1
|
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2012; 47:9-23. [PMID: 23011809 DOI: 10.1007/s12035-012-8344-z] [Citation(s) in RCA: 499] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a "burst" of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.
Collapse
|
Review |
13 |
499 |
2
|
Hüttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 2011; 11:369-81. [PMID: 21296189 PMCID: PMC3075374 DOI: 10.1016/j.mito.2011.01.010] [Citation(s) in RCA: 402] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 02/06/2023]
Abstract
Cytochrome c (Cytc) is essential in mitochondrial electron transport and intrinsic type II apoptosis. Mammalian Cytc also scavenges reactive oxygen species (ROS) under healthy conditions, produces ROS with the co-factor p66(Shc), and oxidizes cardiolipin during apoptosis. The recent finding that Cytc is phosphorylated in vivo underpins a model for the pivotal role of Cytc regulation in making life and death decisions. An apoptotic sequence of events is proposed involving changes in Cytc phosphorylation, increased ROS via increased mitochondrial membrane potentials or the p66(Shc) pathway, and oxidation of cardiolipin by Cytc followed by its release from the mitochondria. Cytc regulation in respiration and cell death is discussed in a human disease context including neurodegenerative and cardiovascular diseases, cancer, and sepsis.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
402 |
3
|
Zheng Z, Xu X, Zhang X, Wang A, Zhang C, Hüttemann M, Grossman LI, Chen LC, Rajagopalan S, Sun Q, Zhang K. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. J Hepatol 2013; 58:148-54. [PMID: 22902548 PMCID: PMC3527686 DOI: 10.1016/j.jhep.2012.08.009] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Air pollution is a global challenge to public health. Epidemiological studies have linked exposure to ambient particulate matter with aerodynamic diameters<2.5 μm (PM(2.5)) to the development of metabolic diseases. In this study, we investigated the effect of PM(2.5) exposure on liver pathogenesis and the mechanism by which ambient PM(2.5) modulates hepatic pathways and glucose homeostasis. METHODS Using "Ohio's Air Pollution Exposure System for the Interrogation of Systemic Effects (OASIS)-1", we performed whole-body exposure of mice to concentrated ambient PM(2.5) for 3 or 10 weeks. Histological analyses, metabolic studies, as well as gene expression and molecular signal transduction analyses were performed to determine the effects and mechanisms by which PM(2.5) exposure promotes liver pathogenesis. RESULTS Mice exposed to PM(2.5) for 10 weeks developed a non-alcoholic steatohepatitis (NASH)-like phenotype, characterized by hepatic steatosis, inflammation, and fibrosis. After PM(2.5) exposure, mice displayed impaired hepatic glycogen storage, glucose intolerance, and insulin resistance. Further investigation revealed that exposure to PM(2.5) led to activation of inflammatory response pathways mediated through c-Jun N-terminal kinase (JNK), nuclear factor kappa B (NF-κB), and Toll-like receptor 4 (TLR4), but suppression of the insulin receptor substrate 1 (IRS1)-mediated signaling. Moreover, PM(2.5) exposure repressed expression of the peroxisome proliferator-activated receptor (PPAR)γ and PPARα in the liver. CONCLUSIONS Our study suggests that PM(2.5) exposure represents a significant "hit" that triggers a NASH-like phenotype and impairs hepatic glucose metabolism. The information from this work has important implications in our understanding of air pollution-associated metabolic disorders.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
236 |
4
|
Hüttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, Vogt S, Grossman LI, Doan JW, Marcus K, Lee I. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:598-609. [PMID: 21771582 PMCID: PMC3229836 DOI: 10.1016/j.bbabio.2011.07.001] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/09/2023]
Abstract
Cytochrome c (Cytc) and cytochrome c oxidase (COX) catalyze the terminal reaction of the mitochondrial electron transport chain (ETC), the reduction of oxygen to water. This irreversible step is highly regulated, as indicated by the presence of tissue-specific and developmentally expressed isoforms, allosteric regulation, and reversible phosphorylations, which are found in both Cytc and COX. The crucial role of the ETC in health and disease is obvious since it, together with ATP synthase, provides the vast majority of cellular energy, which drives all cellular processes. However, under conditions of stress, the ETC generates reactive oxygen species (ROS), which cause cell damage and trigger death processes. We here discuss current knowledge of the regulation of Cytc and COX with a focus on cell signaling pathways, including cAMP/protein kinase A and tyrosine kinase signaling. Based on the crystal structures we highlight all identified phosphorylation sites on Cytc and COX, and we present a new phosphorylation site, Ser126 on COX subunit II. We conclude with a model that links cell signaling with the phosphorylation state of Cytc and COX. This in turn regulates their enzymatic activities, the mitochondrial membrane potential, and the production of ATP and ROS. Our model is discussed through two distinct human pathologies, acute inflammation as seen in sepsis, where phosphorylation leads to strong COX inhibition followed by energy depletion, and ischemia/reperfusion injury, where hyperactive ETC complexes generate pathologically high mitochondrial membrane potentials, leading to excessive ROS production. Although operating at opposite poles of the ETC activity spectrum, both conditions can lead to cell death through energy deprivation or ROS-triggered apoptosis.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
