1
|
Chen S, Abou-Khalil BW, Afawi Z, Ali QZ, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Arslan M, Auce P, Bahlo M, Baker MD, Balagura G, Balestrini S, Banks E, Barba C, Barboza K, Bartolomei F, Bass N, Baum LW, Baumgartner TH, Baykan B, Bebek N, Becker F, Bennett CA, Beydoun A, Bianchini C, Bisulli F, Blackwood D, Blatt I, Borggräfe I, Bosselmann C, Braatz V, Brand H, Brockmann K, Buono RJ, Busch RM, Caglayan SH, Canafoglia L, Canavati C, Castellotti B, Cavalleri GL, Cerrato F, Chassoux F, Cherian C, Cherny SS, Cheung CL, Chou IJ, Chung SK, Churchhouse C, Ciullo V, Clark PO, Cole AJ, Cosico M, Cossette P, Cotsapas C, Cusick C, Daly MJ, Davis LK, Jonghe PD, Delanty N, Dennig D, Depondt C, Derambure P, Devinsky O, Vito LD, Dickerson F, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Ellis CA, Epstein L, Evans M, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Silva IFD, Ferri L, Feucht M, Fields MC, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, French JA, Freri E, Fu JM, Gabriel S, Gagliardi M, Gambardella A, Gauthier L, Giangregorio T, Gili T, Glauser TA, Goldberg E, Goldman A, Goldstein DB, Granata T, Grant R, Greenberg DA, Guerrini R, Gundogdu-Eken A, Gupta N, Haas K, Hakonarson H, Haryanyan G, Häusler M, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne H, Hirose S, Hirsch E, Ho CJ, Hoeper O, Howrigan DP, Hucks D, Hung PC, Iacomino M, Inoue Y, Inuzuka LM, Ishii A, Jehi L, Johnson MR, Johnstone M, Kälviäinen R, Kanaan M, Kara B, Kariuki SM, Kegele J, Kesim Y, Khoueiry-Zgheib N, Khoury J, King C, Klein KM, Kluger G, Knake S, Kok F, Korczyn AD, Korinthenberg R, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurlemann G, Kuzniecky RI, Kwan P, Vega-Talbott ML, Labate A, Lacey A, Lal D, Laššuthová P, Lauxmann S, Lawthom C, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GHY, Liao C, Licchetta L, Lin CH, Lin KL, Linnankivi T, Lo W, Lowenstein DH, Lowther C, Lubbers L, Lui CHT, Macedo-Souza LI, Madeleyn R, Madia F, Magri S, Maillard L, Marcuse L, Marques P, Marson AG, Matthews AG, May P, Mayer T, McArdle W, McCarroll SM, McGoldrick P, McGraw CM, McIntosh A, McQuillan A, Meador KJ, Mei D, Michel V, Millichap JJ, Minardi R, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neaves S, Neubauer BA, Newton CRJC, Noebels JL, Northstone K, Novod S, O’Brien TJ, Owusu-Agyei S, Özkara Ç, Palotie A, Papacostas SS, Parrini E, Pato C, Pato M, Pendziwiat M, Pennell PB, Petrovski S, Pickrell WO, Pinsky R, Pinto D, Pippucci T, Piras F, Piras F, Poduri A, Pondrelli F, Posthuma D, Powell RHW, Privitera M, Rademacher A, Ragona F, Ramirez-Hamouz B, Rau S, Raynes HR, Rees MI, Regan BM, Reif A, Reinthaler E, Rheims S, Ring SM, Riva A, Rojas E, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Salman B, Salmon A, Salpietro V, Sammarra I, Scala M, Schachter S, Schaller A, Schankin CJ, Scheffer IE, Schneider N, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sedláčková L, Shain C, Sham PC, Shiedley BR, Siena SA, Sills GJ, Sisodiya SM, Smoller JW, Solomonson M, Spalletta G, Sparks KR, Sperling MR, Stamberger H, Steinhoff BJ, Stephani U, Štěrbová K, Stewart WC, Stipa C, Striano P, Strzelczyk A, Surges R, Suzuki T, Talarico M, Talkowski ME, Taneja RS, Tanteles GA, Timonen O, Timpson NJ, Tinuper P, Todaro M, Topaloglu P, Tsai MH, Tumiene B, Turkdogan D, Uğur-İşeri S, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vari MS, Vetro A, Vlčková M, von Brauchitsch S, von Spiczak S, Wagner RG, Watts N, Weber YG, Weckhuysen S, Widdess-Walsh P, Wiebe S, Wolf SM, Wolff M, Wolking S, Wong I, von Wrede R, Wu D, Yamakawa K, Yapıcı Z, Yis U, Yolken R, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zimprich F, Zizovic M, Zsurka G, Neale BM, Berkovic SF. