1
|
Abramovitz M, Adam M, Boie Y, Carrière M, Denis D, Godbout C, Lamontagne S, Rochette C, Sawyer N, Tremblay NM, Belley M, Gallant M, Dufresne C, Gareau Y, Ruel R, Juteau H, Labelle M, Ouimet N, Metters KM. The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:285-93. [PMID: 10634944 DOI: 10.1016/s1388-1981(99)00164-x] [Citation(s) in RCA: 432] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stable cell lines that individually express the eight known human prostanoid receptors (EP(1), EP(2), EP(3), EP(4), DP, FP, IP and TP) have been established using human embryonic kidney (HEK) 293(EBNA) cells. These recombinant cell lines have been employed in radioligand binding assays to determine the equilibrium inhibitor constants of known prostanoid receptor ligands at these eight receptors. This has allowed, for the first time, an assessment of the affinity and selectivity of several novel compounds at the individual human prostanoid receptors. This information should facilitate interpretation of pharmacological studies that employ these ligands as tools to study human tissues and cell lines and should, therefore, result in a greater understanding of prostanoid receptor biology.
Collapse
|
Comparative Study |
25 |
432 |
2
|
Simon-Deckers A, Gouget B, Mayne-L’Hermite M, Herlin-Boime N, Reynaud C, Carrière M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 2008; 253:137-46. [DOI: 10.1016/j.tox.2008.09.007] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/29/2022]
|
|
17 |
251 |
3
|
Escriou V, Carrière M, Bussone F, Wils P, Scherman D. Critical assessment of the nuclear import of plasmid during cationic lipid-mediated gene transfer. J Gene Med 2001; 3:179-87. [PMID: 11318117 DOI: 10.1002/jgm.174] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cationic lipid-mediated gene transfer is a promising approach for gene therapy. However, despite the significant amount of lipoplexes internalized by target cells, transgene expression remains too low. Obstacles to nuclear accumulation of plasmid DNA include: the passage of DNA across the cellular membrane, the dismantling of nucleolipidic particles in the cytoplasm and the nuclear import of plasmid DNA. The purpose of the present study was to evaluate the impact of cell status on cationic lipid-mediated transfer. METHODS Cells were either growth-arrested (by aphidicolin) or synchronized (by a classical double-thymidine block protocol) and cationic lipid-mediated transfection of these cells was evaluated. For the study of the nuclear import of plasmid DNA, two techniques were developed: microinjection of plasmid DNA into intact cells, and the use of cells permeabilized with digitonin. RESULTS When CV-1 cells were growth-arrested by aphidicolin, cationic lipid-mediated gene transfer was inhibited. Hela cells were synchronized and incubated with lipoplexes at different times after release of the block. Gene expression was greatly enhanced when cells underwent mitosis. When transfection was performed during the early period after block release, when fewer than 5% of the cells had divided, gene expression was carefully quantified and could be attributed to cells that escaped cell cycle block. However, by direct analysis of nuclear import of GFP-coding plasmid using cytoplasmic microinjection, GFP expression could be detected in a few cells that had not divided. CONCLUSIONS Cationic lipid-mediated gene transfer efficiency increased when cells underwent mitosis. However, when cells did not divide, gene transfer was not completely abolished. Nuclear import of plasmid was greatly facilitated by a mitotic event. In non-mitotic cells, nuclear envelope crossing by plasmid DNA could be detected but was a very rare event.
