1
|
Costantine MM, Cleary K, Hebert MF, Ahmed MS, Brown LM, Ren Z, Easterling TR, Haas DM, Haneline LS, Caritis SN, Venkataramanan R, West H, D'Alton M, Hankins G. Safety and pharmacokinetics of pravastatin used for the prevention of preeclampsia in high-risk pregnant women: a pilot randomized controlled trial. Am J Obstet Gynecol 2016; 214:720.e1-720.e17. [PMID: 26723196 DOI: 10.1016/j.ajog.2015.12.038] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/09/2015] [Accepted: 12/17/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Preeclampsia complicates approximately 3-5% of pregnancies and remains a major cause of maternal and neonatal morbidity and mortality. It shares pathogenic similarities with adult cardiovascular disease as well as many risk factors. Pravastatin, a hydrophilic, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor, has been shown in preclinical studies to reverse various pathophysiological pathways associated with preeclampsia, providing biological plausibility for its use for preeclampsia prevention. However, human trials are lacking. OBJECTIVE As an initial step in evaluating the utility of pravastatin in preventing preeclampsia and after consultation with the US Food and Drug Administration, we undertook a pilot randomized controlled trial with the objective to determine pravastatin safety and pharmacokinetic parameters when used in pregnant women at high risk of preeclampsia. STUDY DESIGN We conducted a pilot, multicenter, double-blind, placebo-controlled, randomized trial of women with singleton, nonanomalous pregnancies at high risk for preeclampsia. Women between 12(0/7) and 16(6/7) weeks' gestation were assigned to daily pravastatin 10 mg or placebo orally until delivery. Primary outcomes were maternal-fetal safety and pharmacokinetic parameters of pravastatin during pregnancy. Secondary outcomes included rates of preeclampsia and preterm delivery, gestational age at delivery, birthweight, and maternal and cord blood lipid profile (clinicaltrials.gov identifier NCT01717586). RESULTS Ten women assigned to pravastatin and 10 to placebo completed the trial. There were no differences between the 2 groups in rates of study drug side effects, congenital anomalies, or other adverse or serious adverse events. There was no maternal, fetal, or neonatal death. Pravastatin renal clearance was significantly higher in pregnancy compared with postpartum. Four subjects in the placebo group developed preeclampsia compared with none in the pravastatin group. Although pravastatin reduced maternal cholesterol concentrations, umbilical cord cholesterol concentrations and infant birthweight were not different between the groups. The majority of umbilical cord and maternal pravastatin plasma concentrations at the time of delivery were below the lower limit of quantification of the assay. Pravastatin use was associated with a more favorable pregnancy angiogenic profile. CONCLUSION This study provides preliminary safety and pharmacokinetic data regarding the use of pravastatin for preventing preeclampsia in high-risk pregnant women. Although the data are preliminary, no identifiable safety risks were associated with pravastatin use in this cohort. This favorable risk-benefit analysis justifies using pravastatin in a larger clinical trial with dose escalation.
Collapse
|
Multicenter Study |
9 |
175 |
2
|
Hebert MF, Ma X, Naraharisetti SB, Krudys KM, Umans JG, Hankins GDV, Caritis SN, Miodovnik M, Mattison DR, Unadkat JD, Kelly EJ, Blough D, Cobelli C, Ahmed MS, Snodgrass WR, Carr DB, Easterling TR, Vicini P. Are we optimizing gestational diabetes treatment with glyburide? The pharmacologic basis for better clinical practice. Clin Pharmacol Ther 2009; 85:607-14. [PMID: 19295505 PMCID: PMC2684566 DOI: 10.1038/clpt.2009.5] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glyburide's pharmacokinetics (PK) and pharmacodynamics have not been studied in women with gestational diabetes mellitus (GDM). The objective of this study was to assess steady-state PK of glyburide, as well as insulin sensitivity, beta-cell responsivity, and overall disposition indices after a mixed-meal tolerance test (MMTT) in women with GDM (n = 40), nonpregnant women with type 2 diabetes mellitus (T2DM) (n = 26), and healthy pregnant women (n = 40, MMTT only). At equivalent doses, glyburide plasma concentrations were approximately 50% lower in pregnant women than in nonpregnant subjects. The average umbilical cord/maternal plasma glyburide concentration ratio at the time of delivery was 0.7 +/- 0.4. Insulin sensitivity was approximately fivefold lower in women with GDM as compared with healthy pregnant women. Despite comparable beta-cell responsivity indices, the average beta-cell function corrected for insulin resistance was more than 3.5-fold lower in women with glyburide-treated GDM than in healthy pregnant women. Women with GDM in whom glyburide treatment has failed may benefit from alternative medication or dosage escalation; however, fetal safety should be kept in mind.