211 |
5
|
Kadenbach B, Hüttemann M, Arnold S, Lee I, Bender E. Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Free Radic Biol Med 2000; 29:211-21. [PMID: 11035249 DOI: 10.1016/s0891-5849(00)00305-1] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new mechanism on regulation of mitochondrial energy metabolism is proposed on the basis of reversible control of respiration by the intramitochondrial ATP/ADP ratio and slip of proton pumping (decreased H+/e- stoichiometry) in cytochrome c oxidase (COX) at high proton motive force delta p. cAMP-dependent phosphorylation of COX switches on and Ca2+-dependent dephosphorylation switches off the allosteric ATP-inhibition of COX (nucleotides bind to subunit IV). Control of respiration via phosphorylated COX by the ATP/ADP ratio keeps delta p (mainly delta psi(m)) low. Hormone induced Ca2+-dependent dephosphorylation results in loss of ATP-inhibition, increase of respiration and delta p with consequent slip in proton pumping. Slip in COX increases the free energy of reaction, resulting in increased rates of respiration, thermogenesis and ATP-synthesis. Increased delta psi(m) stimulates production of reactive oxygen species (ROS), mutations of mitochondrial DNA and accelerates aging. Slip of proton pumping without dephosphorylation and increase of delta p is found permanently in the liver-type isozyme of COX (subunit VIaL) and at high intramitochondrial ATP/ADP ratios in the heart-type isozyme (subunit VIaH). High substrate pressure (sigmoidal v/s kinetics), palmitate and 3,5-diiodothyronine (binding to subunit Va) increase also delta p, ROS production and slip but without dephosphorylation of COX.
Collapse
|
Review |
25 |
203 |
6
|
Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr 2008; 40:445-56. [PMID: 18843528 DOI: 10.1007/s10863-008-9169-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 07/01/2008] [Indexed: 01/09/2023]
Abstract
Thirty years after Peter Mitchell was awarded the Nobel Prize for the chemiosmotic hypothesis, which links the mitochondrial membrane potential generated by the proton pumps of the electron transport chain to ATP production by ATP synthase, the molecular players involved once again attract attention. This is so because medical research increasingly recognizes mitochondrial dysfunction as a major factor in the pathology of numerous human diseases, including diabetes, cancer, neurodegenerative diseases, and ischemia reperfusion injury. We propose a model linking mitochondrial oxidative phosphorylation (OxPhos) to human disease, through a lack of energy, excessive free radical production, or a combination of both. We discuss the regulation of OxPhos by cell signaling pathways as a main regulatory mechanism in higher organisms, which in turn determines the magnitude of the mitochondrial membrane potential: if too low, ATP production cannot meet demand, and if too high, free radicals are produced. This model is presented in light of the recently emerging understanding of mechanisms that regulate mammalian cytochrome c oxidase and its substrate cytochrome c as representative enzymes for the entire OxPhos system.
Collapse
|
Review |
17 |
190 |
7
|
Kadenbach B, Arnold S, Lee I, Hüttemann M. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:400-8. [PMID: 15100056 DOI: 10.1016/j.bbabio.2003.06.005] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Accepted: 06/25/2003] [Indexed: 10/26/2022]
Abstract
Apoptotic cell death can occur by two different pathways. Type 1 is initiated by the activation of death receptors (Fas, TNF-receptor-family) on the plasma membrane followed by activation of caspase 8. Type 2 involves changes in mitochondrial integrity initiated by various effectors like Ca(2+), reactive oxygen species (ROS), Bax, or ceramide, leading to the release of cytochrome c and activation of caspase 9. The release of cytochrome c is followed by a decrease of the mitochondrial membrane potential DeltaPsi(m). Recent publications have demonstrated, however, that induction of apoptosis by various effectors involves primarily a transient increase of DeltaPsi(m) for unknown reason. Here we propose a new mechanism for the increased DeltaPsi(m) based on experiments on the allosteric ATP-inhibition of cytochrome c oxidase at high matrix ATP/ADP ratios, which was concluded to maintain low levels of DeltaPsi(m) in vivo under relaxed conditions. This regulatory mechanism is based on the potential-dependency of the ATP synthase, which has maximal activity at DeltaPsi(m)=100-120 mV. The mechanism is turned off either through calcium-activated dephosphorylation of cytochrome c oxidase or by 3,5-diiodo-L-thyronine, palmitate, and probably other so far unknown effectors. Consequently, energy metabolism changes to an excited state. We propose that this change causes an increase in DeltaPsi(m), a condition for the formation of ROS and induction of apoptosis.