Collapse
|
|
24 |
96 |
4
|
Barillet S, Jugan ML, Laye M, Leconte Y, Herlin-Boime N, Reynaud C, Carrière M. In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett 2010; 198:324-30. [PMID: 20655996 DOI: 10.1016/j.toxlet.2010.07.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 11/29/2022]
Abstract
Silicon carbide (SiC) is considered a highly biocompatible material, consequently SiC nanoparticles (NPs) have been proposed for potential applications in diverse areas of technology. Since no toxicological data are available for these NPs, the aim of this study was to draw their global toxicological profile on A549 lung epithelial cells, using a battery of classical in vitro assays. Five SiC-NPs, with varying diameters and Si/C ratios were used, and we show that these SiC-NPs are internalized in cells where they cause a significant, though limited, cytotoxic effect. Cell redox status is deeply disturbed: SiC-NP exposure cause reactive oxygen species production, glutathione depletion and inactivation of some antioxidant enzymes: glutathione reductase, superoxide dismutase, but not catalase. Finally, the alkaline comet assay shows that SiC-NPs are genotoxic. Taken together, these data prove that SiC-NPs biocompatibility should be revisited.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
75 |
5
|
Carrière M, Avoscan L, Collins R, Carrot F, Khodja H, Ansoborlo E, Gouget B. Influence of Uranium Speciation on Normal Rat Kidney (NRK-52E) Proximal Cell Cytotoxicity. Chem Res Toxicol 2004; 17:446-52. [PMID: 15025516 DOI: 10.1021/tx034224h] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Uranium is a naturally occurring heavy metal. Its extensive use in the nuclear cycle and for military applications has focused attention on its potential health effects. Acute exposures to uranium are toxic to the kidneys where they mainly cause damage to proximal tubular epithelium. The purpose of this study was to investigate the biological consequences of acute in vitro uranyl exposure and the influence of uranyl speciation on its cytotoxicity. NRK-52E cells, representative of rat kidney proximal epithelium, were exposed to uranyl-carbonate and -citrate complexes, which are the major complexes transiting through renal tubules after acute in vivo contamination. Before NRK-52E cell exposure, these complexes were diluted in classical or modified cell culture media, which can possibly modify uranyl speciation. In these conditions, uranium cytotoxicity appears after 16 h of exposure. The CI50 cytotoxicity index, the uranium concentration leading to 50% dead cells after 24 h of exposure, is 500 microM (+/-100 microM) and strongly depends on uranyl counterion and cell culture medium composition. Computer modeling of uranyl speciation is reported, enabling one to draw a parallel between uranyl speciation and its cytotoxicity.
Collapse
|
|
21 |
74 |
6
|
Kök A, Hocqueloux L, Hocini H, Carrière M, Lefrou L, Guguin A, Tisserand P, Bonnabau H, Avettand-Fenoel V, Prazuck T, Katsahian S, Gaulard P, Thiébaut R, Lévy Y, Hüe S. Early initiation of combined antiretroviral therapy preserves immune function in the gut of HIV-infected patients. Mucosal Immunol 2015; 8:127-40. [PMID: 24985081 DOI: 10.1038/mi.2014.50] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/15/2014] [Indexed: 02/04/2023]
Abstract
Massive loss of lamina propria CD4(+) T cells, changes in the lymphatic architecture, and altered intestinal epithelial barrier leading to microbial translocation are the common features of HIV-1 infection and are not fully restored under combined antiretroviral therapy (cART). To better understand determinants of gut mucosal restoration, we have performed phenotypic and gene expression analyses of the gut from HIV-infected patients, naive or treated with cART initiated either at the early phase of the primary infection or later during the chronic phase. We found a depletion of T helper type 22 (Th22) and interleukin-17-producing cells in naive patients. These populations, except Th22 cells, were not restored under cART. Regulatory T cells/Th17 ratio was significantly increased in HIV-infected patients and was inversely correlated to the restoration of CD4(+) T cells but not to gut HIV DNA levels. Gene profile analysis of gut mucosal distinguished two groups of patients, which fitted with the timing of cART initiation. In their majority early, but not later treated patients, exhibited conserved intestinal lymphoid structure, epithelial barrier integrity and dendritic cell maturation pathways. Our data demonstrate that early initiation of cART helps to preserve and/or restore lymphoid gut mucosal homeostasis and provide a rationale for initiating cART during the acute phase of HIV infection.