Collapse
|
Clinical Trial |
16 |
142 |
3
|
Nanovskaya T, Deshmukh S, Brooks M, Ahmed MS. Transplacental transfer and metabolism of buprenorphine. J Pharmacol Exp Ther 2002; 300:26-33. [PMID: 11752093 DOI: 10.1124/jpet.300.1.26] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Information on the direct and indirect effects of buprenorphine (BUP) on the fetus is essential for determining its potential for treatment of the pregnant opiate addict. The goal of this investigation is to determine the transplacental transfer of BUP to the fetal circulation, its metabolism, and effects on the tissue. The technique of dual perfusion of placental lobule is used. The range of BUP concentrations investigated included its peak plasma levels (10 ng/ml) in patients under treatment. A biphasic decline in concentration of the drug in the maternal circulation was observed, initially rapid then slow. During the initial (60 min), the tissue sequestered most of BUP resulting in a low (<10%) transplacental transfer of the drug to the fetal circulation. The concentration ratios of the drug in tissue/maternal and tissue/fetal were 13 +/- 6.5 and 27.4 +/- 0.4. The drug sequestered did not have any adverse effects on placental tissue viability and functional parameters. Less than 5% of the perfused BUP was metabolized to norbuprenorphine during the 4 h of perfusion and the metabolite was distributed between the tissue, maternal, and fetal circulations. Taken together, these data suggest that the therapeutic levels of BUP in the maternal circulation may have no indirect effects (via the placenta) on the fetus. The observed low transplacental transfer of BUP to the fetal circuit may explain the moderate/absence of neonatal withdrawal in the limited number of reports on mothers treated with the drug during pregnancy.
Collapse
|
Clinical Trial |
23 |
113 |
4
|
Hentati A, Deng HX, Hung WY, Nayer M, Ahmed MS, He X, Tim R, Stumpf DA, Siddique T. Human alpha-tocopherol transfer protein: gene structure and mutations in familial vitamin E deficiency. Ann Neurol 1996; 39:295-300. [PMID: 8602747 DOI: 10.1002/ana.410390305] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Familial vitamin E deficiency (AVED) causes ataxia and peripheral neuropathy that resembles Friedreich's ataxia. AVED is thought to be caused by a defect in the transport of vitamin E in liver cells, which is the probable function of alpha-tocopherol transfer protein (alphaTTP). We have cloned the cDNA and several genomic phage clones covering the entire human alphaTTP gene and determined the junctions between the five exons and four introns that composed the gene for human alphaTTP. Three mutations in three unrelated North American families with AVED were identified. Two mutations, 485delT and 513insTT, cause a frame shift and a premature stop codon and the third mutation 574G-->A would substitute Arg192 to His in alphaTTP. The 2 patients with a severe form of AVED were homozygous with 485delT and 513insTT, respectively, while the patient with a mild form of the disease was compound heterozygous with 513insTT and 574G-->A. These findings have identified the underlying genetic defect in AVED and have confirmed the role of alphaTTP in AVED.
Collapse
|
Case Reports |
29 |
82 |
5
|
Hemauer SJ, Patrikeeva SL, Nanovskaya TN, Hankins GDV, Ahmed MS. Role of human placental apical membrane transporters in the efflux of glyburide, rosiglitazone, and metformin. Am J Obstet Gynecol 2010; 202:383.e1-7. [PMID: 20350646 DOI: 10.1016/j.ajog.2010.01.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/22/2009] [Accepted: 01/15/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Substrates of placental efflux transporters could compete for a single transporter, which could result in an increase in the transfer of each substrate to the fetal circulation. Our aim was to determine the role of placental transporters in the biodisposition of oral hypoglycemic drugs that could be used as monotherapy or in combination therapy for gestational diabetes. STUDY DESIGN Inside-out brush border membrane vesicles from term placentas were used to determine the efflux of glyburide, rosiglitazone, and metformin by P-glycoprotein, breast cancer resistance protein, and multidrug resistance protein. RESULTS Glyburide was transported by multidrug resistance protein (43 +/- 4%); breast cancer resistance protein (25 +/- 5%); and P-glycoprotein (9 +/- 5%). Rosiglitazone was transported predominantly by P-glycoprotein (71 +/- 26%). Metformin was transported by P-glycoprotein (58 +/- 20%) and breast cancer resistance protein (25 +/- 14%). CONCLUSION Multiple placental transporters contribute to efflux of glyburide, rosiglitazone, and metformin. Administration of drug combinations could lead to their competition for efflux transporters.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
76 |
6
|