Collapse
|
Review |
21 |
178 |
8
|
Kadenbach B, Hüttemann M. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion 2015; 24:64-76. [PMID: 26190566 DOI: 10.1016/j.mito.2015.07.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022]
Abstract
Cytochrome c oxidase (COX) from mammals and birds is composed of 13 subunits. The three catalytic subunits I-III are encoded by mitochondrial DNA, the ten nuclear-coded subunits (IV, Va, Vb, VIa, VIb, VIc, VIIa, VIIb, VIIc, VIII) by nuclear DNA. The nuclear-coded subunits are essentially involved in the regulation of oxygen consumption and proton translocation by COX, since their removal or modification changes the activity and their mutation causes mitochondrial diseases. Respiration, the basis for ATP synthesis in mitochondria, is differently regulated in organs and species by expression of tissue-, developmental-, and species-specific isoforms for COX subunits IV, VIa, VIb, VIIa, VIIb, and VIII, but the holoenzyme in mammals is always composed of 13 subunits. Various proteins and enzymes were shown, e.g., by co-immunoprecipitation, to bind to specific COX subunits and modify its activity, but these interactions are reversible, in contrast to the tightly bound 13 subunits. In addition, the formation of supercomplexes with other oxidative phosphorylation complexes has been shown to be largely variable. The regulatory complexity of COX is increased by protein phosphorylation. Up to now 18 phosphorylation sites have been identified under in vivo conditions in mammals. However, only for a few phosphorylation sites and four nuclear-coded subunits could a specific function be identified. Research on the signaling pathways leading to specific COX phosphorylations remains a great challenge for understanding the regulation of respiration and ATP synthesis in mammalian organisms. This article reviews the function of the individual COX subunits and their isoforms, as well as proteins and small molecules interacting and regulating the enzyme.
Collapse
|
Review |
10 |
173 |
9
|
Romero R, Erez O, Hüttemann M, Maymon E, Panaitescu B, Conde-Agudelo A, Pacora P, Yoon BH, Grossman LI. Metformin, the aspirin of the 21st century: its role in gestational diabetes mellitus, prevention of preeclampsia and cancer, and the promotion of longevity. Am J Obstet Gynecol 2017; 217:282-302. [PMID: 28619690 DOI: 10.1016/j.ajog.2017.06.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
Metformin is everywhere. Originally introduced in clinical practice as an antidiabetic agent, its role as a therapeutic agent is expanding to include treatment of prediabetes mellitus, gestational diabetes mellitus, and polycystic ovarian disease; more recently, experimental studies and observations in randomized clinical trials suggest that metformin could have a place in the treatment or prevention of preeclampsia. This article provides a brief overview of the history of metformin in the treatment of diabetes mellitus and reviews the results of metaanalyses of metformin in gestational diabetes mellitus as well as the treatment of obese, non-diabetic, pregnant women to prevent macrosomia. We highlight the results of a randomized clinical trial in which metformin administration in early pregnancy did not reduce the frequency of large-for-gestational-age infants (the primary endpoint) but did decrease the frequency of preeclampsia (a secondary endpoint). The mechanisms by which metformin may prevent preeclampsia include a reduction in the production of antiangiogenic factors (soluble vascular endothelial growth factor receptor-1 and soluble endoglin) and the improvement of endothelial dysfunction, probably through an effect on the mitochondria. Another potential mechanism whereby metformin may play a role in the prevention of preeclampsia is its ability to modify cellular homeostasis and energy disposition, mediated by rapamycin, a mechanistic target. Metformin has a molecular weight of 129 Daltons and therefore readily crosses the placenta. There is considerable evidence to suggest that this agent is safe during pregnancy. New literature on the role of metformin as a chemotherapeutic adjuvant in the prevention of cancer and in prolonging life and protecting against aging is reviewed briefly. Herein, we discuss the mechanisms of action and potential benefits of metformin.
Collapse
|
Review |
8 |
171 |
10
|
Lee I, Salomon AR, Ficarro S, Mathes I, Lottspeich F, Grossman LI, Hüttemann M. cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem 2004; 280:6094-100. [PMID: 15557277 DOI: 10.1074/jbc.m411335200] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling pathways targeting mitochondria are poorly understood. We here examine phosphorylation by the cAMP-dependent pathway of subunits of cytochrome c oxidase (COX), the terminal enzyme of the electron transport chain. Using anti-phospho antibodies, we show that cow liver COX subunit I is tyrosinephosphorylated in the presence of theophylline, a phosphodiesterase inhibitor that creates high cAMP levels, but not in its absence. The site of phosphorylation, identified by mass spectrometry, is tyrosine 304 of COX catalytic subunit I. Subunit I phosphorylation leads to a decrease of V(max) and an increase of K(m) for cytochrome c and shifts the reaction kinetics from hyperbolic to sigmoidal such that COX is fully or strongly inhibited up to 10 mum cytochrome c substrate concentrations, even in the presence of allosteric activator ADP. To assess our findings with the isolated enzyme in a physiological context, we tested the starvation signal glucagon on human HepG2 cells and cow liver tissue. Glucagon leads to COX inactivation, an effect also observed after incubation with adenylyl cyclase activator forskolin. Thus, the glucagon receptor/G-protein/cAMP pathway regulates COX activity. At therapeutic concentrations used for asthma relief, theophylline causes lung COX inhibition and decreases cellular ATP levels, suggesting a mechanism for its clinical action.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
168 |
11
|
Abstract
Life of higher organisms is essentially dependent on the efficient synthesis of ATP by oxidative phosphorylation in mitochondria. An important and as yet unsolved question of energy metabolism is how are the variable rates of ATP synthesis at maximal work load during exercise or mental work and at rest or during sleep regulated. This article reviews our present knowledge on the structure of bacterial and eukaryotic cytochrome c oxidases and correlates it with recent results on the regulatory functions of nuclear-coded subunits of the eukaryotic enzyme, which are absent from the bacterial enzyme. A new molecular hypothesis on the physiological regulation of oxidative phosphorylation is proposed, assuming a hormonally controlled dynamic equilibrium in vivo between two states of energy metabolism, a relaxed state with low ROS (reactive oxygen species) formation, and an excited state with elevated formation of ROS, which are known to accelerate aging and to cause degenerative diseases and cancer. The hypothesis is based on the allosteric ATP inhibition of cytochrome c oxidase at high intramitochondrial ATP/ADP ratios ("second mechanism of respiratory control"), which is switched on by cAMP-dependent phosphorylation and switched off by calcium-induced dephosphorylation of the enzyme.