Collapse
|
|
10 |
65 |
7
|
Laval V, Chabannes M, Carrière M, Canut H, Barre A, Rougé P, Pont-Lezica R, Galaud J. A family of Arabidopsis plasma membrane receptors presenting animal beta-integrin domains. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1435:61-70. [PMID: 10561538 DOI: 10.1016/s0005-2728(99)00087-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cDNA clone, AtELP1 (Arabidopsis thaliana EGF receptor-like protein) was isolated from an Arabidopsis cDNA library with an oligonucleotide probe corresponding to a highly conserved region of animal beta-integrins. The cloning of this cDNA was previously reported and it has been proposed that AtELP might be a receptor involved in intracellular trafficking. In the present work, using two specific independent sets of anti-peptide antibodies, we show that AtELP1 is mainly located in the plasma membrane, supporting another function for this protein. Structural studies, using methods for secondary structure prediction, indicated the presence of cysteine-rich domains specific to beta-integrins. Database searches revealed that AtELP1 is a member of a multigenic family composed of at least six members in A. thaliana. Northern blot analysis of AtELP1, 2b and 3 was performed on mRNA extracted from cells cultured in normal and stressed conditions, and from several organs and plants submitted to biotic or abiotic stresses. All the genes are expressed at different levels in the same conditions, but preferentially in roots, fruits and leaves in response to water deficit.
Collapse
|
|
26 |
62 |
8
|
Dorier M, Brun E, Veronesi G, Barreau F, Pernet-Gallay K, Desvergne C, Rabilloud T, Carapito C, Herlin-Boime N, Carrière M. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells. NANOSCALE 2015; 7:7352-7360. [PMID: 25825056 DOI: 10.1039/c5nr00505a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.
Collapse
|
|
10 |
57 |
9
|
Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B, Chaillou S, Carrière M. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/304/1/012057] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
14 |
44 |
10
|
Veronesi G, Aude-Garcia C, Kieffer I, Gallon T, Delangle P, Herlin-Boime N, Rabilloud T, Carrière M. Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages. NANOSCALE 2015; 7:7323-30. [PMID: 25824974 DOI: 10.1039/c5nr00353a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag(+) ions in cellulo; the chemical environment of recombined Ag(+) ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag(+) ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag(+) release than acute exposure; Ag-S bond lengths are 2.41 ± 0.03 Å and 2.38 ± 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag(+). The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.
Collapse
|
|
10 |
42 |
11
|
Aubinet C, Cassol H, Bodart O, Sanz LRD, Wannez S, Martial C, Thibaut A, Martens G, Carrière M, Gosseries O, Laureys S, Chatelle C. Simplified evaluation of CONsciousness disorders (SECONDs) in individuals with severe brain injury: A validation study. Ann Phys Rehabil Med 2021; 64:101432. [PMID: 32992025 DOI: 10.1016/j.rehab.2020.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 10/20/2022]
Abstract
BACKGROUND The Coma Recovery Scale-Revised (CRS-R) is the gold standard to assess severely brain-injured patients with prolonged disorders of consciousness (DoC). However, the amount of time needed to complete this examination may limit its use in clinical settings. OBJECTIVE We aimed to validate a new faster tool to assess consciousness in individuals with DoC. METHODS This prospective validation study introduces the Simplified Evaluation of CONsciousness Disorders (SECONDs), a tool composed of 8 items: arousal, localization to pain, visual fixation, visual pursuit, oriented behaviors, command-following, and communication (both intentional and functional). A total of 57 individuals with DoC were assessed on 2 consecutive days by 3 blinded examiners: one CRS-R and one SECONDs were performed on 1 day, whereas 2 SECONDs were performed on the other day. A Mann-Whitney U test was used to compare the duration of administration of the SECONDs versus the CRS-R, and weighted Fleiss' kappa coefficients were used to assess inter-/intra-rater reliability as well as concurrent validity. RESULTS In the 57 participants, the SECONDs was about 2.5 times faster to administer than the CRS-R. The comparison of the CRS-R versus the SECONDs on the same day or the best of the 3 SECONDs led to "substantial" or "almost perfect" agreement (kappa coefficients ranging from 0.78 to 0.85). Intra-/inter-rater reliability also showed almost perfect agreement (kappa coefficients from 0.85 to 0.91 and 0.82 to 0.85, respectively). CONCLUSIONS The SECONDs appears to be a fast, reliable and easy-to-use scale to diagnose DoC and may be a good alternative to other scales in clinical settings where time constraints preclude a more thorough assessment.