Nanovskaya TN, Nekhayeva IA, Patrikeeva SL, Hankins GDV, Ahmed MS. Transfer of metformin across the dually perfused human placental lobule. Am J Obstet Gynecol 2006; 195:1081-5. [PMID: 16824464 DOI: 10.1016/j.ajog.2006.05.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/16/2006] [Accepted: 05/31/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the transfer characteristics of metformin across placentas that were obtained from uncomplicated pregnancies and from patients with gestational diabetes mellitus. STUDY DESIGN The technique of dual perfusion of placental lobule was used. Metformin, 5 microg/mL and its [14C]-isotope were co-transfused with the marker compound antipyrine, 20 microg/mL and its [3H]-isotope from the maternal to fetal circuit. The drug content in both circulations and placental tissue was determined by liquid scintillation spectrometry. RESULTS The transfer of metformin across term human placentas that were obtained from uncomplicated pregnancies was rapid and was not different from that in placentas that were obtained from patients with gestational diabetes mellitus. Metformin is distributed between the maternal and fetal circuits, with reliable amounts retained by the tissue. CONCLUSION In an ex vivo model system, metformin was transferred readily from the maternal to fetal circuit across placentas that were obtained from uncomplicated pregnancies and pregnancies with gestational diabetes mellitus.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
73 |
7
|
Nanovskaya T, Nekhayeva I, Karunaratne N, Audus K, Hankins GD, Ahmed MS. Role of P-glycoprotein in transplacental transfer of methadone. Biochem Pharmacol 2005; 69:1869-78. [PMID: 15876424 PMCID: PMC2263002 DOI: 10.1016/j.bcp.2005.03.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/09/2005] [Accepted: 03/10/2005] [Indexed: 12/30/2022]
Abstract
Methadone is the therapeutic agent of choice for treatment of the pregnant opiate addict. However, little is known on the factors affecting its concentration in the fetal circulation during pregnancy and how it might relate to neonatal outcome. Therefore, a better understanding of the function of placental metabolic enzymes and transporters should add to the knowledge of the role of the tissue in the disposition of methadone and its relation to neonatal outcome. We hypothesized that the expression and activity of the placental efflux transporter P-glycoprotein (P-gp) would affect the transfer of methadone to the fetal circulation. Data obtained utilizing dual perfusion of placental lobule and monolayers of Be-Wo cell line indicated that methadone is extruded by P-gp. Transfer of methadone to the fetal circuit was increased by 30% in the presence of the P-gp inhibitor GF120918 while the transfer of paclitaxel, a typical substrate of the glycoprotein, was increased by 50%. In the Be-Wo cell line, methadone and paclitaxel uptake was also increased in the presence of the P-gp inhibitor cyclosporin A. Moreover, the expression of P-gp in placental brush-border membranes varied between term placentas. Taken together, these data strongly suggest that the concentration of methadone in the fetal circulation is affected by the expression and activity of P-gp. It is reasonable to speculate that placental disposition of methadone affects its concentration in the fetal circulation. If true, this may also be directly related to the incidence and intensity of neonatal abstinence syndrome (NAS).
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
64 |
8
|
Kavanaugh A, Cush JJ, Ahmed MS, Bermas BL, Chakravarty E, Chambers C, Clowse M, Curtis JR, Dao K, Hankins GDV, Koren G, Kim SC, Lapteva L, Mahadevan U, Moore T, Nolan M, Ren Z, Sammaritano LR, Seymour S, Weisman MH. Proceedings From the American College of Rheumatology Reproductive Health Summit: The Management of Fertility, Pregnancy, and Lactation in Women With Autoimmune and Systemic Inflammatory Diseases. Arthritis Care Res (Hoboken) 2015; 67:313-25. [DOI: 10.1002/acr.22516] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/04/2014] [Indexed: 01/31/2023]
|
|
10 |
64 |
9
|
Ahmed MS, Jadhav AB, Hassan A, Meng QH. Acute phase reactants as novel predictors of cardiovascular disease. ISRN INFLAMMATION 2012; 2012:953461. [PMID: 24049653 PMCID: PMC3767354 DOI: 10.5402/2012/953461] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/01/2012] [Indexed: 12/21/2022]
Abstract
Acute phase reaction is a systemic response which usually follows a physiological condition that takes place in the beginning of an inflammatory process. This physiological change usually lasts 1-2 days. However, the systemic acute phase response usually lasts longer. The aim of this systemic response is to restore homeostasis. These events are accompanied by upregulation of some proteins (positive acute phase reactants) and downregulation of others (negative acute phase reactants) during inflammatory reactions. Cardiovascular diseases are accompanied by the elevation of several positive acute phase reactants such as C-reactive protein (CRP), serum amyloid A (SAA), fibrinogen, white blood cell count, secretory nonpancreatic phospholipase 2-II (sPLA2-II), ferritin, and ceruloplasmin. Cardiovascular disease is also accompanied by the reduction of negative acute phase reactants such as albumin, transferrin, transthyretin, retinol-binding protein, antithrombin, and transcortin. In this paper, we will be discussing the biological activity and diagnostic and prognostic values of acute phase reactants with cardiovascular importance. The potential therapeutic targets of these reactants will be also discussed.
