine-phosphorylated IRS-1 (insulin receptor substrate-1) and Shc. In contrast to the activated epidermal growth factor receptor that binds the GRB2-Sos complex directly, activation of the insulin receptor results in the interaction of GRB2-Sos with IRS-1 and Shc, thus linking the insulin receptor to Ras signaling pathways.
Collapse
|
|
32 |
453 |
6
|
Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M. Structural basis for FGF receptor dimerization and activation. Cell 1999; 98:641-50. [PMID: 10490103 DOI: 10.1016/s0092-8674(00)80051-3] [Citation(s) in RCA: 446] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of FGF2 bound to a naturally occurring variant of FGF receptor 1 (FGFR1) consisting of immunoglobulin-like domains 2 (D2) and 3 (D3) has been determined at 2.8 A resolution. Two FGF2:FGFR1 complexes form a 2-fold symmetric dimer. Within each complex, FGF2 interacts extensively with D2 and D3 as well as with the linker between the two domains. The dimer is stabilized by interactions between FGF2 and D2 of the adjoining complex and by a direct interaction between D2 of each receptor. A positively charged canyon formed by a cluster of exposed basic residues likely represents the heparin-binding site. A general model for FGF- and heparin-induced FGFR dimerization is inferred from the crystal structure, unifying a wealth of biochemical data.
Collapse
|
|
26 |
446 |
7
|
Mohammadi M, Froum S, Hamby JM, Schroeder MC, Panek RL, Lu GH, Eliseenkova AV, Green D, Schlessinger J, Hubbard SR. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J 1998; 17:5896-904. [PMID: 9774334 PMCID: PMC1170917 DOI: 10.1093/emboj/17.20.5896] [Citation(s) in RCA: 395] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Angiogenesis, the sprouting of new blood vessels from pre-existing ones, is an essential physiological process in development, yet also plays a major role in the progression of human diseases such as diabetic retinopathy, atherosclerosis and cancer. The effects of the most potent angiogenic factors, vascular endothelial growth factor (VEGF), angiopoietin and fibroblast growth factor (FGF) are mediated through cell surface receptors that possess intrinsic protein tyrosine kinase activity. In this report, we describe a synthetic compound of the pyrido[2,3-d]pyrimidine class, designated PD 173074, that selectively inhibits the tyrosine kinase activities of the FGF and VEGF receptors. We show that systemic administration of PD 173074 in mice can effectively block angiogenesis induced by either FGF or VEGF with no apparent toxicity. To elucidate the determinants of selectivity, we have determined the crystal structure of PD 173074 in complex with the tyrosine kinase domain of FGF receptor 1 at 2.5 A resolution. A high degree of surface complementarity between PD 173074 and the hydrophobic, ATP-binding pocket of FGF receptor 1 underlies the potency and selectivity of this inhibitor. PD 173074 is thus a promising candidate for a therapeutic angiogenesis inhibitor to be used in the treatment of cancer and other diseases whose progression is dependent upon new blood vessel formation.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Cells, Cultured
- Cornea/blood supply
- Crystallography, X-Ray
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Mice
- Models, Molecular
- Molecular Sequence Data
- Neovascularization, Physiologic/drug effects
- Protein Structure, Tertiary
- Pyrimidines/administration & dosage
- Pyrimidines/chemistry
- Pyrimidines/metabolism
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/chemistry
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Growth Factor/antagonists & inhibitors
- Receptors, Vascular Endothelial Growth Factor
Collapse
|
research-article |
27 |
395 |
8
|
Mohammadi M, Dionne CA, Li W, Li N, Spivak T, Honegger AM, Jaye M, Schlessinger J. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 1992; 358:681-4. [PMID: 1379698 DOI: 10.1038/358681a0] [Citation(s) in RCA: 365] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stimulation of growth factor receptors with tyrosine kinase activity is followed by rapid receptor dimerization, tyrosine autophosphorylation and phosphorylation of signalling molecules such as phospholipase C gamma (PLC gamma) and the ras GTPase-activating protein. PLC gamma and GTPase-activating protein bind to specific tyrosine-phosphorylated regions in growth factor receptors through their src-homologous SH2 domains. Growth factor-induced tyrosine phosphorylation of PLC gamma is essential for stimulation of phosphatidylinositol hydrolysis in vitro and in vivo. We have shown that a short phosphorylated peptide containing tyrosine at position 766 from a conserved region of the fibroblast growth factor (FGF) receptor is a binding site for the SH2 domain of PLC gamma (ref. 8). Here we show that an FGF receptor point mutant in which Tyr 766 is replaced by a phenylalanine residue (Y766F) is unable to associate with and tyrosine-phosphorylate PLC gamma or to stimulate hydrolysis of phosphatidylinositol. Nevertheless, the Y766F FGF receptor mutant can be autophosphorylated, and can phosphorylate several cellular proteins and stimulate DNA synthesis. Our data show that phosphorylation of the conserved Tyr 766 of the FGF receptor is essential for phosphorylation of PLC gamma and for hydrolysis of phosphatidylinositol, but that elimination of this hydrolysis does not affect FGF-induced mitogenesis.