Collapse
|
Journal Article |
4 |
41 |
12
|
Riganello F, Larroque SK, Bahri MA, Heine L, Martial C, Carrière M, Charland-Verville V, Aubinet C, Vanhaudenhuyse A, Chatelle C, Laureys S, Di Perri C. A Heartbeat Away From Consciousness: Heart Rate Variability Entropy Can Discriminate Disorders of Consciousness and Is Correlated With Resting-State fMRI Brain Connectivity of the Central Autonomic Network. Front Neurol 2018; 9:769. [PMID: 30258400 PMCID: PMC6145008 DOI: 10.3389/fneur.2018.00769] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Disorders of consciousness are challenging to diagnose, with inconsistent behavioral responses, motor and cognitive disabilities, leading to approximately 40% misdiagnoses. Heart rate variability (HRV) reflects the complexity of the heart-brain two-way dynamic interactions. HRV entropy analysis quantifies the unpredictability and complexity of the heart rate beats intervals. We here investigate the complexity index (CI), a score of HRV complexity by aggregating the non-linear multi-scale entropies over a range of time scales, and its discriminative power in chronic patients with unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS), and its relation to brain functional connectivity. Methods: We investigated the CI in short (CIs) and long (CIl) time scales in 14 UWS and 16 MCS sedated. CI for MCS and UWS groups were compared using a Mann-Whitney exact test. Spearman's correlation tests were conducted between the Coma Recovery Scale-revised (CRS-R) and both CI. Discriminative power of both CI was assessed with One-R machine learning model. Correlation between CI and brain connectivity (detected with functional magnetic resonance imagery using seed-based and hypothesis-free intrinsic connectivity) was investigated using a linear regression in a subgroup of 10 UWS and 11 MCS patients with sufficient image quality. Results: Higher CIs and CIl values were observed in MCS compared to UWS. Positive correlations were found between CRS-R and both CI. The One-R classifier selected CIl as the best discriminator between UWS and MCS with 90% accuracy, 7% false positive and 13% false negative rates after a 10-fold cross-validation test. Positive correlations were observed between both CI and the recovery of functional connectivity of brain areas belonging to the central autonomic networks (CAN). Conclusion: CI of MCS compared to UWS patients has high discriminative power and low false negative rate at one third of the estimated human assessors' misdiagnosis, providing an easy, inexpensive and non-invasive diagnostic tool. CI reflects functional connectivity changes in the CAN, suggesting that CI can provide an indirect way to screen and monitor connectivity changes in this neural system. Future studies should assess the extent of CI's predictive power in a larger cohort of patients and prognostic power in acute patients.
Collapse
|
research-article |
7 |
40 |
13
|
Veronesi G, Deniaud A, Gallon T, Jouneau PH, Villanova J, Delangle P, Carrière M, Kieffer I, Charbonnier P, Mintz E, Michaud-Soret I. Visualization, quantification and coordination of Ag + ions released from silver nanoparticles in hepatocytes. NANOSCALE 2016; 8:17012-17021. [PMID: 27722394 DOI: 10.1039/c6nr04381j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Silver nanoparticles (AgNPs) can enter eukaryotic cells and exert toxic effects, most probably as a consequence of the release of Ag+ ions. Due to the elusive nature of Ag+ ionic species, quantitative information concerning AgNP intracellular dissolution is missing. By using a synchrotron nanoprobe, silver is visualized and quantified in hepatocytes (HepG2) exposed to AgNPs; the synergistic use of electron microscopy allows for the discrimination between nanoparticular and ionic forms of silver within a single cell. AgNPs are located in endocytosis vesicles, while the visualized Ag+ ions diffuse in the cell. The averaged NP dissolution rates, measured by X-ray absorption spectroscopy, highlight the faster dissolution of citrate-coated AgNPs with respect to the less toxic PVP-coated AgNPs; these results are confirmed at the single-cell level. The released Ag+ ions recombine with thiol-bearing biomolecules: the Ag-S distances measured in cellulo, and the quantitative evaluation of gene expression, provide independent evidence of the involvement of glutathione and metallothioneins in Ag+ binding. The combined use of cutting-edge imaging techniques, atomic spectroscopy and molecular biology brings insight into the fate of AgNPs in hepatocytes, and more generally into the physicochemical transformations of metallic nanoparticles in biological environments and the resulting disruption of metal homeostasis.