Collapse
|
Review |
13 |
64 |
10
|
Nekhayeva IA, Nanovskaya TN, Deshmukh SV, Zharikova OL, Hankins GDV, Ahmed MS. Bidirectional transfer of methadone across human placenta. Biochem Pharmacol 2005; 69:187-97. [PMID: 15588727 DOI: 10.1016/j.bcp.2004.09.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 09/08/2004] [Indexed: 02/08/2023]
Abstract
Methadone maintenance programs are considered the standard of care for the pregnant opiate addict. However, data on changes in methadone pharmacokinetics (PK) during pregnancy are limited and do not include its disposition by the placenta due to obvious ethical and safety considerations. Accordingly, investigations in our laboratory are focusing on human placental disposition of opiates including methadone. Recently, we reported on methadone metabolism by placental aromatase and provide here data on its bidirectional transfer across the tissue utilizing the technique of dual perfusion of placental lobule. The concentrations of the opiate transfused into the term placental tissue were those reported for its in vivo levels in the maternal serum of women under treatment with the drug. Data obtained indicated that the opiate has no adverse effects on placental viability and functional parameters and that it is retained by the tissue. Also, methadone transfer and its clearance index in the fetal to maternal direction (0.97+/-0.05) was significantly higher (P<0.05) than in the maternal to fetal (0.83+/-0.09). The observed asymmetry in methadone transfer could be explained by the unidirectional activity of the efflux transporter P glycoprotein (P-gp) that is highly expressed in variable amounts in trophoblast tissue. Therefore, placental disposition of methadone might be an important contributor to the regulation of its concentration in the fetal circulation and consequently may affect the incidence and intensity of neonatal abstinence syndrome for women treated with the drug during pregnancy.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
60 |
11
|
Abstract
Interleukin 1 (IL1) is a macrophage-derived polypeptide which signals neurons in the preoptic-anterior hypothalamus to initiate fever and the acute-phase glycoprotein response. Recently, increases in cerebrospinal fluid and hypothalamic levels of beta-endorphin have been reported during endotoxin (LPS)- and IL1-induced fevers, suggesting that this opioid may participate in the modulation of IL1 effects in the CNS. In this study, we investigated whether purified (human) IL1 influences the specific binding of three prototypic opioid agonists (2-D-alanine-5-L-methionineamide, DAME; (-)-ethylketocyclazocine, EKC; dihydromorphine, DHM) and one antagonist (naloxone) to opioid receptor-enriched membrane preparations in cerebral cortex, hypothalamus, midbrain, pons, medulla, and cerebellum of guinea pig brain. IL1 reduced the binding of these ligands to their receptors during a 30-min incubation. The extent of IL1 inhibition of a given ligand for its binding sites varied according to the brain region; within some regions, the extent of this inhibition also varied with the four ligands tested. But in cortex the effect of IL1 on the specific binding of DHM is dose-dependent. Similar results were obtained with crude homologous IL1. S. enteritidis endotoxin, suspended in pyrogen-free saline at concentrations from 4 to 36 micrograms/ml, did not inhibit the binding of these opioid ligands to their receptors in any brain region. These results indicate that IL1 interacts with the opiate receptors in guinea pig brain. This interaction, moreover, is not limited to the hypothalamus alone, the primary site of the pyrogenic action of IL1, but also occurs in other brain regions.
Collapse
|
|
40 |
57 |
12
|
Nanovskaya TN, Nekhayeva IA, Hankins GDV, Ahmed MS. Transfer of methadone across the dually perfused preterm human placental lobule. Am J Obstet Gynecol 2008; 198:126.e1-4. [PMID: 18166326 DOI: 10.1016/j.ajog.2007.06.073] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/15/2007] [Accepted: 06/29/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The objective of the study was to determine the effect of gestational age and P-glycoprotein expression on transplacental transfer of methadone. STUDY DESIGN Dual perfusion of placental lobule was utilized. Methadone (200 ng/mL) and its [3H]-isotope were cotransfused from the maternal-to-fetal circuit with the marker compound antipyrine (20 microg/mL) and its [14C]-isotope. Concentration of the drugs in trophoblast tissue and both circuits was determined by liquid scintillation spectrometry. RESULTS Fetal transfer rate of methadone in preterm placentas was 19 +/- 5.8%, and in term placentas it was 31 +/- 9.7% (P < .01). Clearance index of methadone in preterm placentas (0.57 +/- 0.2) was lower than in term placentas (0.95 +/- 0.3, P < .01). P-glycoprotein expression was higher in preterm than term placentas. CONCLUSION The ex vivo transfer of methadone across preterm placentas is 30% lower than in term placentas.