Collapse
|
|
33 |
365 |
9
|
Mohammadi M, Dikic I, Sorokin A, Burgess WH, Jaye M, Schlessinger J. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol 1996; 16:977-89. [PMID: 8622701 PMCID: PMC231080 DOI: 10.1128/mcb.16.3.977] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fibroblast growth factor receptor (FGFR) activation leads to receptor autophosphorylation and increased tyrosine phosphorylation of several intra cellular proteins. We have previously shown that autophosphorylated tyrosine 766 in FGFR1 serves as a binding site for one of the SH2 domains of phospholipase Cy and couples FGFR1 to phosphatidylinositol hydrolysis in several cell types. In this report, we describe the identification of six additional autophosphorylation sites (Y-463, Y-583, Y-585, Y-653, Y-654 and Y-730) on FGFR1. We demonstrate that autophosphorylation on tyrosines 653 and 654 is important for activation of tyrosine kinase activity of FGFR1 and is therefore essential for FGFR1-mediated biological responses. In contrast, autophosphorylation of the remaining four tyrosines is dispensable for FGFR1-mediated mitogen-activated protein kinase activation and mitogenic signaling in L-6 cells as well as neuronal differentiation of PC12 cells. Interestingly, both the wild-type and a mutant FGFR1 (FGFR1-4F) are able to phosphorylate Shc and an unidentified Grb2-associated phosphoprotein of 90 kDa (pp90). Binding of the Grb2/Sos complex to phosphorylated Shc and pp90 may therefore be the key link between FGFR1 and the Ras signaling pathway, mito-genesis, and neuronal differentiation.
Collapse
|
research-article |
29 |
305 |
10
|
Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M. Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 2000; 101:413-24. [PMID: 10830168 DOI: 10.1016/s0092-8674(00)80851-x] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To elucidate the structural determinants governing specificity in fibroblast growth factor (FGF) signaling, we have determined the crystal structures of FGF1 and FGF2 complexed with the ligand binding domains (immunoglobulin-like domains 2 [D2] and 3 [D3]) of FGF receptor 1 (FGFR1) and FGFR2, respectively. Highly conserved FGF-D2 and FGF-linker (between D2-D3) interfaces define a general binding site for all FGF-FGFR complexes. Specificity is achieved through interactions between the N-terminal and central regions of FGFs and two loop regions in D3 that are subject to alternative splicing. These structures provide a molecular basis for FGF1 as a universal FGFR ligand and for modulation of FGF-FGFR specificity through primary sequence variations and alternative splicing.