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. Nat Neurosci 2024; 27:1864-1879. [PMID: 39363051 PMCID: PMC11646479 DOI: 10.1038/s41593-024-01747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/01/2024] [Indexed: 10/05/2024]
Abstract
Identifying genetic risk factors for highly heterogeneous disorders such as epilepsy remains challenging. Here we present, to our knowledge, the largest whole-exome sequencing study of epilepsy to date, with more than 54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies and generalized and focal epilepsies, whereas most other gene discoveries are subtype specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single-nucleotide/short insertion and deletion variants, copy number variants and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies.
Collapse
|
2
|
Chen S, Abou-Khalil BW, Afawi Z, Ali QZ, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Arslan M, Auce P, Bahlo M, Baker MD, Balagura G, Balestrini S, Banks E, Barba C, Barboza K, Bartolomei F, Bass N, Baum LW, Baumgartner TH, Baykan B, Bebek N, Becker F, Bennett CA, Beydoun A, Bianchini C, Bisulli F, Blackwood D, Blatt I, Borggräfe I, Bosselmann C, Braatz V, Brand H, Brockmann K, Buono RJ, Busch RM, Caglayan SH, Canafoglia L, Canavati C, Castellotti B, Cavalleri GL, Cerrato F, Chassoux F, Cherian C, Cherny SS, Cheung CL, Chou IJ, Chung SK, Churchhouse C, Ciullo V, Clark PO, Cole AJ, Cosico M, Cossette P, Cotsapas C, Cusick C, Daly MJ, Davis LK, Jonghe PD, Delanty N, Dennig D, Depondt C, Derambure P, Devinsky O, Di Vito L, Dickerson F, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Ellis CA, Epstein L, Evans M, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Da Silva IF, Ferri L, Feucht M, Fields MC, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, French JA, Freri E, Fu JM, Gabriel S, Gagliardi M, Gambardella A, Gauthier L, Giangregorio T, Gili T, Glauser TA, Goldberg E, Goldman A, Goldstein DB, Granata T, Grant R, Greenberg DA, Guerrini R, Gundogdu-Eken A, Gupta N, Haas K, Hakonarson H, Haryanyan G, Häusler M, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne H, Hirose S, Hirsch E, Ho CJ, Hoeper O, Howrigan DP, Hucks D, Hung PC, Iacomino M, Inoue Y, Inuzuka LM, Ishii A, Jehi L, Johnson MR, Johnstone M, Kälviäinen R, Kanaan M, Kara B, Kariuki SM, Kegele J, Kesim Y, Khoueiry-Zgheib N, Khoury J, King C, Klein KM, Kluger G, Knake S, Kok F, Korczyn AD, Korinthenberg R, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurlemann G, Kuzniecky RI, Kwan P, La Vega-Talbott M, Labate A, Lacey A, Lal D, Laššuthová P, Lauxmann S, Lawthom C, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GHY, Liao C, Licchetta L, Lin CH, Lin KL, Linnankivi T, Lo W, Lowenstein DH, Lowther C, Lubbers L, Lui CHT, Macedo-Souza LI, Madeleyn R, Madia F, Magri S, Maillard L, Marcuse L, Marques P, Marson AG, Matthews AG, May P, Mayer T, McArdle W, McCarroll SM, McGoldrick P, McGraw CM, McIntosh