Collapse
|
Comparative Study |
17 |
57 |
13
|
Zharikova OL, Fokina VM, Nanovskaya TN, Hill RA, Mattison DR, Hankins GDV, Ahmed MS. Identification of the major human hepatic and placental enzymes responsible for the biotransformation of glyburide. Biochem Pharmacol 2009; 78:1483-90. [PMID: 19679108 DOI: 10.1016/j.bcp.2009.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 02/01/2023]
Abstract
One of the factors affecting the pharmacokinetics (PK) of a drug during pregnancy is the activity of hepatic and placental metabolizing enzymes. Recently, we reported on the biotransformation of glyburide by human hepatic and placental microsomes to six metabolites that are structurally identical between the two tissues. Two of the metabolites, 4-trans-(M1) and 3-cis-hydroxycyclohexyl glyburide (M2b), were previously identified in plasma and urine of patients treated with glyburide and are pharmacologically active. The aim of this investigation was to identify the major human hepatic and placental CYP450 isozymes responsible for the formation of each metabolite of glyburide. This was achieved by the use of chemical inhibitors selective for individual CYP isozymes and antibodies raised against them. The identification was confirmed by the kinetic constants for the biotransformation of glyburide by cDNA-expressed enzymes. The data revealed that the major hepatic isozymes responsible for the formation of each metabolite are as follows: CYP3A4 (ethylene-hydroxylated glyburide (M5), 3-trans-(M3) and 2-trans-(M4) cyclohexyl glyburide); CYP2C9 (M1, M2a (4-cis-) and M2b); CYP2C8 (M1 and M2b); and CYP2C19 (M2a). Human placental microsomal CYP19/aromatase was the major isozyme responsible for the biotransformation of glyburide to predominantly M5. The formation of significant amounts of M5 by CYP19 in the placenta could render this metabolite more accessible to the fetal circulation. The multiplicity of enzymes biotransforming glyburide and the metabolites formed underscores the potential for its drug interactions in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
56 |
14
|
Costantine MM, West H, Wisner KL, Caritis S, Clark S, Venkataramanan R, Stika CS, Rytting E, Wang X, Ahmed MS. A randomized pilot clinical trial of pravastatin versus placebo in pregnant patients at high risk of preeclampsia. Am J Obstet Gynecol 2021; 225:666.e1-666.e15. [PMID: 34033812 DOI: 10.1016/j.ajog.2021.05.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Preeclampsia remains a major cause of maternal and neonatal morbidity and mortality. Biologic plausibility, compelling preliminary data, and a pilot clinical trial support the safety and utility of pravastatin for the prevention of preeclampsia. OBJECTIVE We previously reported the results of a phase I clinical trial using a low dose (10 mg) of pravastatin in high-risk pregnant women. Here, we report a follow-up, randomized trial of 20 mg pravastatin versus placebo among pregnant women with previous preeclampsia who required delivery before 34+6 weeks' gestation with the objective of evaluating the safety and pharmacokinetic parameters of pravastatin. STUDY DESIGN This was a pilot, multicenter, blinded, placebo-controlled, randomized trial of women with singleton, nonanomalous pregnancies at high risk for preeclampsia. Women between 12+0 and 16+6 weeks of gestation were assigned to receive a daily pravastatin dose of 20 mg or placebo orally until delivery. In addition, steady-state pravastatin pharmacokinetic studies were conducted in the second and third trimesters of pregnancy and at 4 to 6 months postpartum. Primary outcomes included maternal-fetal safety and pharmacokinetic parameters of pravastatin during pregnancy. Secondary outcomes included maternal and umbilical cord blood chemistries and maternal and neonatal outcomes, including rates of preeclampsia and preterm delivery, gestational age at delivery, and birthweight. RESULTS Of note, 10 women assigned to receive pravastatin and 10 assigned to receive the placebo completed the trial. No significant differences were observed between the 2 groups in the rates of adverse or serious adverse events, congenital anomalies, or maternal and umbilical cord blood chemistries. Headache followed by heartburn and musculoskeletal pain were the most common side effects. We report the pravastatin pharmacokinetic parameters including pravastatin area under the curve (total drug exposure over a dosing interval), apparent oral clearance, half-life, and others during pregnancy and compare it with those values measured during the postpartum period. In the majority of the umbilical cord and maternal samples at the time of delivery, pravastatin concentrations were below the limit of quantification of the assay. The pregnancy and neonatal outcomes were more favorable in the pravastatin group. All newborns passed their brainstem auditory evoked response potential or similar hearing screening tests. The average maximum concentration and area under the curve values were more than 2-fold higher following a daily 20 mg dose compared with a 10 mg daily pravastatin dose, but the apparent oral clearance, half-life, and time to reach maximum concentration were similar, which is consistent with the previously reported linear, dose-independent pharmacokinetics of pravastatin in nonpregnant subjects. CONCLUSION This study confirmed the overall safety and favorable pregnancy outcomes for pravastatin in women at high risk for preeclampsia. This favorable risk-benefit analysis justifies a larger clinical trial to evaluate the efficacy of pravastatin for the prevention of preeclampsia. Until then, pravastatin use during pregnancy remains investigational.
Collapse
|
Multicenter Study |
4 |
53 |
15
|
Ahmed MS, El Tanbouly ND, Islam WT, Sleem AA, El Senousy AS. Antiinflammatory flavonoids fromOpuntia dillenii (Ker-Gawl) Haw. flowers growing in Egypt. Phytother Res 2005; 19:807-9. [PMID: 16220577 DOI: 10.1002/ptr.1708] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Opuntia dillenii (Ker-Gawl) Haw. (Family Cactaceae), is used in folk medicine as an antidiabetic and antiinflammatory. The antiinflammatory activity of the alcohol extracts of the flowers, fruits and stems was carried out using the carrageenan-induced rat paw oedema model. The analgesic effect of the same extracts was evaluated using electric current as a noxious stimulus. The alcohol extract of the flowers revealed the most potent antiinflammatory effect and a pronounced analgesic action at a dose of 200 mg/kg. Bioassay-guided fractionation of this extract using VLC followed by Sephadex and paper chromatography, afforded three flavonoid glycosides, namely, kaempferol 3-O-alpha-arabinoside, isorhamnetin-3-O-glucoside and isorhamnetin-3-O-rutinoside. Their identification was based on physical, chemical and spectroscopic data.