Collapse
|
Review |
24 |
167 |
12
|
Kalpage HA, Bazylianska V, Recanati MA, Fite A, Liu J, Wan J, Mantena N, Malek MH, Podgorski I, Heath EI, Vaishnav A, Edwards BF, Grossman LI, Sanderson TH, Lee I, Hüttemann M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J 2019; 33:1540-1553. [PMID: 30222078 PMCID: PMC6338631 DOI: 10.1096/fj.201801417r] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/14/2018] [Indexed: 02/02/2023]
Abstract
Cytochrome c (Cyt c) plays a vital role in the mitochondrial electron transport chain (ETC). In addition, it is a key regulator of apoptosis. Cyt c has multiple other functions including ROS production and scavenging, cardiolipin peroxidation, and mitochondrial protein import. Cyt c is tightly regulated by allosteric mechanisms, tissue-specific isoforms, and post-translational modifications (PTMs). Distinct residues of Cyt c are modified by PTMs, primarily phosphorylations, in a highly tissue-specific manner. These modifications downregulate mitochondrial ETC flux and adjust the mitochondrial membrane potential (ΔΨm), to minimize reactive oxygen species (ROS) production under normal conditions. In pathologic and acute stress conditions, such as ischemia-reperfusion, phosphorylations are lost, leading to maximum ETC flux, ΔΨm hyperpolarization, excessive ROS generation, and the release of Cyt c. It is also the dephosphorylated form of the protein that leads to maximum caspase activation. We discuss the complex regulation of Cyt c and propose that it is a central regulatory step of the mammalian ETC that can be rate limiting in normal conditions. This regulation is important because it maintains optimal intermediate ΔΨm, limiting ROS generation. We examine the role of Cyt c PTMs, including phosphorylation, acetylation, methylation, nitration, nitrosylation, and sulfoxidation and consider their potential biological significance by evaluating their stoichiometry.-Kalpage, H. A., Bazylianska, V., Recanati, M. A., Fite, A., Liu, J., Wan, J., Mantena, N., Malek, M. H., Podgorski, I., Heath, E. I., Vaishnav, A., Edwards, B. F., Grossman, L. I., Sanderson, T. H., Lee, I., Hüttemann, M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
163 |
13
|
Joshi AS, Thompson MN, Fei N, Hüttemann M, Greenberg ML. Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem 2012; 287:17589-17597. [PMID: 22433850 DOI: 10.1074/jbc.m111.330167] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two non-bilayer forming mitochondrial phospholipids cardiolipin (CL) and phosphatidylethanolamine (PE) play crucial roles in maintaining mitochondrial morphology. We have shown previously that CL and PE have overlapping functions, and the loss of both is synthetically lethal. Because the lack of CL does not lead to defects in the mitochondrial network in Saccharomyces cerevisiae, we hypothesized that PE may compensate for CL in the maintenance of mitochondrial tubular morphology and fusion. To test this hypothesis, we constructed a conditional mutant crd1Δpsd1Δ containing null alleles of CRD1 (CL synthase) and PSD1 (mitochondrial phosphatidylserine decarboxylase), in which the wild type CRD1 gene is expressed on a plasmid under control of the TET(OFF) promoter. In the presence of tetracycline, the mutant exhibited highly fragmented mitochondria, loss of mitochondrial DNA, and reduced membrane potential, characteristic of fusion mutants. Deletion of DNM1, required for mitochondrial fission, restored the tubular mitochondrial morphology. Loss of CL and mitochondrial PE led to reduced levels of small and large isoforms of the fusion protein Mgm1p, possibly accounting for the fusion defect. Taken together, these data demonstrate for the first time in vivo that CL and mitochondrial PE are required to maintain tubular mitochondrial morphology and have overlapping functions in mitochondrial fusion.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
151 |
14
|
Aras S, Pak O, Sommer N, Finley R, Hüttemann M, Weissmann N, Grossman LI. Oxygen-dependent expression of cytochrome c oxidase subunit 4-2 gene expression is mediated by transcription factors RBPJ, CXXC5 and CHCHD2. Nucleic Acids Res 2013; 41:2255-66. [PMID: 23303788 PMCID: PMC3575822 DOI: 10.1093/nar/gks1454] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cytochrome c oxidase (COX) is the terminal enzyme of the electron transport chain, made up of 13 subunits encoded by both mitochondrial and nuclear DNA. Subunit 4 (COX4), a key regulatory subunit, exists as two isoforms, the ubiquitous isoform 1 and the tissue-specific (predominantly lung) isoform 2 (COX4I2). COX4I2 renders lung COX about 2-fold more active compared with liver COX, which lacks COX4I2. We previously identified a highly conserved 13-bp