Collapse
|
|
9 |
37 |
14
|
Milgram S, Carrière M, Thiebault C, Malaval L, Gouget B. Cytotoxic and phenotypic effects of uranium and lead on osteoblastic cells are highly dependent on metal speciation. Toxicology 2008; 250:62-9. [DOI: 10.1016/j.tox.2008.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 12/22/2022]
|
|
17 |
31 |
15
|
Milgram S, Carrière M, Malaval L, Gouget B. Cellular accumulation and distribution of uranium and lead in osteoblastic cells as a function of their speciation. Toxicology 2008; 252:26-32. [PMID: 18708117 DOI: 10.1016/j.tox.2008.07.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/27/2008] [Accepted: 07/18/2008] [Indexed: 11/15/2022]
Abstract
Uranium (U) and lead (Pb) are accumulated and fixed for long periods in bone, impairing remodeling processes. Their toxicity to osteoblasts, the cells responsible for bone formation, is poorly documented. It has been previously shown that cytotoxicity and phenotypic effects of both metals on osteoblasts are highly influenced by metal speciation. Differences in sensitivity between cell types have been underlined as well. In this paper, cellular accumulation of U and Pb in cultured and primary osteoblastic cells was assessed by trace element analysis. Distribution of different species at the cell scale was investigated by electron microscopy. Internalization of both metals was shown to be correlated to cytotoxicity and population growth recovery after exposure. For each metal, the amount of metal uptake leading to 50% cell death was shown to be speciation-dependent. Scanning and transmission electron microscopy showed the formation of precipitates with phosphate in lysosomes for both metals, whose role in toxicity or cell defence remains to be clarified. Although a clear link was established between cytotoxicity and accumulation, differences in sensitivity observed in terms of speciation could not be fully explained and other studies seem necessary.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
26 |
16
|
Larue C, Baratange C, Vantelon D, Khodja H, Surblé S, Elger A, Carrière M. Influence of soil type on TiO 2 nanoparticle fate in an agro-ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:609-617. [PMID: 29494970 DOI: 10.1016/j.scitotenv.2018.02.264] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Nanoparticles (NPs) and in particular TiO2-NPs are increasingly included in commercial goods leading to their accumulation in sewage sludge which is spread on agricultural soils as fertilizers in many countries. Crop plants are thus a very likely point of entry for NPs in the food chain up to humans. So far, soil influence on NP fate has been under-investigated. In this article, we studied the partitioning of TiO2-NPs between soil and soil leachate, their uptake and biotransformation in wheat seedlings and their impact on plant development after exposure on 4 different types of soil with different characteristics: soil texture (from sandy to clayey), soil pH, cationic exchange capacity, organic matter content. Results suggest that a NP contamination occurring on agricultural soils will mainly lead to NP accumulation in soil (increase of Ti concentration up to 302% in sand) but to low to negligible transfer to soil leachate and plant shoot. In our experimental conditions, no sign of acute phytotoxicity has been detected (growth, biomass, chlorophyll content). Clay content above 6% together with organic matter content above 1.5% lead to translocation factor from soil to plant leaves below 2.5% (i.e. below 13mgTi·kg-1 dry leaves). Taken together, our results suggest low risk of crop contamination in an agro-ecosystem.