A, McQuillan A, Meador KJ, Mei D, Michel V, Millichap JJ, Minardi R, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neaves S, Neubauer BA, Newton CRJC, Noebels JL, Northstone K, Novod S, O'Brien TJ, Owusu-Agyei S, Özkara Ç, Palotie A, Papacostas SS, Parrini E, Pato C, Pato M, Pendziwiat M, Pennell PB, Petrovski S, Pickrell WO, Pinsky R, Pinto D, Pippucci T, Piras F, Piras F, Poduri A, Pondrelli F, Posthuma D, Powell RHW, Privitera M, Rademacher A, Ragona F, Ramirez-Hamouz B, Rau S, Raynes HR, Rees MI, Regan BM, Reif A, Reinthaler E, Rheims S, Ring SM, Riva A, Rojas E, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Salman B, Salmon A, Salpietro V, Sammarra I, Scala M, Schachter S, Schaller A, Schankin CJ, Scheffer IE, Schneider N, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sedláčková L, Shain C, Sham PC, Shiedley BR, Siena SA, Sills GJ, Sisodiya SM, Smoller JW, Solomonson M, Spalletta G, Sparks KR, Sperling MR, Stamberger H, Steinhoff BJ, Stephani U, Štěrbová K, Stewart WC, Stipa C, Striano P, Strzelczyk A, Surges R, Suzuki T, Talarico M, Talkowski ME, Taneja RS, Tanteles GA, Timonen O, Timpson NJ, Tinuper P, Todaro M, Topaloglu P, Tsai MH, Tumiene B, Turkdogan D, Uğur-İşeri S, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vari MS, Vetro A, Vlčková M, von Brauchitsch S, von Spiczak S, Wagner RG, Watts N, Weber YG, Weckhuysen S, Widdess-Walsh P, Wiebe S, Wolf SM, Wolff M, Wolking S, Wong I, von Wrede R, Wu D, Yamakawa K, Yapıcı Z, Yis U, Yolken R, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zimprich F, Zizovic M, Zsurka G, Neale BM, Berkovic SF. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.02.22.23286310. [PMID: 36865150 PMCID: PMC9980234 DOI: 10.1101/2023.02.22.23286310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date, with >54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets, and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies, generalized and focal epilepsies, while most other gene discoveries are subtype-specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single nucleotide/short indel-, copy number-, and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies.
Collapse
|
3
|
Gleason A, Richter F, Beller N, Arivazhagan N, Feng R, Holmes E, Glicksberg BS, Morton SU, La Vega-Talbott M, Fields M, Guttmann K, Nadkarni GN, Richter F. Accurate prediction of neurologic changes in critically ill infants using pose AI. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305953. [PMID: 38699362 PMCID: PMC11064996 DOI: 10.1101/2024.04.17.24305953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose AI, could predict neurologic changes in the neonatal intensive care unit (NICU). We collected 4,705 hours of video linked to electroencephalograms (EEG) from 115 infants. We trained a deep learning pose algorithm that accurately predicted anatomic landmarks in three evaluation sets (ROC-AUCs 0.83-0.94), showing feasibility of applying pose AI in an ICU. We then trained classifiers on landmarks from pose AI and observed high performance for sedation (ROC-AUCs 0.87-0.91) and cerebral dysfunction (ROC-AUCs 0.76-0.91), demonstrating that an EEG diagnosis can be predicted from video data alone. Taken together, deep learning with pose AI may offer a scalable, minimally invasive method for neuro-telemetry in the NICU.