Collapse
|
|
20 |
50 |
16
|
Nanovskaya TN, Nekhayeva I, Hankins GDV, Ahmed MS. Effect of human serum albumin on transplacental transfer of glyburide. Biochem Pharmacol 2006; 72:632-9. [PMID: 16828060 DOI: 10.1016/j.bcp.2006.05.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/24/2006] [Accepted: 05/24/2006] [Indexed: 11/26/2022]
Abstract
Glyburide is a second-generation sulfonylurea hypoglycemic drug used for the treatment of select women with pregestational and gestational diabetes mellitus (GDM). In vitro and in vivo investigations demonstrated its very low transplacental transfer to the fetal circulation. However, the factors influencing its low transfer across the human placenta remain unclear. Therefore, the goal of the current investigation was to determine the effect of human serum albumin (HSA) on the transfer and distribution of glyburide across the human placenta. To achieve this goal, the technique of dual perfusion of the placental lobule was utilized. The effect of HSA on the transfer of glyburide was determined at the range of glyburide to HSA molar ratios of 1:2-1:100. The transfer rate of free/unbound glyburide to the fetal circuit was 73+/-10% of the freely diffusible marker compound antipyrine (AP). Data obtained indicates the dependence of glyburide transfer and its retention by the placental tissue on the concentration of HSA.
Collapse
|
|
19 |
45 |
17
|
Nanovskaya TN, Deshmukh SV, Nekhayeva IA, Zharikova OL, Hankins GDV, Ahmed MS. Methadone metabolism by human placenta. Biochem Pharmacol 2004; 68:583-91. [PMID: 15242824 DOI: 10.1016/j.bcp.2004.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 04/16/2004] [Indexed: 11/25/2022]
Abstract
Methadone pharmacotherapy is considered the standard for treatment of the pregnant heroin/opioid addict. One of the factors affecting the transfer kinetics of opioids across human placenta and their levels in the fetal circulation is their metabolism by the tissue. The aim of this investigation is to identify the enzyme(s) responsible for the metabolism of methadone, determine the kinetics of the reaction and the metabolites formed utilizing placental tissue obtained from term healthy pregnancies. Microsomal fractions of trophoblast tissue homogenates had the highest activity in catalyzing the metabolism of methadone. The product formed was identified by HPLC-UV as 2-ethylidine-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). Inhibitors selective for cytochrome P450 (CYP) isozymes were used to identify the enzyme catalyzing the biotransformation of methadone. Aminoglutethimide and 4-hydroxyandrostenedione inhibited EDDP formation by 88 and 70%, respectively, suggesting that CYP19/aromatase is the enzyme catalyzing the reaction. This was confirmed by the effect of monoclonal antibodies raised against CYP19 that caused an 80% inhibition of the reaction. The apparent K(m) and V(max) values for the CYP19 catalyzed metabolism of methadone to EDDP were 424 +/- 92 microM and 420 +/- 89 pmol(mgprotein)(-1)min(-1), respectively. Kinetic analysis of a cDNA-expressed CYP19 for the metabolism of methadone to EDDP was identical to that by placental microsomes. Taken together, these data indicate that CYP19/aromatase is the major enzyme responsible for the metabolism of methadone to EDDP in term human placentas obtained from healthy pregnancies.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
45 |
18
|
Abstract
The difference spectrum of the quercetin--DNA complex versus quercetin alone was characterized by a peak at 395 nm. An increase in the magnitude of difference spectrum was seen with increased ionic strength. Spectrophotometric changes in absorbance and fluorescence of quercetin showed that ethidium bromide is able to displace quercetin from the quercetin--DNA complex. These results indicate that the binding of quercetin to DNA does not involve electrostatic interactions but may be intercalative in nature. Experiments using DNase I footprinting technique showed that the flavonoid does not possess any preferred sites of binding in DNA. Strand scission in DNA by the quercetin--Cu(II) system gave a generally uniform cutting pattern of internucleotide bonds. This led to the observation that the quercetin--Cu(II) cleavage reaction has the potential of being used as preferred DNA footprinting reagent.