sequence in the proximal promoter of COX4I2 that functions as an oxygen responsive element (ORE), maximally active at a 4% oxygen concentration. Here, we have identified three transcription factors that bind this conserved ORE, namely recombination signal sequence–binding protein Jκ (RBPJ), coiled-coil-helix-coiled-coil-helix domain 2 (CHCHD2) and CXXC finger protein 5 (CXXC5). We demonstrate that RBPJ and CHCHD2 function towards activating the ORE at 4% oxygen, whereas CXXC5 functions as an inhibitor. To validate results derived from cultured cells, we show using RNA interference a similar effect of these transcription factors in the gene regulation of COX4I2 in primary pulmonary arterial smooth muscle cells. Depending on the oxygen tension, a concerted action of the three transcription factors regulates the expression of COX4I2 that, as we discuss, could augment both COX activity and its ability to cope with altered cellular energy requirements.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
150 |
15
|
Samavati L, Lee I, Mathes I, Lottspeich F, Hüttemann M. Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem 2008; 283:21134-44. [PMID: 18534980 PMCID: PMC3258931 DOI: 10.1074/jbc.m801954200] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/06/2008] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial oxidative phosphorylation provides most cellular energy. As part of this process, cytochrome c oxidase (CcO) pumps protons across the inner mitochondrial membrane, contributing to the generation of the mitochondrial membrane potential, which is used by ATP synthase to produce ATP. During acute inflammation, as in sepsis, aerobic metabolism appears to malfunction and switches to glycolytic energy production. The pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha) has been shown to play a central role in inflammation. We hypothesized that TNFalpha-triggered cell signaling targets CcO, which is a central enzyme of the aerobic energy metabolism and can be regulated through phosphorylation. Using total bovine and murine hepatocyte homogenates TNFalpha treatment led to an approximately 60% reduction in CcO activity. In contrast, there was no direct effect of TNFalpha on CcO activity using isolated mitochondria and purified CcO, indicating that a TNFalpha-triggered intracellular signaling cascade mediates CcO inhibition. CcO isolated after TNFalpha treatment showed tyrosine phosphorylation on CcO catalytic subunit I and was approximately 50 and 70% inhibited at high cytochrome c concentrations in the presence of allosteric activator ADP and inhibitor ATP, respectively. CcO phosphorylation occurs on tyrosine 304 as demonstrated with a phosphoepitope-specific antibody. Furthermore, the mitochondrial membrane potential was decreased in H2.35 cells in response to TNFalpha. Concomitantly, cellular ATP was more than 35 and 64% reduced in murine hepatocytes and H2.35 cells. We postulate that an important contributor in TNFalpha-mediated pathologies, such as sepsis, is energy paucity, which parallels the poor tissue oxygen extraction and utilization found in such patients.
Collapse
|
research-article |
17 |
149 |
16
|
Abstract
Cytochrome c oxidase (COX) contains ten nuclear encoded subunits, three of them known to show tissue isoforms in mammals. We have now found a fourth isoform, for subunit IV, in human, rat and mouse (COX IV-2). Comparison of the two human isoform genes shows a similar structural organization, including an overall size of about 8 kb, the presence of five exons, and the initiation of translation in the second exon, consistent with formation by gene duplication. Also consistent is the higher identity of precursor peptides of 78% within the new IV-2 isoform (average in the three species) compared to 44% average identity with the IV-1 isoform. Northern analysis and quantitative PCR with human and rat tissues show high IV-2 expression in adult lung and lower expression in all other tissues investigated, including fetal lung. In contrast, the IV-1 isoform is ubiquitously expressed. In situ hybridizations were performed to localize isoform transcripts in rat lung. Both isoforms are found in similar ratios in most lung cell types except for smooth muscle and respiratory epithelium, which have a IV-2 and a IV-1 preference, respectively. Structural modeling of the IV-2 isoform from human, based on the bovine crystal data, produces a conformation in which two of three conserved cysteine groups, exclusively present in the mammalian IV-2 isoform, are in close proximity. The formation of a cysteine bond and the implications for function of these sequence differences for subunit IV, which plays a pivotal role in COX regulation, are discussed.