Collapse
|
4
|
Roa JA, Marcuse L, Fields M, Vega-Talbott ML, Yoo JY, Wolf SM, McGoldrick P, Ghatan S, Panov F. Long-term outcomes after responsive neurostimulation for treatment of refractory epilepsy: a single-center experience of 100 cases. J Neurosurg 2023; 139:1463-1470. [PMID: 37655833 DOI: 10.3171/2023.2.jns222116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/09/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE Despite antiepileptic drugs, more than 30% of people with epilepsy continue to have seizures. Patients with such drug-resistant epilepsy (DRE) may undergo invasive treatment such as resection, laser ablation of the epileptogenic focus, or vagus nerve stimulation, but many are not candidates for epilepsy surgery or fail to respond to such interventions. Responsive neurostimulation (RNS) provides a neuromodulatory option. In this study, the authors present a single-center experience with the use of RNS over the last 5 years to provide long-term control of seizures in patients with DRE with at least 1 year of follow-up. METHODS The authors performed a retrospective analysis of a prospectively collected single-center database of consecutive DRE patients who underwent RNS system implantation from September 2015 to December 2020. Patients were followed-up postoperatively to evaluate seizure freedom and complications. RESULTS One hundred patients underwent RNS placement. Seven patients developed infections: 2 responded to intravenous antibiotic therapy, 3 required partial removal and salvaging of the system, and 2 required complete removal of the RNS device. No postoperative tract hemorrhages, strokes, device migrations, or malfunctions were documented in this cohort. The average follow-up period was 26.3 months (range 1-5.2 years). In terms of seizure reduction, 8 patients had 0%-24% improvement, 14 had 25%-49% improvement, 29 experienced 50%-74% improvement, 30 had 75%-99% improvement, and 19 achieved seizure freedom. RNS showed significantly better outcomes over time: patients with more than 3 years of RNS therapy had 1.8 higher odds of achieving 75% or more seizure reduction (95% CI 1.07-3.09, p = 0.02). Also, patients who had undergone resective or ablative surgery prior to RNS implantation had 8.25 higher odds of experiencing 50% or more seizure reduction (95% CI 1.05-65.1, p = 0.04). CONCLUSIONS Responsive neurostimulator implantation achieved 50% or more seizure reduction in approximately 80% of patients. Even in patients who did not achieve seizure freedom, significant improvement in seizure duration, severity, or postictal state was reported in more than 68% of cases. Infection (7%) was the most common complication. Patients with prior resective or ablative procedures and those who had been treated with RNS for more than 3 years achieved better outcomes.
Collapse
|
5
|
Mayman N, Wei J, Cai S, Soman R, Raynes H, La Vega-Talbott M, He C, Naidich T, Raju GP, Kathiresu Nageshwaran S. Case report: A novel biallelic FTO variant causing multisystem anomalies with severe epilepsy, widening the spectrum of FTO syndrome. SAGE Open Med Case Rep 2023; 11:2050313X231188883. [PMID: 37529081 PMCID: PMC10387762 DOI: 10.1177/2050313x231188883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
The fat mass and obesity-associated gene (FTO) codes for a DNA/RNA demethylase. Pathological variants in this gene are rare, with only three reports in the literature, all with mutations in the catalytic domain. We report the first biallelic human variant in fat mass and obesity-associated gene (c.287G>C, p.Arg96Pro/R96P) outside the catalytic site, causing numerous abnormalities across multiple organ systems, affecting respiratory, cardiovascular, and neurological function. Biochemical assays of cells with the patient's variant were performed to further quantify the effect of the variant on function. Loss-of-function resulting from the patient's R96P missense variant was demonstrated with in vitro biochemical characterization of demethylase activity, resulting in a 90% reduction in function of the fat mass and obesity-associated protein compared to wild-type. Our findings demonstrate a novel fat mass and obesity-associated gene non-catalytic site variant with a unique patient phenotype of bilateral multifocal epilepsy and multisystem congenital anomalies.