Collapse
|
|
25 |
299 |
11
|
Mohammadi M, Schlessinger J, Hubbard SR. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 1996; 86:577-87. [PMID: 8752212 DOI: 10.1016/s0092-8674(00)80131-2] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The crystal structure of the tyrosine kinase domain of fibroblast growth factor receptor 1 (FGFR1K) has been determined in its unliganded form to 2.0 angstroms resolution and in complex with with an ATP analog to 2.3 angstrosms A resolution. Several features distinguish the structure of FGFR1K from that of the tyrosine kinase domain of the insulin receptor. Residues in the activation loop of FGFR1K appear to interfere with substrate peptide binding but not with ATP binding, revealing a second and perhaps more general autoinhibitory mechanism for receptor tyrosine kinases. In addition, a dimeric form of FGFR1K observed in the crystal structure may provide insights into the molecular mechanisms by which FGF receptors are activated. Finally, the structure provides a basis for rationalizing the effects of kinase mutations in FGF receptors that lead to developmental disorders in nematodes and humans.
Collapse
|
Comparative Study |
29 |
277 |
12
|
Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, Mohammadi M, Futreal PA, Stratton MR, Trent JM, Goodfellow PJ. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 2007; 26:7158-62. [PMID: 17525745 PMCID: PMC2871595 DOI: 10.1038/sj.onc.1210529] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/07/2007] [Accepted: 03/30/2007] [Indexed: 02/06/2023]
Abstract
Endometrial carcinoma is the most common gynecological malignancy in the United States. Although most women present with early disease confined to the uterus, the majority of persistent or recurrent tumors are refractory to current chemotherapies. We have identified a total of 11 different FGFR2 mutations in 3/10 (30%) of endometrial cell lines and 19/187 (10%) of primary uterine tumors. Mutations were seen primarily in tumors of the endometrioid histologic subtype (18/115 cases investigated, 16%). The majority of the somatic mutations identified were identical to germline activating mutations in FGFR2 and FGFR3 that cause Apert Syndrome, Beare-Stevenson Syndrome, hypochondroplasia, achondroplasia and SADDAN syndrome. The two most common somatic mutations identified were S252W (in eight tumors) and N550K (in five samples). Four novel mutations were identified, three of which are also likely to result in receptor gain-of-function. Extensive functional analyses have already been performed on many of these mutations, demonstrating they result in receptor activation through a variety of mechanisms. The discovery of activating FGFR2 mutations in endometrial carcinoma raises the possibility of employing anti-FGFR molecularly targeted therapies in patients with advanced or recurrent endometrial carcinoma.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
233 |
13
|
Rotin D, Margolis B, Mohammadi M, Daly RJ, Daum G, Li N, Fischer EH, Burgess WH, Ullrich A, Schlessinger J. SH2 domains prevent tyrosine dephosphorylation of the EGF receptor: identification of Tyr992 as the high-affinity binding site for SH2 domains of phospholipase C gamma. EMBO J 1992; 11:559-67. [PMID: 1537335 PMCID: PMC556487 DOI: 10.1002/j.1460-2075.1992.tb05087.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Several cytoplasmic tyrosine kinases contain a conserved, non-catalytic stretch of approximately 100 amino acids called the src homology 2 (SH2) domain, and a region of approximately 50 amino acids called the SH3 domain. SH2/SH3 domains are also found in several other proteins, including phospholipase C-gamma (PLC gamma). Recent studies indicate that SH2 domains promote association between autophosphorylated growth factor receptors such as the epidermal growth factor (EGF) receptor and signal transducing molecules such as PLC gamma. Because SH2 domains bind specifically to protein sequences containing phosphotyrosine, we examined their capacity to prevent tyrosine dephosphorylation of the EGF and other receptors with tyrosine kinase activity. For this purpose, various SH2/SH3 constructs of PLC gamma were expressed in Escherichia coli as glutathione-S-transferase fusion proteins. Our results show that purified SH2 domains of PLC gamma are able to prevent tyrosine dephosphorylation of the EGF receptor and other receptors with tyrosine activity. The inhibition of tyrosine dephosphorylation paralleled the capacity of various SH2-containing constructs to bind to the EGF receptor, suggesting that the tyrosine phosphatase and the SH2 domain compete for the same tyrosine phosphorylation sites in the carboxy-terminal tail of the EGF receptor. Analysis of the phosphorylation sites protected from dephosphorylation by PLC gamma-SH2 revealed substantial inhibition of dephosphorylation of Tyr992 at 1 microM SH2. This indicates that Tyr992 and its flanking sequence is the high-affinity binding site for SH2 domains of PLC gamma.