Collapse
|
|
24 |
147 |
17
|
Demory ML, Boerner JL, Davidson R, Faust W, Miyake T, Lee I, Hüttemann M, Douglas R, Haddad G, Parsons SJ. Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem 2009; 284:36592-36604. [PMID: 19840943 DOI: 10.1074/jbc.m109.000760] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Co-overexpression of the epidermal growth factor (EGF) receptor (EGFR) and c-Src frequently occurs in human tumors and is linked to enhanced tumor growth. In experimental systems this synergistic growth requires EGF-dependent association of c-Src with the EGFR and phosphorylation of Tyr-845 of the receptor by c-Src. A search for signaling mediators of Tyr(P)-845 revealed that mitochondrial cytochrome c oxidase subunit II (CoxII) binds EGFR in a Tyr(P)-845- and EGF-dependent manner. In cells this association involves translocation of EGFR to the mitochondria, but regulation of this process is ill-defined. The current study demonstrates that c-Src translocates to the mitochondria with similar kinetics as EGFR and that the catalytic activity of EGFR and c-Src as well as endocytosis and a mitochondrial localization signal are required for these events. CoxII can be phosphorylated by EGFR and c-Src, and EGF stimulation reduces Cox activity and cellular ATP, an event that is dependent in large part on EGFR localized to the mitochondria. These findings suggest EGFR plays a novel role in modulating mitochondrial function via its association with, and modification of CoxII.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
135 |
18
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
|
Review |
5 |
131 |
19
|
Lee I, Hüttemann M. Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1579-86. [PMID: 24905734 PMCID: PMC4147665 DOI: 10.1016/j.bbadis.2014.05.031] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/17/2014] [Accepted: 05/27/2014] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is increasingly recognized as an accomplice in most of the common human diseases including cancer, neurodegeneration, diabetes, ischemia/reperfusion injury as seen in myocardial infarction and stroke, and sepsis. Inflammatory conditions, both acute and chronic, have recently been shown to affect mitochondrial function. We here discuss the role of oxidative phosphorylation (OxPhos), focusing on acute inflammatory conditions, in particular sepsis and experimental sepsis models. We discuss mitochondrial alterations, specifically the suppression of oxidative metabolism and the role of mitochondrial reactive oxygen species in disease pathology. Several signaling pathways including metabolic, proliferative, and cytokine signaling affect mitochondrial function and appear to be important in inflammatory disease conditions. Cytochrome c oxidase (COX) and cytochrome c, the latter of which plays a central role in apoptosis in addition to mitochondrial respiration, serve as examples for the entire OxPhos system since they have been studied in more detail with respect to cell signaling. We propose a model in which inflammatory signaling leads to changes in the phosphorylation state of mitochondrial proteins, including Tyr304 phosphorylation of COX catalytic subunit I. This results in an inhibition of OxPhos, a reduction of the mitochondrial membrane potential, and consequently a lack of energy, which can cause organ failure and death as seen in septic patients.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
117 |
20
|
Bauerfeld CP, Rastogi R, Pirockinaite G, Lee I, Hüttemann M, Monks B, Birnbaum MJ, Franchi L, Nuñez G, Samavati L. TLR4-mediated AKT activation is MyD88/TRIF dependent and critical for induction of oxidative phosphorylation and mitochondrial transcription factor A in murine macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 188:2847-57. [PMID: 22312125 DOI: 10.4049/jimmunol.1102157] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mitochondria play a critical role in cell survival and death. Mitochondrial recovery during inflammatory processes such as sepsis is associated with cell survival. Recovery of cellular respiration, mitochondrial biogenesis, and function requires coordinated expression of transcription factors encoded by nuclear and mitochondrial genes, including mitochondrial transcription factor A (T-fam) and cytochrome c oxidase (COX, complex IV). LPS elicits strong host defenses in mammals with pronounced inflammatory responses, but also triggers activation of survival pathways such as AKT pathway. AKT/PKB is a serine/threonine protein kinase that plays an important role in cell survival, protein synthesis, and controlled inflammation in response to TLRs. Hence we investigated the role of LPS-mediated AKT activation in mitochondrial bioenergetics and function in cultured murine macrophages (B6-MCL) and bone marrow-derived macrophages. We show that LPS challenge led to increased expression of T-fam and COX subunits I and IV in a time-dependent manner through early phosphorylation of the PI3K/AKT pathway. PI3K/AKT pathway inhibitors abrogated LPS-mediated T-fam and COX induction. Lack of induction was associated with decreased ATP production, increased proinflammatory cytokines (TNF-α), NO production, and cell death. The TLR4-mediated AKT activation and mitochondrial biogenesis required activation of adaptor protein MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-β. Importantly, using a genetic approach, we show that the AKT1 isoform is pivotal in regulating mitochondrial biogenesis in response to TLR4 agonist.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
94 |
21
|
Hüttemann M, Jaradat S, Grossman LI. Cytochrome c oxidase of mammals contains a testes-specific isoform of subunit VIb--the counterpart to testes-specific cytochrome c? Mol Reprod Dev 2003; 66:8-16. [PMID: 12874793 DOI: 10.1002/mrd.10327] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sperm motility is highly dependent on aerobic energy metabolism, of which the apparent rate-limiting step of the mitochondrial respiratory chain is catalyzed by cytochrome c oxidase (COX). COX is the only electron transport chain complex to display isoforms, consistent with its suggested rate-limiting role. Isoforms were previously described for four of the 13 subunits. We now report the discovery that COX subunit VIb displays a testes-specific isoform in human, bull, rat, and mouse (COX VIb-2). Analysis of a variety of rat and mouse tissues, including ovaries, demonstrates exclusive expression of VIb-2 in testes, whereas VIb-1 transcripts are absent in rodent testes, even at early developmental stages. In contrast, both isoforms are transcribed in human testes. In situ hybridizations with human, rat, and mouse testes sections reveal VIb-2 transcripts in all testicular cell types. Within the seminiferous tubules, VIb-1 shows stronger signals in the periphery than in the lumen. Previously, cytochrome c was the only component of the mitochondrial respiratory chain known to express a testes-specific isoform in mammals. COX subunit VIb connects the two COX monomers into the physiological dimeric form, and is the only COX subunit that, like cytochrome c, is solely located in the inter-membrane space. Significant differences between the isoform sequences, in particular changes in charged amino acids, suggest interactions with cytochrome c and sperm-specific energy requirements.