Collapse
|
|
31 |
42 |
19
|
Hemauer SJ, Patrikeeva SL, Nanovskaya TN, Hankins GDV, Ahmed MS. Opiates inhibit paclitaxel uptake by P-glycoprotein in preparations of human placental inside-out vesicles. Biochem Pharmacol 2009; 78:1272-8. [PMID: 19591810 DOI: 10.1016/j.bcp.2009.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 11/29/2022]
Abstract
The use of either methadone or buprenorphine for treatment of the pregnant opiate-dependent patient improves maternal and neonatal outcome. However, patient outcomes are often complicated by neonatal abstinence syndrome (NAS). The incidence and severity of NAS should depend on opiate concentration in the fetal circulation. Efflux transporters expressed in human placental brush border membranes decrease fetal exposure to medications by their extrusion to the maternal circulation. Accordingly, the concentration of either methadone or buprenorphine in the fetal circulation is, in part, dependent on the activity of the efflux transporters. The objective of this study was to characterize the activity of P-gp and its interaction with opiates in the placental apical membrane. Therefore, brush border membrane vesicles were prepared from human placenta. The vesicles were oriented approximately 75% inside-out, exhibited saturable ATP-dependent uptake of P-gp substrate [(3)H]-paclitaxel with an apparent K(t) of 66+/-38 nM and V(max) of 20+/-3 pmol mg protein (-1)min(-1). Methadone, buprenorphine, and morphine inhibited paclitaxel transport with apparent K(i) of 18, 44, and 90 microM, respectively. Our data indicate that a method has been established to determine the activity of the efflux transporter P-gp, expressed in placental brush border membranes, and the kinetics for the transfer of its prototypic substrate paclitaxel. Furthermore, the method was used to determine the effects of methadone, buprenorphine, and morphine on paclitaxel transfer by placental P-gp and revealed that they have higher affinity to the transporter than its classical inhibitor verapamil (K(i), 300 microM).
Collapse
|
Research Support, N.I.H., Extramural |
16 |
40 |
20
|
Deshmukh SV, Nanovskaya TN, Ahmed MS. Aromatase is the major enzyme metabolizing buprenorphine in human placenta. J Pharmacol Exp Ther 2003; 306:1099-105. [PMID: 12808001 DOI: 10.1124/jpet.103.053199] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Buprenorphine (BUP) is a partial opiate agonist used for treatment of the adult and the pregnant addicted to this class of narcotics. The kinetic parameters for transplacental transfer and the metabolism of BUP during its perfusion in a placental lobule were the subject of an earlier report from our laboratory. The aim of this investigation is to identify and characterize the enzyme catalyzing the metabolism of BUP in term human placenta. Norbuprenorphine (norBUP) is the only metabolite formed as determined by high performance liquid chromatography and mass spectrometry. The activity of the enzyme responsible for BUP metabolism is highest in the microsomal fraction and lowest in the cytosolic, with the mitochondrial in between. Compounds with selective affinity to the enzyme aromatase (CYP 19), namely 4-hydroxyandrostenedione and aminoglutethimide, caused >70% inhibition of norBUP formation. Monoclonal antibodies raised against CYP 19 were the most potent inhibitors of BUP dealkylation. A comparison between the data obtained from the saturation isotherm for BUP dealkylation by placental microsomes and a commercially available system of cDNA-expressed CYP 19 indicated similar kinetic parameters, with apparent Km values of 12 +/- 4.0 and 14 +/- 8.0 microM, respectively. Therefore, aromatase is the major enzyme catalyzing the biotransformation of BUP to norBUP in term human placentas obtained from healthy pregnancies. The minor involvement of other cytochrome P450 isoforms or enzyme(s) in the metabolism of BUP in placental tissue cannot be ruled out.
Collapse
|
|
22 |
39 |
21
|
Lund J, Hafstad AD, Boardman NT, Rossvoll L, Rolim NP, Ahmed MS, Florholmen G, Attramadal H, Wisløff U, Larsen TS, Aasum E. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice. Am J Physiol Heart Circ Physiol 2015; 308:H823-9. [PMID: 25637547 DOI: 10.1152/ajpheart.00734.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/28/2015] [Indexed: 11/22/2022]
Abstract
Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
37 |
22
|
Waller DP, Bunyapraphatsara N, Martin A, Vournazos CJ, Ahmed MS, Soejarto DD, Cordell GA, Fong HH, Russell LD, Malone JP. Effect of (+)-gossypol on fertility in male hamsters. JOURNAL OF ANDROLOGY 1983; 4:276-9. [PMID: 6618998 DOI: 10.1002/j.1939-4640.1983.tb02367.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
(+)-Gossypol was isolated from the bark of Thespesia populnea and tested for its ability to inhibit the fertility of male hamsters. Male hamsters of proven fertility were treated orally for 54 days with 40 mg/kg of (+)-gossypol, 40 mg/kg of racemic gossypol, or 5% gum acacia (vehicle control) and were mated with estrous female hamsters during the fourth and seventh weeks of treatment. Both the control and the (+)-gossypol-treated animals exhibited normal fertility throughout the experiment. The racemic gossypol-treated animals were infertile when evaluated during both the fourth and seventh weeks of treatment. Morphologic examination of the testicular tissue could not explain the loss of fertility. These data demonstrate the inability of (+)gossypol to decrease male fertility and suggest that the activity of racemic gossypol may be due primarily to the presence of the (-) optical isomer.