Collapse
|
6
|
Roa JA, Abramova M, Madeline, La Vega-Talbott M, Wolf S, Yoo J, Marcuse L, Ghatan S, Panov F. 837 Responsive Neurostimulation of the Thalamus for the Treatment of Refractory Epilepsy. Neurosurgery 2023. [DOI: 10.1227/neu.0000000000002375_837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
7
|
Roa JA, Abramova M, Fields M, Vega-Talbott ML, Yoo J, Marcuse L, Wolf S, McGoldrick P, Ghatan S, Panov F. Responsive Neurostimulation of the Thalamus for the Treatment of Refractory Epilepsy. Front Hum Neurosci 2022; 16:926337. [PMID: 35911594 PMCID: PMC9334749 DOI: 10.3389/fnhum.2022.926337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction One-third of patients with epilepsy continue to have seizures despite antiepileptic medications. Some of these refractory patients may not be candidates for surgical resection primarily because the seizure onset zones (SOZs) involve both hemispheres or are located in eloquent areas. The NeuroPace Responsive Neurostimulation System (RNS) is a closed-loop device that uses programmable detection and stimulation to tailor therapy to a patient's individual neurophysiology. Here, we present our single-center experience with the use of RNS in thalamic nuclei to provide long-term seizure control in patients with refractory epilepsy. Methods We performed a prospective single-center study of consecutive refractory epilepsy patients who underwent RNS system implantation in the anterior (ANT) and centromedian (CM) thalamic nuclei from September 2015 to December 2020. Patients were followed postoperatively to evaluate seizure freedom and complications. Results Twenty-three patients underwent placement of 36 RNS thalamic leads (CM = 27 leads, ANT = 9 leads). Mean age at implant was 18.8 ± 11.2 years (range 7.8–62 years-old). Two patients (8.7%) developed infections: 1 improved with antibiotic treatments alone, and 1 required removal with eventual replacement of the system to recover the therapeutic benefit. Mean time from RNS implantation to last follow-up was 22.3 months. Based on overall reduction of seizure frequency, 2 patients (8.7%) had no- to <25% improvement, 6 patients (26.1%) had 25–49% improvement, 14 patients (60.9%) had 50–99% improvement, and 1 patient (4.3%) became seizure-free. All patients reported significant improvement in seizure duration and severity, and 17 patients (74%) reported improved post-ictal state. There was a trend for subjects with SOZs located in the temporal lobe to achieve better outcomes after thalamic RNS compared to those with extratemporal SOZs. Of note, seizure etiology was syndromic in 12 cases (52.2%), and 7 patients (30.4%) had undergone resection/disconnection surgery prior to thalamic RNS therapy. Conclusion Thalamic RNS achieved ≥50% seizure control in ~65% of patients. Infections were the most common complication. This therapeutic modality may be particularly useful for patients affected by aggressive epilepsy syndromes since a young age, those whose seizure foci are located in the mesial temporal lobe, and those who have failed prior surgical interventions.
Collapse
|
8
|
Panov F, Ganaha S, Haskell J, Fields M, La Vega-Talbott M, Wolf S, McGoldrick P, Marcuse L, Ghatan S. Safety of responsive neurostimulation in pediatric patients with medically refractory epilepsy. J Neurosurg Pediatr 2020; 26:525-532. [PMID: 33861559 DOI: 10.3171/2020.5.peds20118] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Approximately 75% of pediatric patients who suffer from epilepsy are successfully treated with antiepileptic drugs, while the disease is drug resistant in the remaining patients, who continue to have seizures. Patients with drug-resistant epilepsy (DRE) may have options to undergo invasive treatment such as resection, laser ablation of the epileptogenic focus, or vagus nerve stimulation. To date, treatment with responsive neurostimulation (RNS) has not been sufficiently studied in the pediatric population because the FDA has not approved the RNS device for patients younger than 18 years of age. Here, the authors sought to investigate the safety of RNS in pediatric patients. METHODS The authors performed a retrospective single-center study of consecutive patients with DRE who had undergone RNS system implantation from September 2015 to December 2019. Patients were followed up postoperatively to evaluate seizure freedom and complications. RESULTS Of the 27 patients studied, 3 developed infections and were treated with antibiotics. Of these 3 patients, one required partial removal and salvaging of a functioning system, and one required complete removal of the RNS device. No other complications, such as intracranial hemorrhage, stroke, or device malfunction, were seen. The average follow-up period was 22 months. All patients showed improvement in seizure frequency. CONCLUSIONS The authors demonstrated the safety and efficacy of RNS in pediatric patients, with infections being the main complication. ABBREVIATIONS DBS = deep brain stimulation; DRE = drug-resistant epilepsy; MDC = multidisciplinary conference; MER = microelectrode recording; MSHS = Mount Sinai Health System; RNS = responsive neurostimulation; SEEG = stereo-EEG; VNS = vagus nerve stimulation.