Collapse
|
|
22 |
94 |
22
|
Sommer N, Hüttemann M, Pak O, Scheibe S, Knoepp F, Sinkler C, Malczyk M, Gierhardt M, Esfandiary A, Kraut S, Jonas F, Veith C, Aras S, Sydykov A, Alebrahimdehkordi N, Giehl K, Hecker M, Brandes RP, Seeger W, Grimminger F, Ghofrani HA, Schermuly RT, Grossman LI, Weissmann N. Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen Sensing. Circ Res 2017; 121:424-438. [PMID: 28620066 DOI: 10.1161/circresaha.116.310482] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 12/14/2016] [Accepted: 06/14/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Acute pulmonary oxygen sensing is essential to avoid life-threatening hypoxemia via hypoxic pulmonary vasoconstriction (HPV) which matches perfusion to ventilation. Hypoxia-induced mitochondrial superoxide release has been suggested as a critical step in the signaling pathway underlying HPV. However, the identity of the primary oxygen sensor and the mechanism of superoxide release in acute hypoxia, as well as its relevance for chronic pulmonary oxygen sensing, remain unresolved. OBJECTIVES To investigate the role of the pulmonary-specific isoform 2 of subunit 4 of the mitochondrial complex IV (Cox4i2) and the subsequent mediators superoxide and hydrogen peroxide for pulmonary oxygen sensing and signaling. METHODS AND RESULTS Isolated ventilated and perfused lungs from Cox4i2-/- mice lacked acute HPV. In parallel, pulmonary arterial smooth muscle cells (PASMCs) from Cox4i2-/- mice showed no hypoxia-induced increase of intracellular calcium. Hypoxia-induced superoxide release which was detected by electron spin resonance spectroscopy in wild-type PASMCs was absent in Cox4i2-/- PASMCs and was dependent on cysteine residues of Cox4i2. HPV could be inhibited by mitochondrial superoxide inhibitors proving the functional relevance of superoxide release for HPV. Mitochondrial hyperpolarization, which can promote mitochondrial superoxide release, was detected during acute hypoxia in wild-type but not Cox4i2-/- PASMCs. Downstream signaling determined by patch-clamp measurements showed decreased hypoxia-induced cellular membrane depolarization in Cox4i2-/- PASMCs compared with wild-type PASMCs, which could be normalized by the application of hydrogen peroxide. In contrast, chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling were not or only slightly affected by Cox4i2 deficiency, respectively. CONCLUSIONS Cox4i2 is essential for acute but not chronic pulmonary oxygen sensing by triggering mitochondrial hyperpolarization and release of mitochondrial superoxide which, after conversion to hydrogen peroxide, contributes to cellular membrane depolarization and HPV. These findings provide a new model for oxygen-sensing processes in the lung and possibly also in other organs.
Collapse
|
Journal Article |
8 |
93 |
23
|
Diedrich JD, Rajagurubandara E, Herroon MK, Mahapatra G, Hüttemann M, Podgorski I. Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1α activation. Oncotarget 2018; 7:64854-64877. [PMID: 27588494 PMCID: PMC5323121 DOI: 10.18632/oncotarget.11712] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022] Open
Abstract
Metabolic adaptation is increasingly recognized as a key factor in tumor progression, yet its involvement in metastatic bone disease is not understood. Bone is as an adipocyte-rich organ, and a major site of metastasis from prostate cancer. Bone marrow adipocytes are metabolically active cells capable of shaping tumor metabolism via lipolysis and lipid transfer. In this study, using in vitro and in vivo models of marrow adiposity, we demonstrate that marrow fat cells promote Warburg phenotype in metastatic prostate cancer cells. We show increased expression of glycolytic enzymes, increased lactate production, and decreased mitochondrial oxidative phosphorylation in tumor cells exposed to adipocytes that require paracrine signaling between the two cell types. We also reveal that prostate cancer cells are capable of inducing adipocyte lipolysis as a postulated mechanism of sustenance. We provide evidence that adipocytes drive metabolic reprogramming of tumor cells via oxygen-independent mechanism of HIF-1α activation that can be reversed by HIF-1α downregulation. Importantly, we also demonstrate that the observed metabolic signature in tumor cells exposed to adipocytes mimics the expression patterns seen in patients with metastatic disease. Together, our data provide evidence for a functional relationship between marrow adipocytes and tumor cells in bone that has likely implications for tumor growth and survival within the metastatic niche.