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
33 |
221 |
14
|
Hubbard SR, Mohammadi M, Schlessinger J. Autoregulatory mechanisms in protein-tyrosine kinases. J Biol Chem 1998; 273:11987-90. [PMID: 9575136 DOI: 10.1074/jbc.273.20.11987] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
Review |
27 |
213 |
15
|
Mohammadi M, Nedrud J, Redline R, Lycke N, Czinn SJ. Murine CD4 T-cell response to Helicobacter infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology 1997; 113:1848-57. [PMID: 9394724 DOI: 10.1016/s0016-5085(97)70004-0] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Previous findings suggest that TH1 cellular immune responses contribute to Helicobacter-associated gastritis. To further investigate this issue, interleukin 4 gene targeted mice were infected with Helicobacter felis, and a series of adoptive transfer experiments was performed to evaluate the role of both TH1 and TH2 cells. METHODS Antigen-specific spleen cells from immunized/challenged or nonimmunized/infected mice or CD4+ T-cell lines were transferred adoptively into naive recipients before live bacterial challenge. RESULTS Transfer of cells from both groups of donors as well as TH1 or TH2 cell lines exacerbated gastric inflammation in the recipients. No effect on bacterial load was observed in recipients of bulk spleen cells from infected mice or recipients of TH1 cell lines. In contrast, when either a TH2 cell line or bulk cells from immunized challenged mice were transferred adoptively, recipients showed a dramatic reduction in bacterial load. Increased numbers of bacteria were also noted in interleukin 4-deficient mice. CONCLUSIONS These data suggest a differential contribution of TH1 and TH2 cell-mediated immune responses in Helicobacter infection: one associated with the pathogenesis of disease (TH1 phenotype) and the other associated with protection from or control of infection (TH2 phenotype).
Collapse
|
|
28 |
207 |
16
|
Margolis B, Li N, Koch A, Mohammadi M, Hurwitz DR, Zilberstein A, Ullrich A, Pawson T, Schlessinger J. The tyrosine phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-gamma. EMBO J 1990; 9:4375-80. [PMID: 2176151 PMCID: PMC552227 DOI: 10.1002/j.1460-2075.1990.tb07887.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phospholipase C-gamma (PLC-gamma) and GTPase activating protein (GAP) are substrates of EGF, PDGF and other growth factor receptors. Since either PLC-gamma or GAP also bind to the activated receptors it was suggested that their SH2 domains are mediating this association. We attempted to delineate the specific region of the EGF receptor that is responsible for the binding, utilizing EGF receptor mutants, PLC-gamma, and a bacterially expressed TRP E fusion protein containing the SH2 domains of GAP. As previously shown, tyrosine autophosphorylation of the wild-type receptor wsa crucial in mediating the association and in agreement, a kinase negative EGF receptor could bind PLC-gamma or TRP E GAP SH2, but only when cross tyrosine phosphorylated by an active EGF receptor kinase. The importance of autophosphorylation for association was confirmed by demonstrating that a carboxy-terminal deletion of the EGFR missing four autophosphorylation sites bound these proteins poorly. To study the role of EGF receptor autophosphorylation further, a 203 amino acid EGF receptor fragment was generated with cyanogen bromide that contained all known tyrosine autophosphorylation sites. This fragment bound both TRP E GAP SH2 and PLC-gamma but only when tyrosine phosphorylated. This data localizes a major binding site for SH2 domain containing proteins to the carboxy-terminus of the EGF receptor and points to the importance of tyrosine phosphorylation in mediating this association.
