1
|
Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD, Seshadri M, Cai W, Kim C, Lovell JF. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. NATURE NANOTECHNOLOGY 2014; 9:631-8. [PMID: 24997526 PMCID: PMC4130353 DOI: 10.1038/nnano.2014.130] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/02/2014] [Indexed: 04/14/2023]
Abstract
There is a need for safer and improved methods for non-invasive imaging of the gastrointestinal tract. Modalities based on X-ray radiation, magnetic resonance and ultrasound suffer from limitations with respect to safety, accessibility or lack of adequate contrast. Functional intestinal imaging of dynamic gut processes has not been practical using existing approaches. Here, we report the development of a family of nanoparticles that can withstand the harsh conditions of the stomach and intestine, avoid systemic absorption, and provide good optical contrast for photoacoustic imaging. The hydrophobicity of naphthalocyanine dyes was exploited to generate purified ∼ 20 nm frozen micelles, which we call nanonaps, with tunable and large near-infrared absorption values (>1,000). Unlike conventional chromophores, nanonaps exhibit non-shifting spectra at ultrahigh optical densities and, following oral administration in mice, passed safely through the gastrointestinal tract. Non-invasive, non-ionizing photoacoustic techniques were used to visualize nanonap intestinal distribution with low background and remarkable resolution, and enabled real-time intestinal functional imaging with ultrasound co-registration. Positron emission tomography following seamless nanonap radiolabelling allowed complementary whole-body imaging.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
316 |
2
|
Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G. Porphyrin Shell Microbubbles with Intrinsic Ultrasound and Photoacoustic Properties. J Am Chem Soc 2012; 134:16464-7. [DOI: 10.1021/ja305988f] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
|
13 |
156 |
3
|
Jeon M, Gardner HF, Miller EA, Deshler J, Rougvie AE. Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 1999; 286:1141-6. [PMID: 10550049 DOI: 10.1126/science.286.5442.1141] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Caenorhabditis elegans heterochronic genes control the relative timing and sequence of many events during postembryonic development, including the terminal differentiation of the lateral hypodermis, which occurs during the final (fourth) molt. Inactivation of the heterochronic gene lin-42 causes hypodermal terminal differentiation to occur precociously, during the third molt. LIN-42 most closely resembles the Period family of proteins from Drosophila and other organisms, proteins that function in another type of biological timing mechanism: the timing of circadian rhythms. Per mRNA levels oscillate with an approximately 24-hour periodicity. lin-42 mRNA levels also oscillate, but with a faster rhythm; the oscillation occurs relative to the approximately 6-hour molting cycles of postembryonic development.
Collapse
|
|
26 |
153 |
4
|
Jung W, Kim J, Jeon M, Chaney EJ, Stewart CN, Boppart SA. Handheld optical coherence tomography scanner for primary care diagnostics. IEEE Trans Biomed Eng 2010; 58:741-4. [PMID: 21134801 DOI: 10.1109/tbme.2010.2096816] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The goal of this study is to develop an advanced point-of-care diagnostic instrument for use in a primary care office using handheld optical coherence tomography (OCT). This system has the potential to enable earlier detection of diseases and accurate image-based diagnostics. Our system was designed to be compact, portable, user-friendly, and fast, making it well suited for the primary care office setting. The unique feature of our system is a versatile handheld OCT imaging scanner which consists of a pair of computer-controlled galvanometer-mounted mirrors, interchangeable lens mounts, and miniaturized video camera. This handheld scanner has the capability to guide the physician in real time for finding suspicious regions to be imaged by OCT. In order to evaluate the performance and use of the handheld OCT scanner, the anterior chamber of a rat eye and in vivo human retina, cornea, skin, and tympanic membrane were imaged. Based on this feasibility study, we believe that this new type of handheld OCT device and system has the potential to be an efficient point-of-care imaging tool in primary care medicine.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
119 |
5
|
Liu X, Law WC, Jeon M, Wang X, Liu M, Kim C, Prasad PN, Swihart MT. Cu2-x Se nanocrystals with localized surface plasmon resonance as sensitive contrast agents for in vivo photoacoustic imaging: demonstration of sentinel lymph node mapping. Adv Healthc Mater 2013; 2:952-7. [PMID: 23300055 DOI: 10.1002/adhm.201200388] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/22/2012] [Indexed: 12/31/2022]
|
|
12 |
86 |
6
|
Lee C, Kim J, Zhang Y, Jeon M, Liu C, Song L, Lovell JF, Kim C. Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines. Biomaterials 2015; 73:142-8. [PMID: 26408999 DOI: 10.1016/j.biomaterials.2015.09.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/30/2015] [Accepted: 09/09/2015] [Indexed: 02/01/2023]
Abstract