Collapse
|
|
7 |
24 |
17
|
Aubinet C, Cassol H, Gosseries O, Bahri MA, Larroque SK, Majerus S, Martial C, Martens G, Carrière M, Chatelle C, Laureys S, Thibaut A. Brain Metabolism but Not Gray Matter Volume Underlies the Presence of Language Function in the Minimally Conscious State (MCS): MCS+ Versus MCS- Neuroimaging Differences. Neurorehabil Neural Repair 2020; 34:172-184. [PMID: 31971884 DOI: 10.1177/1545968319899914] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. The minimally conscious state (MCS) is subcategorized into MCS- and MCS+, depending on the absence or presence, respectively, of high-level behavioral responses such as command-following. Objective. We aim to investigate the functional and structural neuroanatomy underlying the presence of these responses in MCS- and MCS+ patients. Methods. In this cross-sectional retrospective study, chronic MCS patients were diagnosed using repeated Coma Recovery Scale-Revised assessments. Fluorodeoxyglucose-positron emission tomography data were acquired on 57 patients (16 MCS-; 41 MCS+) and magnetic resonance imaging with voxel-based morphometry analysis was performed on 66 patients (17 MCS-; 49 MCS+). Brain glucose metabolism and gray matter integrity were compared between patient groups and control groups. A metabolic functional connectivity analysis testing the hypothesis of preserved language network in MCS+ compared with MCS- was also done. Results. Patients in MCS+ presented higher metabolism mainly in the left middle temporal cortex, known to be important for semantic processing, compared with the MCS- group. The left angular gyrus was also functionally disconnected from the left prefrontal cortex in MCS- compared with MCS+ group. No significant differences were found in gray matter volume between patient groups. Conclusions. The clinical subcategorization of MCS is supported by differences in brain metabolism but not in gray matter structure, suggesting that brain function in the language network is the main support for recovery of command-following, intelligible verbalization and/or intentional communication in the MCS. Better characterizing the neural correlates of residual cognitive abilities of MCS patients contributes to reduce their misdiagnosis and to adapt therapeutic approaches.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
23 |
18
|
Martens G, Fregni F, Carrière M, Barra A, Laureys S, Thibaut A. Single tDCS session of motor cortex in patients with disorders of consciousness: a pilot study. Brain Inj 2019; 33:1679-1683. [PMID: 31523995 DOI: 10.1080/02699052.2019.1667537] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Primary Objective: Patients with disorders of consciousness (DOC) face a lack of treatments and risk of misdiagnosis, potentially due to motor impairment. Transcranial direct current stimulation (tDCS) showed promising results over the prefrontal cortex in DOC and over the primary motor cortex (M1) in stroke. Tis pilot study aimed at evaluating the behavioral effects of M1 tDCS in patients with DOC.Research Design: In this randomized double-blind sham-controlled crossover trial, we included 10 patients (49 ± 22 years, 7 ± 13 months since injury, 4 unresponsive wakefulness syndrome, 6 minimally conscious state, 5 traumatic etiologies).Methods and Procedures: One session of tDCS (2 mA for 20 min) and one session of sham tDCS were applied over M1 in a randomized order with a washout period of minimum 24 h and behavioral effects were assessed using the CRS-R. At the group level, no treatment effect was identified on the total score (p = .55) and on the motor subscale (p = .75). Two patients responded to tDCS by showing a new sign of consciousness (visual pursuit and object localization).Conclusions: One session of M1 tDCS failed to improve behavioral responsiveness in patients with DOC. Other application strategies should be tested.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
21 |
19
|
Carrière M, Mortaheb S, Raimondo F, Annen J, Barra A, Binda Fossati MC, Chatelle C, Hermann B, Martens G, Di Perri C, Laureys S, Thibaut A. Neurophysiological Correlates of a Single Session of Prefrontal tDCS in Patients with Prolonged Disorders of Consciousness: A Pilot Double-Blind Randomized Controlled Study. Brain Sci 2020; 10:brainsci10070469. [PMID: 32708119 PMCID: PMC7408434 DOI: 10.3390/brainsci10070469] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
Background. Transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) was reported to promote the recovery of signs of consciousness in some patients in a minimally conscious state (MCS), but its electrophysiological effects on brain activity remain poorly understood. Objective. We aimed to assess behavioral (using the Coma Recovery Scale-Revised; CRS-R) and neurophysiological effects (using high density electroencephalography; hdEEG) of lDLPFC-tDCS in patients with prolonged disorders of consciousness (DOC). Methods. In a double-blind, sham-controlled, crossover design, one active and one sham tDCS (2 mA, 20 min) were delivered in a randomized order. Directly before and after tDCS, 10 min of hdEEG were recorded and the CRS-R was administered. Results. Thirteen patients with severe brain injury were enrolled in the study. We found higher relative power at the group level after the active tDCS session in the alpha band in central regions and in the theta band over the frontal and posterior regions (uncorrected results). Higher weighted symbolic mutual information (wSMI) connectivity was found between left and right parietal regions, and higher fronto-parietal weighted phase lag index (wPLI) connectivity was found, both in the alpha band (uncorrected results). At the group level, no significant treatment effect was observed. Three patients showed behavioral improvement after the active session and one patient improved after the sham. Conclusion. We provide preliminary indications that neurophysiological changes can be observed after a single session of tDCS in patients with prolonged DOC, although they are not necessarily paralleled with significant behavioral improvements.