Collapse
|
|
35 |
196 |
17
|
Saadatpour L, Fadaee E, Fadaei S, Nassiri Mansour R, Mohammadi M, Mousavi SM, Goodarzi M, Verdi J, Mirzaei H. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 2016; 23:415-418. [PMID: 27834360 DOI: 10.1038/cgt.2016.48] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is known as a tumor type, which arises from astrocytes. Several studies indicated that GBM tumor cells are malignant. This is because of the fact that they consist of different cell types, which are reproducing very quickly and are also supported by a large network of blood vessels. The correct identification of various stages of GBM could help to better treat the patients with this disease. Therefore, new biomarkers such as exosomes and microRNAs (miRNAs) may help us to learn more about GBM and they may also lead to a more effective treatment for patients with GBM. Exosomes have emerged as biological vehicles, which can perform various tasks in carcinogenesis pathways such as PI3K/AKT, SOX2, PTEN, ERK, and STAT3. The miRNAs are known as small noncoding RNAs that are involved in several GBM pathogenic events. These molecules have key roles in various biological processes such as angiogenesis, metastasis and tumor growth. In this study, we highlighted various exosomes and miRNAs that could be used for diagnosis and/or prognosis biomarkers in patients with GBM.
Collapse
|
Review |
9 |
193 |
18
|
Mainiero F, Pepe A, Wary KK, Spinardi L, Mohammadi M, Schlessinger J, Giancotti FG. Signal transduction by the alpha 6 beta 4 integrin: distinct beta 4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. EMBO J 1995; 14:4470-81. [PMID: 7556090 PMCID: PMC394539 DOI: 10.1002/j.1460-2075.1995.tb00126.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have examined the mechanism of signal transduction by the hemidesmosomal integrin alpha 6 beta 4, a laminin receptor involved in morphogenesis and tumor progression. Immunoprecipitation and immune complex kinase assays indicated that antibody- or laminin-induced ligation of alpha 6 beta 4 causes tyrosine phosphorylation of the beta 4 subunit in intact cells and that this event is mediated by a protein kinase(s) physically associated with the integrin. Co-immunoprecipitation and GST fusion protein binding experiments showed that the adaptor protein Shc forms a complex with the tyrosine-phosphorylated beta 4 subunit. Shc is then phosphorylated on tyrosine residues and recruits the adaptor Grb2, thereby potentially linking alpha 6 beta 4 to the ras pathway. The beta 4 subunit was found to be phosphorylated at multiple tyrosine residues in vivo, including a tyrosine-based activation motif (TAM) resembling those found in T and B cell receptors. Phenylalanine substitutions at the beta 4 TAM disrupted association of alpha 6 beta 4 with hemidesmosomes, but did not interfere with tyrosine phosphorylation of Shc and recruitment of Grb2. These results indicate that signal transduction by the alpha 6 beta 4 integrin is mediated by an associated tyrosine kinase and that phosphorylation of distinct sites in the beta 4 tail mediates assembly of the hemidesmosomal cytoskeleton and recruitment of Shc/Grb2.
Collapse
|
research-article |
30 |
182 |
19
|
Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther 2003; 28:53-9. [PMID: 12605619 DOI: 10.1046/j.1365-2710.2003.00463.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Alzheimer's disease is characterized by a slow, progressive decline in cognitive function and behaviour. Acetylcholine esterase inhibitors are the only agents approved by the Food and Drug Administration for the treatment of Alzheimer's disease. All other agents prescribed for the treatment of Alzheimer's disease are used on an off-label basis. Current research into new drugs is focused on agents that will prevent, slow down and/or halt the progress of the disease process. Salvia officinalis has been used in herbal medicine for many centuries. It has been suggested, on the basis of traditional medicine, its in vitro cholinergic binding properties and modulation of mood and cognitive performance in humans, that Salvia officinalis might potentially provide a novel natural treatment for Alzheimer's disease. The objective of this study was to assess the efficacy and safety of Salvia officinalis extract using a fixed dose (60 drops/day), in patients with mild to moderate Alzheimer's disease, over a 4-month period. METHODS This was a 4-month, parallel group, placebo-controlled trial undertaken in three centres in Tehran, Iran. Patients with mild to moderate Alzheimer's disease aged between 65 and 80 years (n = 42, 18 women) with a score of > or = 12 on the cognitive subscale of Alzheimer's Disease Assessment Scale (ADAS-cog) and < or = 2 on the Clinical Dementia Rating (CDR) were randomized to placebo or fixed dose of S. officinalis extract. Over the 16 weeks, the main efficacy measures were the change in the ADAS-cog and CDR-Sum of Boxes scores compared with baseline. In addition, side-effects were systematically recorded throughout the study using a checklist. RESULTS At 4 months, S. officinalis extract produced a significant better outcome on cognitive functions than placebo (ADAS-cog: F = 4.77, d.f. = 1, P = 0.03) (CDR-SB: F = 10.84, d.f. = 1, P < 0.003). There were no significant differences in the two groups in terms of observed side-effects except agitation that appears to be more frequent in the placebo group (P = 0.09). CONCLUSIONS The results of this study indicate the efficacy of S. officinalis extract in the management of mild to moderate Alzheimer's disease. Moreover, S. officinalis may well reduce agitation of patients but this needs to be confirmed.