Collapse
|
9
|
Xu H, Bui AH, La Vega-Talbott M, Zackai SP. Dexmedetomidine for Postoperative Sedation Following Stereotactic Lead Placement. JOURNAL OF PEDIATRIC NEUROLOGY 2020. [DOI: 10.1055/s-0039-1687882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AbstractDexmedetomidine has become an increasingly popular alternative to benzodiazepines and opioids as a safe agent for sedation and pain control, especially in pediatric populations. In this study, we present a case of postoperative use of dexmedetomidine in a pediatric patient, with a known history of behavioral difficulties, who underwent stereotactic lead placement for medically refractory epilepsy.
Collapse
|
10
|
Kokoszka MA, Panov F, La Vega-Talbott M, McGoldrick PE, Wolf SM, Ghatan S. Treatment of medically refractory seizures with responsive neurostimulation: 2 pediatric cases. J Neurosurg Pediatr 2018; 21:421-427. [PMID: 29393811 DOI: 10.3171/2017.10.peds17353] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The responsive neurostimulation (RNS) system, an adjunctive treatment for pharmacoresistant partial-onset seizures with 1 or 2 foci, has been available to patients aged 18 years or older since the device's FDA approval in 2013. Herein, the authors describe their off-label application of this technology in 2 pediatric patients and the consequent therapeutic benefit without surgical complications or treatment side effects. A 14-year-old nonambulatory, nonverbal male with severe developmental delay was considered for RNS therapy for medically and surgically refractory epilepsy with bilateral seizure onsets in the setting of a normal radiological examination and a known neuropathological diagnosis of type I cortical dysplasia. The RNS system was implanted with strip electrodes placed on the left lateral frontal and right lateral temporal neocortex. At 19 months' follow-up, cortical stimulation resulted in sustained reduction in both seizure frequency-3 seizures per day down from 15 to 30 per day-and seizure severity. The patient subsequently underwent a trial of corticothalamic stimulation with a right temporal cortical strip and a left thalamic depth electrode, which resulted in a further 50% reduction in seizure frequency. In a second case, a 9-year-old right-handed female with radiological evidence of a small watershed infarct on the left and medically refractory seizures was referred for presurgical evaluation. Invasive monitoring revealed an unresectable seizure focus in the eloquent cortex of the left posterior frontal and parietal lobes. The RNS device was implanted with cortical leads placed at the putative seizure focus. At 21 months after surgery, the patient had been seizure free for 4 months, following a 17-month period in which the seizure frequency had decreased from 12 per month to 2 per month, with associated functional and behavioral improvement. The authors' results suggest that RNS may be a palliative option for children with intractable seizures whose condition warrants off-label use of the surgical device. The improved therapeutic effect noted with time and sustained RNS treatment points to a possible neuromodulatory effect.