Collapse
|
Journal Article |
5 |
20 |
20
|
Annen J, Filippini MM, Bonin E, Cassol H, Aubinet C, Carrière M, Gosseries O, Thibaut A, Barra A, Wolff A, Sanz LRD, Martial C, Laureys S, Chatelle C. Diagnostic accuracy of the CRS-R index in patients with disorders of consciousness. Brain Inj 2019; 33:1409-1412. [DOI: 10.1080/02699052.2019.1644376] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
|
6 |
19 |
21
|
Carrière M, Cassol H, Aubinet C, Panda R, Thibaut A, Larroque SK, Simon J, Martial C, Bahri MA, Chatelle C, Martens G, Chennu S, Laureys S, Gosseries O. Auditory localization should be considered as a sign of minimally conscious state based on multimodal findings. Brain Commun 2020; 2:fcaa195. [PMID: 33426527 PMCID: PMC7784043 DOI: 10.1093/braincomms/fcaa195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Auditory localization (i.e. turning the head and/or the eyes towards an auditory stimulus) is often part of the clinical evaluation of patients recovering from coma. The objective of this study is to determine whether auditory localization could be considered as a new sign of minimally conscious state, using a multimodal approach. The presence of auditory localization and the clinical outcome at 2 years of follow-up were evaluated in 186 patients with severe brain injury, including 64 with unresponsive wakefulness syndrome, 28 in minimally conscious state minus, 71 in minimally conscious state plus and 23 who emerged from the minimally conscious state. Brain metabolism, functional connectivity and graph theory measures were investigated by means of 18F-fluorodeoxyglucose positron emission tomography, functional MRI and high-density electroencephalography in two subgroups of unresponsive patients, with and without auditory localization. These two subgroups were also compared to a subgroup of patients in minimally conscious state minus. Auditory localization was observed in 13% of unresponsive patients, 46% of patients in minimally conscious state minus, 62% of patients in minimally conscious state plus and 78% of patients who emerged from the minimally conscious state. The probability to observe an auditory localization increased along with the level of consciousness, and the presence of auditory localization could predict the level of consciousness. Patients with auditory localization had higher survival rates (at 2-year follow-up) than those without localization. Differences in brain function were found between unresponsive patients with and without auditory localization. Higher connectivity in unresponsive patients with auditory localization was measured between the fronto-parietal network and secondary visual areas, and in the alpha band electroencephalography network. Moreover, patients in minimally conscious state minus significantly differed from unresponsive patients without auditory localization in terms of brain metabolism and alpha network centrality, whereas no difference was found with unresponsive patients who presented auditory localization. Our multimodal findings suggest differences in brain function between unresponsive patients with and without auditory localization, which support our hypothesis that auditory localization should be considered as a new sign of minimally conscious state. Unresponsive patients showing auditory localization should therefore no longer be considered unresponsive but minimally conscious. This would have crucial consequences on these patients’ lives as it would directly impact the therapeutic orientation or end-of-life decisions usually taken based on the diagnosis.
Collapse
|
Journal Article |
5 |
18 |
22
|
Jugan ML, Barillet S, Simon-Deckers A, Sauvaigo S, Douki T, Herlin N, Carrière M. Cytotoxic and Genotoxic Impact of TiO2 Nanoparticles on A549 Cells. J Biomed Nanotechnol 2011; 7:22-3. [DOI: 10.1166/jbn.2011.1181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
|
14 |
18 |
23
|
Aubinet C, Murphy L, Bahri MA, Larroque SK, Cassol H, Annen J, Carrière M, Wannez S, Thibaut A, Laureys S, Gosseries O. Brain, Behavior, and Cognitive Interplay in Disorders of Consciousness: A Multiple Case Study. Front Neurol 2018; 9:665. [PMID: 30154755 PMCID: PMC6103268 DOI: 10.3389/fneur.2018.00665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/25/2018] [Indexed: 01/11/2023] Open
Abstract
Patients with prolonged disorders of consciousness (DoC) after severe brain injury may present residual behavioral and cognitive functions. Yet the bedside assessment of these functions is compromised by patients' multiple impairments. Standardized behavioral scales such as the Coma Recovery Scale-Revised (CRS-R) have been developed to diagnose DoC, but there is also a need for neuropsychological measurement in these patients. The Cognitive Assessment by Visual Election (CAVE) was therefore recently created. In this study, we describe five patients in minimally conscious state (MCS) or emerging from the MCS (EMCS). Their cognitive profiles, derived from the CRS-R and CAVE, are presented alongside their neuroimaging results using structural magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). Scores on the CAVE decreased along with the CRS-R total score, establishing a consistent behavioral/cognitive profile for each patient. Out of these five cases, the one with highest CRS-R and CAVE performance had the least extended cerebral hypometabolism. All patients showed structural and functional brain impairments that were consistent with their behavioral/cognitive profile as based on previous literature. For instance, the presence of visual and motor residual functions was respectively associated with a relative preservation of occipital and motor cortex/cerebellum metabolism. Moreover, residual language comprehension skills were found in the presence of preserved temporal and angular cortex metabolism. Some patients also presented structural impairment of hippocampus, suggesting the presence of memory impairments. Our results suggest that brain-behavior relationships might be observed even in severely brain-injured patients and they highlight the importance of developing new tools to assess residual cognition and language in MCS and EMCS patients. Indeed, a better characterization of their cognitive profile will be helpful in preparation of rehabilitation programs and daily routines.