Collapse
|
Clinical Trial |
22 |
163 |
20
|
Ibrahimi OA, Eliseenkova AV, Plotnikov AN, Yu K, Ornitz DM, Mohammadi M. Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci U S A 2001; 98:7182-7. [PMID: 11390973 PMCID: PMC34643 DOI: 10.1073/pnas.121183798] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apert syndrome (AS) is characterized by craniosynostosis (premature fusion of cranial sutures) and severe syndactyly of the hands and feet. Two activating mutations, Ser-252 --> Trp and Pro-253 --> Arg, in fibroblast growth factor receptor 2 (FGFR2) account for nearly all known cases of AS. To elucidate the mechanism by which these substitutions cause AS, we determined the crystal structures of these two FGFR2 mutants in complex with fibroblast growth factor 2 (FGF2). These structures demonstrate that both mutations introduce additional interactions between FGFR2 and FGF2, thereby augmenting FGFR2-FGF2 affinity. Moreover, based on these structures and sequence alignment of the FGF family, we propose that the Pro-253 --> Arg mutation will indiscriminately increase the affinity of FGFR2 toward any FGF. In contrast, the Ser-252 --> Trp mutation will selectively enhance the affinity of FGFR2 toward a limited subset of FGFs. These predictions are consistent with previous biochemical data describing the effects of AS mutations on FGF binding. Alterations in FGFR2 ligand affinity and specificity may allow inappropriate autocrine or paracrine activation of FGFR2. Furthermore, the distinct gain-of-function interactions observed in each crystal structure provide a model to explain the phenotypic variability among AS patients.
Collapse
MESH Headings
- Acrocephalosyndactylia/genetics
- Amino Acid Sequence
- Amino Acid Substitution
- Binding Sites
- Crystallography, X-Ray
- Fibroblast Growth Factors/chemistry
- Fibroblast Growth Factors/metabolism
- Humans
- Hydrogen Bonding
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Point Mutation
- Protein Conformation
- Protein Structure, Secondary
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/chemistry
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Recombinant Proteins/chemistry
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
|
research-article |
24 |
159 |
21
|
Mohammadi M, Redline R, Nedrud J, Czinn S. Role of the host in pathogenesis of Helicobacter-associated gastritis: H. felis infection of inbred and congenic mouse strains. Infect Immun 1996; 64:238-45. [PMID: 8557346 PMCID: PMC173751 DOI: 10.1128/iai.64.1.238-245.1996] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In humans, Helicobacter pylori establishes a chronic infection which can result in various degrees of gastric inflammation, peptic ulcer disease, and a predisposition to gastric cancer. It has been suggested that bacterial virulence factors such as the vacuolating toxin (VacA) and the cytotoxin-associated gene product (CagA) may play a major role in determining the clinical outcome of Helicobacter infections. The role of host responses in these varied outcomes has received little attention. Helicobacter felis, which does not express CagA or VacA, causes chronic infection and inflammation in a well-characterized mouse model. We have used this model to evaluate the role of host responses in Helicobacter infections. BALB/c, C3H, and C57BL/6 mice were orally infected with a single strain of H. felis, and 2 and 11 weeks after infection, the mice were sacrificed and evaluated histologically for magnitude of H. felis infection. Intensity and extent of inflammation, and cellular composition of the inflammatory infiltrate. All three strains of mice demonstrated comparable levels of infection at 11 weeks, but the pattern and intensity of inflammation varied from minimal in BALB/c mice to severe in C57BL/6 mice. Gastric epithelial erosions were noted in C3H mice, and mucous cell hyperplasia was observed in C3H and C57BL/6 mice. Abundant mucosal mast cells were observed in the gastric tissues of all three mouse strains. Studies using major histocompatibility complex (MHC)-congenic mice revealed probable contributions by both MHC and non-MHC genes to Helicobacter-induced inflammation. Thus, large variations in the severity of disease were observed after infection of different inbred strains and congenic mice with a single isolate of H. felis. These results demonstrate the importance of the host response in disease outcome following gastric Helicobacter infection.