Collapse
|
|
42 |
37 |
23
|
Nekhayeva IA, Nanovskaya TN, Hankins GDV, Ahmed MS. Role of human placental efflux transporter P-glycoprotein in the transfer of buprenorphine, levo-alpha-acetylmethadol, and paclitaxel. Am J Perinatol 2006; 23:423-30. [PMID: 17001553 DOI: 10.1055/s-2006-951301] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study examines the role of placental P-glycoprotein (P-gp) in the transfer of buprenorphine (BUP) and L-alpha-acetylmethadol (LAAM) across the dually perfused human placental lobule. BUP (10 ng/mL) and LAAM (35 ng/mL) were perfused in the maternal-to-fetal direction. The following kinetic parameters were determined: fetal transfer rate (TR (f)), maternal clearance (Cl (m)), and clearance index (Cl (index)). The opiates were perfused in the presence of P-gp inhibitor GF120918 (experimental group) and in its absence (control group). The kinetic parameters for the control group were set at 100% and were as follows for LAAM in the experimental group: TR (f), 123 +/- 20%, Cl (m) 116 +/- 23%, and Cl (index) 123 +/- 22% ( P < 0.05). The corresponding parameters for BUP were not different from controls. The data indicate that LAAM, but not BUP, is extruded by the efflux transporter P-gp. Therefore, it is reasonable to assume that the activity of P-gp could be one of the factors affecting the extent of fetal exposure to LAAM during pregnancy.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
34 |
24
|
Afrouzian M, Al-Lahham R, Patrikeeva S, Xu M, Fokina V, Fischer WG, Abdel-Rahman SZ, Costantine M, Ahmed MS, Nanovskaya T. Role of the efflux transporters BCRP and MRP1 in human placental bio-disposition of pravastatin. Biochem Pharmacol 2018; 156:467-478. [PMID: 30217571 DOI: 10.1016/j.bcp.2018.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
The expression and activity of human placental transporters during pregnancy could be altered by several factors including pathological changes associated with preeclampsia. The aims of this study were to identify the placental efflux transporters involved in the bio-disposition of pravastatin, determine the protein expression of these transporters and their encoding genes as well as the activity of pravastatin uptake in placentas obtained from patients with preeclampsia. ATP-dependent uptake of [3H]-pravastatin by trophoblast tissue apical and basal membrane vesicles exhibited sigmoidal kinetics. The curved shapes of Eadie-Hofstee plots indicate that more than one placental transporter are involved in the uptake of pravastatin. ATP-dependent uptake of [3H]-pravastatin into vesicles expressing MRP1-5, BCRP, and P-gp, as well as the results of inhibition studies suggest that BCRP and MRP1 are the major placental efflux transporters responsible for the in vitro uptake of pravastatin. Compared to placentas from healthy pregnancies, preeclamptic placentas had increased number of syncytial knots with increased expression of BCRP in their apical membrane and increased expression of MRP1 in the cytoplasm of the syncytiotrophoblast and in cytoplasm of syncytial knots. There was a concomitant increase in ABCC1 but not in ABCG2 gene expressions in preeclamptic placentas. ATP-dependent uptake of [3H]-pravastatin by vesicles prepared from apical membranes of preeclamptic placentas was similar to the uptake by vesicles prepared from placentas obtained after uncomplicated pregnancies (13.9 ± 6.5 vs 14.1 ± 5.8 pmol·mg protein-1 min-1). The transporter-specific changes in the expression of BCRP and MRP1 in preeclamptic placentas did not affect the efflux activity of transporters localized on the apical membrane of the syncytiotrophoblast.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
34 |
25
|
Zu JS, Deng HX, Lo TP, Mitsumoto H, Ahmed MS, Hung WY, Cai ZJ, Tainer JA, Siddique T. Exon 5 encoded domain is not required for the toxic function of mutant SOD1 but essential for the dismutase activity: identification and characterization of two new SOD1 mutations associated with familial amyotrophic lateral sclerosis. Neurogenetics 1997; 1:65-71. [PMID: 10735277 DOI: 10.1007/s100480050010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Two new mutations in the gene encoding cytoplasmic Cu,Zn superoxide dismutase (SOD1) have been discovered in patients with familial amyotrophic lateral sclerosis (FALS). These mutations result in the truncation of most of the polypeptide segment encoded by exon 5, one by the formation of a stop codon in codon 126 (L126Z) and the other by inducing alternative splicing in the mRNA (splicing junction mutation). These two mutants of SOD1 result in a FALS phenotype similar to that observed in patients with missense mutations in the SOD1 gene, establishing that exon 5 is not required for the novel toxic functions of mutant SOD1 associated with ALS. These mutant enzymes are present at very low levels in FALS patients, suggesting elevated toxicity compared to mutant enzymes with single site substitutions. This increased toxicity likely arises from the extreme structural and functional changes in the active site channel, beta-barrel fold, and dimer interface observed in the mutant enzymes, including the loss of native dismutase activity. In particular, the truncation of the polypeptide chain dramatically opens the active site channel, resulting in a marked increase in the accessibility and flexibility of the metal ions and side chain ligands of the enzyme active site. These structural changes are proposed to cause a decrease in substrate specificity and an increase in the catalysis of harmful chemical reactions such as peroxidation.
Collapse
|
Case Reports |
28 |
34 |