Collapse
|
Journal Article |
7 |
17 |
24
|
Carrière M, Larroque SK, Martial C, Bahri MA, Aubinet C, Perrin F, Laureys S, Heine L. An Echo of Consciousness: Brain Function During Preferred Music. Brain Connect 2020; 10:385-395. [DOI: 10.1089/brain.2020.0744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
|
5 |
16 |
25
|
Carrière M, Rosenberg AR, Conti F, Chouzenoux S, Terris B, Sogni P, Soubrane O, Calmus Y, Podevin P. Low density lipoprotein receptor transcripts correlates with liver hepatitis C virus RNA in patients with alcohol consumption. J Viral Hepat 2006; 13:633-42. [PMID: 16907851 DOI: 10.1111/j.1365-2893.2006.00737.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alcohol consumption has a major impact on the natural history of chronic hepatitis C virus (HCV) infection, although the underlying mechanisms are still debated. We designed a clinical study to evaluate the impact of alcohol abuse on both viral load and expression of low-density lipoprotein receptor (LDLR) and CD81 expression. Thirty-eight consecutive HCV-infected patients were enrolled. Group 1 (n = 18), < or =10 g alcohol/day, group 2 (n = 8), < or =30 g alcohol/day, group 3 (n = 12), >or =30 g alcohol/day. Receptors expression was measured by flow cytometry analysis in peripheral blood mononuclear cells (PBMC) and by specific real-time retrotranscription polymerase chain reaction (RT-PCR) in the liver. Serum viral load was evaluated by quantification of both HCV genomic RNA and total core antigen. The hepatic viral load was assessed by real-time RT-PCR. Serum HCV-RNA and total core antigen were significantly correlated, and were higher, albeit not significantly, in group 3 than in group 1. Alcohol consumption had no effect on expression of HCV putative receptors in PBMC, except for CD81, which was upregulated on monocytes in group 2. In the liver, viral load and levels of LDLR transcripts were significantly higher in group 3 than in group 1. Remarkably, a significant positive correlation was found between LDLR transcripts and HCV-RNA (r2 = 0.83, P < 10(-3)). Finally, in vitro experiments suggested that the effect of ethanol on LDLR expression was indirectly mediated by both tumour necrosis factor-alpha and interleukin-1beta. In conclusion, this study is the first to support a role for LDLR in the natural infection by HCV in man.
Collapse
MESH Headings
- Adult
- Alcohol Drinking
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Flow Cytometry
- Gene Expression Profiling
- Hepacivirus/genetics
- Hepacivirus/isolation & purification
- Hepacivirus/physiology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/metabolism
- Hepatitis C, Chronic/virology
- Humans
- Leukocytes, Mononuclear/chemistry
- Liver/metabolism
- Liver/virology
- Male
- Middle Aged
- RNA, Viral/analysis
- RNA, Viral/blood
- Receptors, LDL/biosynthesis
- Receptors, LDL/genetics
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Statistics as Topic
- Tetraspanin 28
- Transcription, Genetic
- Viral Load
Collapse
|
|
19 |
15 |