Collapse
|
research-article |
29 |
155 |
22
|
Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: a double blind, randomised, placebo controlled trial. J Neurol Neurosurg Psychiatry 2003; 74:863-866. [PMID: 12810768 PMCID: PMC1738567 DOI: 10.1136/jnnp.74.7.863] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To assess the efficacy and safety of Melissa officinalis extract using a fixed dose (60 drops/day) in patients with mild to moderate Alzheimer's disease. DESIGN A four month, parallel group, placebo controlled trial undertaken in three centres in Tehran, Iran. METHODS Patients with mild to moderate Alzheimer's disease aged between 65 and 80 years (n = 42; 18 women, 24 men) with a score of >or= 12 on the cognitive subscale of Alzheimer's disease assessment scale (ADAS-cog) and RESULTS At four months, Melissa officinalis extract produced a significantly better outcome on cognitive function than placebo (ADAS-cog: df = 1, F = 6.93, p = 0.01; CDR: df = 1, F = 16.87, p < 0.0001). There were no significant differences in the two groups in terms of observed side effects except agitation, which was more common in the placebo group (p = 0.03). CONCLUSIONS Melissa officinalis extract is of value in the management of mild to moderate Alzheimer's disease and has a positive effect on agitation in such patients.
Collapse
|
Clinical Trial |
22 |
147 |
23
|
Mohammadi M, Honegger AM, Rotin D, Fischer R, Bellot F, Li W, Dionne CA, Jaye M, Rubinstein M, Schlessinger J. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol Cell Biol 1991; 11:5068-78. [PMID: 1656221 PMCID: PMC361508 DOI: 10.1128/mcb.11.10.5068-5078.1991] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Phospholipase C-gamma (PLC-gamma) is a substrate of the fibroblast growth factor receptor (FGFR; encoded by the flg gene) and other receptors with tyrosine kinase activity. It has been demonstrated that the src homology region 2 (SH2 domain) of PLC-gamma and of other signalling molecules such as GTPase-activating protein and phosphatidylinositol 3-kinase-associated p85 direct their binding toward tyrosine-autophosphorylated regions of the epidermal growth factor or platelet-derived growth factor receptor. In this report, we describe the identification of Tyr-766 as an autophosphorylation site of flg-encoded FGFR by direct sequencing of a tyrosine-phosphorylated tryptic peptide isolated from the cytoplasmic domain of FGFR expressed in Escherichia coli. The same phosphopeptide was found in wild-type FGFR phosphorylated either in vitro or in living cells. Like other growth factor receptors, tyrosine-phosphorylated wild-type FGFR or its cytoplasmic domain becomes associated with intact PLC-gamma or with a fusion protein containing the SH2 domain of PLC-gamma. To delineate the site of association, we have examined the capacity of a 28-amino-acid tryptic peptide containing phosphorylated Tyr-766 to bind to various constructs containing SH2 and other domains of PLC-gamma. It is demonstrated that the tyrosine-phosphorylated peptide binds specifically to the SH2 domain but not to the SH3 domain or other regions of PLC-gamma. Hence, Tyr-766 and its flanking sequences represent a major binding site in FGFR for PLC-gamma. Alignment of the amino acid sequences surrounding Tyr-766 with corresponding regions of other FGFRs revealed conserved tyrosine residues in all known members of the FGFR family. We propose that homologous tyrosine-phosphorylated regions in other FGFRs also function as binding sites for PLC-gamma and therefore are involved in coupling to phosphatidylinositol breakdown.