Collapse
|
11
|
Kokoszka MA, McGoldrick PE, La Vega-Talbott M, Raynes H, Palmese CA, Wolf SM, Harden CL, Ghatan S. Epilepsy surgery in patients with autism. J Neurosurg Pediatr 2017; 19:196-207. [PMID: 27885946 DOI: 10.3171/2016.7.peds1651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this study was to report outcomes of epilepsy surgery in 56 consecutive patients with autism spectrum disorder. METHODS Medical records of 56 consecutive patients with autism who underwent epilepsy surgery were reviewed with regard to clinical characteristics, surgical management, postoperative seizure control, and behavioral changes. RESULTS Of the 56 patients with autism, 39 were male, 45 were severely autistic, 27 had a history of clinically significant levels of aggression and other disruptive behaviors, and 30 were considered nonverbal at baseline. Etiology of the epilepsy was known in 32 cases, and included structural lesions, medical history, and developmental and genetic factors. Twenty-nine patients underwent resective treatments (in 8 cases combined with palliative procedures), 24 patients had only palliative treatments, and 3 patients had only subdural electroencephalography. Eighteen of the 56 patients had more than one operation. The mean age at surgery was 11 ± 6.5 years (range 1.5-35 years). At a mean follow-up of 47 ± 30 months (range 2-117 months), seizure outcomes included 20 Engel Class I, 12 Engel Class II, 18 Engel Class III, and 3 Engel Class IV cases. The age and follow-up times are stated as the mean ± SD. Three patients were able to discontinue all antiepileptic drugs (AEDs). Aggression and other aberrant behaviors observed in the clinical setting improved in 24 patients. According to caregivers, most patients also experienced some degree of improvement in daily social and cognitive function. Three patients had no functional or behavioral changes associated with seizure reduction, and 2 patients experienced worsening of seizures and behavioral symptoms. CONCLUSIONS Epilepsy surgery in patients with autism is feasible, with no indication that the comorbidity of autism should preclude a good outcome. Resective and palliative treatments brought seizure freedom or seizure reduction to the majority of patients, although one-third of the patients in this study required more than one procedure to achieve worthwhile improvement in the long term, and few patients were able to discontinue all AEDs. The number of palliative procedures performed, the need for multiple interventions, and continued use of AEDs highlight the complex etiology of epilepsy in patients with autism spectrum disorder. These considerations underscore the need for continued analysis, review, and reporting of surgical outcomes in patients with autism, which may aid in better identification and management of surgical candidates. The reduction in aberrant behaviors observed in this series suggests that some behaviors previously attributed to autism may be associated with intractable epilepsy, and further highlights the need for systematic evaluation of the relationship between the symptoms of autism and refractory seizures.
Collapse
|
12
|
Ghatan S, McGoldrick P, Palmese C, La Vega-Talbott M, Kang H, Kokoszka MA, Goodman RR, Wolf SM. Surgical management of medically refractory epilepsy due to early childhood stroke. J Neurosurg Pediatr 2014; 14:58-67. [PMID: 24866497 DOI: 10.3171/2014.3.peds13440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
UNLABELLED OBJECT.: The risk of developing epilepsy after perinatal stroke, hypoxic/ischemic injury, and intracerebral hemorrhage is significant, and seizures may become medically refractory in approximately 25% of these patients. Surgical management can be difficult due to multilobar or bilateral cortical injury, nonfocal or poorly lateralizing video electroencephalography (EEG) findings, and limited functional reserve. In this study the authors describe the surgical approaches, seizure outcomes, and complications in patients with epilepsy due to vascular etiologies in the perinatal period and early infancy. METHODS The records were analyzed of 19 consecutive children and adults with medically refractory epilepsy and evidence of perinatal arterial branch occlusions, hypoxic/ischemic insult, or hemorrhagic strokes, who underwent surgery at the Comprehensive Epilepsy Center of Beth Israel Medical Center and St. Luke's-Roosevelt Hospital