Collapse
|
Journal Article |
7 |
92 |
24
|
Duvigneau JC, Piskernik C, Haindl S, Kloesch B, Hartl RT, Hüttemann M, Lee I, Ebel T, Moldzio R, Gemeiner M, Redl H, Kozlov AV. A novel endotoxin-induced pathway: upregulation of heme oxygenase 1, accumulation of free iron, and free iron-mediated mitochondrial dysfunction. J Transl Med 2008; 88:70-7. [PMID: 17982471 DOI: 10.1038/labinvest.3700691] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mitochondria are involved in the development of organ failure in critical care diseases. However, the mechanisms underlying mitochondrial dysfunction are not clear yet. Inducible hemoxygenase (HO-1), a member of the heat shock protein family, is upregulated in critical care diseases and considered to confer cytoprotection against oxidative stress. However, one of the products of HO-1 is Fe2+ which multiplies the damaging potential of reactive oxygen species catalyzing Fenton reaction. The aim of this study was to clarify the relevance of free iron metabolism to the oxidative damage of the liver in endotoxic shock and its impact on mitochondrial function. Endotoxic shock in rats was induced by injection of lipopolysaccharide (LPS) at a dose of 8 mg/kg (i.v.). We observed that the pro-inflammatory cytokine TNF-alpha and the liver necrosis marker aspartate aminotransferase were increased in blood, confirming inflammatory response to LPS and damage to liver tissue, respectively. The levels of free iron in the liver were significantly increased at 4 and 8 h after onset of endotoxic shock, which did not coincide with the decrease of transferrin iron levels in the blood, but rather with expression of the inducible form of heme oxygenase (HO-1). The proteins important for sequestering free iron (ferritin) and the export of iron out of the cells (ferroportin) were downregulated facilitating the accumulation of free iron in cells. The temporarily increased concentration of free iron in the liver correlated with the temporary impairment of both mitochondrial function and tissue ATP levels. Addition of exogenous iron ions to mitochondria isolated from control animals resulted in an impairment of mitochondrial respiration similar to that observed in endotoxic shock in vivo. Our data suggest that free iron released by HO-1 causes mitochondrial dysfunction in pathological situations accompanied by endotoxic shock.
Collapse
|
|
17 |
85 |
25
|
Yu H, Lee I, Salomon AR, Yu K, Hüttemann M. Mammalian liver cytochrome c is tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:1066-71. [PMID: 18471988 PMCID: PMC2652845 DOI: 10.1016/j.bbabio.2008.04.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/08/2008] [Accepted: 04/13/2008] [Indexed: 11/24/2022]
Abstract
Cytochrome c (Cyt c) is part of the mitochondrial electron transport chain (ETC), accepting electrons from bc(1) complex and transferring them to cytochrome c oxidase (CcO). The ETC generates the mitochondrial membrane potential, which is used by ATP synthase to produce ATP. In addition, the release of Cyt c from the mitochondria often commits a cell to undergo apoptosis. Considering its central role in life (respiration) and death (apoptosis) decisions one would expect tight regulation of Cyt c function. Reversible phosphorylation is a main cellular regulatory mechanism, but the effect of cell signaling targeting the mitochondrial oxidative phosphorylation system is not well understood, and only a small number of proteins that can be phosphorylated have been identified to date. We have recently shown that Cyt c isolated from cow heart tissue is phosphorylated on tyrosine 97 in vivo, which leads to inhibition of respiration in the reaction with CcO. In this study we isolated Cyt c from a different organ, cow liver, under conditions preserving the physiological phosphorylation state. Western analysis with a phosphotyrosine specific antibody suggested that liver Cyt c is phosphorylated. Surprisingly, the phosphorylation site was unambiguously assigned to Tyr-48 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/nano-LC/ESI-MS), and not to the previously identified phospho-Tyr-97 in cow heart. As is true of Tyr-97, Tyr-48 is conserved in eukaryotes. As one possible consequence of Tyr-48 phosphorylation we analyzed the in vitro reaction kinetics with isolated cow liver CcO revealing striking differences. Maximal turnover of Tyr-48 phosphorylated Cyt c was 3.7 s(-1) whereas dephosphorylation resulted in a 2.2 fold increase in activity to 8.2 s(-1). Effects of Tyr-48 phosphorylation based on the Cyt c crystal structure are discussed.
Collapse
|
research-article |
17 |
81 |