Collapse
|
research-article |
34 |
139 |
24
|
Huang J, Mohammadi M, Rodrigues GA, Schlessinger J. Reduced activation of RAF-1 and MAP kinase by a fibroblast growth factor receptor mutant deficient in stimulation of phosphatidylinositol hydrolysis. J Biol Chem 1995; 270:5065-72. [PMID: 7534287 DOI: 10.1074/jbc.270.10.5065] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Signaling via the fibroblast growth factor receptor 1 (FGFR1, flg) was analyzed in Ba/F3 hematopoietic cells expressing either wild-type or a mutant FGF receptor (Y766F) unable to activate phospholipase C-gamma (PLC-gamma) and stimulate phosphatidylinositol (PI) hydrolysis. Stimulation of cells expressing wild-type or mutant FGFR with acidic FGF (aFGF) caused similar activation of Ras. However, an approximately 3-fold reduced activation of Raf-1 and MAP kinase was observed in aFGF-stimulated cells expressing mutant receptors as compared to cells expressing wild-type FGF receptors. Comparison of phosphopeptide maps of Raf-1 immunoprecipitated from the two cell types activated by either aFGF or the phorbol ester (12-O-tetradecanoylphorbol-13-acetate) suggests that Raf-1 is phosphorylated by both Ras-dependent and PLC-gamma-dependent mechanisms. In spite of the differential effect on Raf-1 and MAP kinase activation, aFGF stimulated similar proliferation of cells expressing wild-type or mutant receptors indicating that Ras-dependent activation of Raf-1 and MAP kinase is sufficient for transduction of FGFR mitogenic signals. Ras may also activate signal transduction pathways that are complementary or parallel to the MAP kinase pathway to stimulate cell proliferation.
Collapse
|
|
30 |
84 |
25
|
Tarzi MD, Hickey A, Förster T, Mohammadi M, Longhurst HJ. An evaluation of tests used for the diagnosis and monitoring of C1 inhibitor deficiency: normal serum C4 does not exclude hereditary angio-oedema. Clin Exp Immunol 2007; 149:513-6. [PMID: 17614974 PMCID: PMC2219337 DOI: 10.1111/j.1365-2249.2007.03438.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Reduced levels of serum C4 have been considered a ubiquitous finding in hereditary angio-oedema (HAE), and consequently low C4 is often used to 'request manage' access to C1 inhibitor assays in the United Kingdom. However, in our experience normal C4 may occasionally be compatible with HAE. We audited the results of serum C4, C1 inhibitor antigen (C1inhA) and C1 inhibitor function (C1inhF) in 49 HAE patients, compared to a control group of 58 unaffected subjects. The sensitivity of low serum C4 for HAE among untreated patients was 81%; levels of complement C4 were within the normal range on nine separate occasions in five untreated HAE patients. Molecular genetic analysis of these individuals demonstrated novel mutations in the C1 inhibitor gene. The supplied reference ranges for the Quidel C1inhF enzyme-linked immunosorbent assay (ELISA) system appear to be too low, with a sensitivity of just 57% for HAE. Following optimization of the reference ranges using receiver operating characteristic analysis, low C1inhF was found to be 78% sensitive and 100% specific for HAE. The diagnosis of HAE is not excluded by normal levels of complement C4. We conclude that C1 inhibitor studies should be performed regardless of serum C4 where a high index of clinical suspicion exists.
Collapse
|
Journal Article |
18 |
77 |