Center. Preoperative findings including MRI, video EEG, functional MRI, and neuropsychological testing were analyzed. The majority of patients underwent staged operations with invasive mapping, and all patients had either extra- or intraoperative functional mapping. RESULTS In 7 patients with large porencephalic cysts due to major arterial branch occlusions, periinsular functional hemispherotomy was performed in 4 children, and in 3 patients, multilobar resections/disconnections were performed, with 1 patient undergoing additional resections 3 years after initial surgery due to recurrence of seizures. All of these patients have been seizure free (Engel Class IA) after a mean 4.5-year follow-up (range 15-77 months). Another 8 patients had intervascular border-zone ischemic infarcts and encephalomalacia, and in this cohort 2 hemispherotomies, 5 multilobar resections/disconnections, and 1 focal cortical resection were performed. Seven of these patients remain seizure free (Engel Class IA) after a mean 4.5-year follow-up (range 9-94 months), and 1 patient suffered a single seizure after 2.5 years of seizure freedom (Engel Class IB, 33-month follow-up). In the final 4 patients with vascular malformation-associated hemorrhagic or ischemic infarction in the perinatal period, a hemispherotomy was performed in 1 case, multilobar resections in 2 cases, and in 1 patient a partial temporal lobectomy was performed, followed 6 months later by a complete temporal and occipital lobectomy due to ongoing seizures. All of these patients have had seizure freedom (Engel Class IA) with a mean follow-up of 4.5 years (range 10-80 months). Complications included transient monoparesis or hemiparesis in 3 patients, transient mutism in 1 patient, infection in 1 patient, and a single case of permanent distal lower-extremity weakness. Transient mood disorders (depression and anxiety) were observed in 2 patients and required medical/therapeutic intervention. CONCLUSIONS Epilepsy surgery is effective in controlling medically intractable seizures after perinatal vascular insults. Seizure foci tend to be widespread and rarely limited to the area of injury identified through neuroimaging, with invasive monitoring directing multilobar resections in many cases. Long-term functional outcomes have been good in these patients, with significant improvements in independence, quality of life, cognitive development, and motor skills, despite transient postoperative monoparesis or hemiparesis and occasional mood disorders.
Collapse
|
13
|
Yi CH, La Vega-Talbott M, Friedman MT. Treatment of acute disseminated encephalomyelitis with plasmapheresis in a 16-year-old female, a case report and literature review. J Clin Apher 2014; 29:339-40. [DOI: 10.1002/jca.21327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/14/2014] [Indexed: 11/10/2022]
|
14
|
Hosain SA, La Vega-Talbott M, Solomon GE. Ketogenic diet in pediatric epilepsy patients with gastrostomy feeding. Pediatr Neurol 2005; 32:81-3. [PMID: 15664765 DOI: 10.1016/j.pediatrneurol.2004.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 09/01/2004] [Indexed: 11/22/2022]
Abstract
Ketogenic diet is effective in the control of intractable seizures. Poor compliance is a major limiting factor. In one study, only 50% of children receiving the oral ketogenic diet remained on the diet after 1 year. Twelve children with static encephalopathy and intractable symptomatic epilepsy were given the ketogenic diet via gastrostomy tube. Mean age was 3 years (range, 7 months to 6.5 years). Mean seizure frequency at baseline was 199/month. Seizure frequency after 12 and 18 months of diet was compared with baseline. After 12 months on the diet, the number of antiepileptic drugs was compared with baseline. Median seizure reduction at 1 year and 18 months was 61% and 66%, respectively (P = 0.02). Individually, six patients had 90% seizure reduction, one had 75% reduction, three had 50% reduction, and two patients did not improve. Mean antiepileptic drugs at baseline was 2.8; at 12 months 1.6 (49% reduction). Three patients had weight loss. Two patients discontinued the diet at 13 months and 21 months, respectively, because of diarrhea and weight loss. Compliance with diet was 100% during treatment. This study suggests that the ketogenic diet via gastrostomy feeding tube is safe and effective in children with intractable seizures and ensures compliance.
Collapse
|