Demarking lymph node networks is important for cancer staging in clinical practice. Here, we demonstrate in vivo dual-color photoacoustic lymphangiography using all-organic nanoformulated naphthalocyanines (referred to as nanonaps). Nanonap frozen micelles were self-assembled from two different naphthalocyanine dyes with near-infrared absorption at 707 nm or 860 nm. These allowed for noninvasive, nonionizing, high resolution photoacoustic identification of separate lymphatic drainage systems in vivo. With both types of nanonaps, rat lymph nodes buried deeply below an exogenously-placed 10 mm thick layer of chicken breast were clearly visualized in vivo. These results show the potential of multispectral photoacoustic imaging with nanonaps for detailed mapping of lymphatic drainage systems.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
79 |
7
|
Srivatsan A, Jenkins SV, Jeon M, Wu Z, Kim C, Chen J, Pandey R. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Am J Cancer Res 2014; 4:163-74. [PMID: 24465274 PMCID: PMC3900801 DOI: 10.7150/thno.7064] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022] Open
Abstract
We have demonstrated that gold nanocage-photosensitizer conjugates can enable dual image-guided delivery of photosensitizer and significantly improve the efficacy of photodynamic therapy in a murine model. The photosensitizer, 3-devinyl-3-(1'-hexyloxyethyl)pyropheophorbide (HPPH), was noncovalently entrapped in the poly(ethylene glycol) monolayer coated on the surface of gold nanocages. The conjugate is stable in saline solutions, while incubation in protein rich solutions leads to gradual unloading of the HPPH, which can be monitored optically by fluorescence and photoacoustic imaging. The slow nature of the release in turn results in an increase in accumulation of the drug within implanted tumors due to the passive delivery of gold nanocages. Furthermore, the conjugate is found to generate more therapeutic singlet oxygen and have a lower IC50 value than the free drug alone. Thus the conjugate shows significant suppression of tumor growth as compared to the free drug in vivo. Short-term study showed neither toxicity nor phenotypical changes in mice at therapeutic dose of the conjugates or even at 100-fold higher than therapeutic dose of gold nanocages.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
79 |
8
|
Song J, Kim J, Hwang S, Jeon M, Jeong S, Kim C, Kim S. “Smart” gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation. Chem Commun (Camb) 2016; 52:8287-90. [DOI: 10.1039/c6cc03100e] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
pH-Responsive “smart” gold nanoparticles were demonstrated as a new photoacoustic imaging agent that can selectively respond to the cancer microenvironment and show the amplified signal in vivo.
Collapse
|
|
9 |
77 |
9
|
Jeon M, Kim J, Kim C. Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo. Med Biol Eng Comput 2014; 54:283-94. [PMID: 25115270 DOI: 10.1007/s11517-014-1182-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/30/2014] [Indexed: 02/04/2023]
Abstract
We have successfully developed a multiscale acoustic-resolution photoacoustic tomography system in a single imaging platform. By switching between ultrasound transducers (center frequencies 5 and 40 MHz) and optical condensers, we have photoacoustically imaged microvasculatures of small animals in vivo at different scales. Further, we have extended the field of view of our imaging system to entire bodies of small animals. At different imaging planes, we have noninvasively imaged the major blood vessels (e.g., descending aorta, intercostal vessels, cephalic vessels, brachial vessels, femoral vessels, popliteal vessels, lateral marginal vessels, cranial mesenteric vessels, mammalian vessels, carotid artery, jugular vein, subclavian vessels, iliac vessels, and caudal vessels) as well as intact internal organs (e.g., spleen, liver, kidney, intestine, cecum, and spinal cord) of the animals in vivo. The spectroscopic whole-body photoacoustic imaging clearly reveals the spectral responses of the internal structures. Similar to other existing preclinical whole-body imaging systems, this whole-body photoacoustic tomography can be a useful tool for small-animal research.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
77 |
10
|
Song JS, Takimoto K, Jeon M, Vadakekalam J, Ruparel NB, Diogenes A. Decellularized Human Dental Pulp as a Scaffold for Regenerative Endodontics. J Dent Res 2017; 96:640-646. [PMID: 28196330 DOI: 10.1177/0022034517693606] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Teeth undergo postnatal organogenesis relatively late in life and only complete full maturation a few years after the crown first erupts in the oral cavity. At this stage, development can be arrested if the tooth organ is damaged by either trauma or caries. Regenerative endodontic procedures (REPs) are a treatment alternative to conventional root canal treatment for immature teeth. These procedures rely on the transfer of apically positioned stem cells, including stem cells of the apical papilla (SCAP), into the root canal system. Although clinical success has been reported for these procedures, the predictability of expected outcomes and the organization of the newly formed tissues are affected by the lack of an available suitable scaffold that mimics the complexity of the dental pulp extracellular matrix (ECM). In this study, we evaluated 3 methods of decellularization of human dental pulp to be used as a potential autograft scaffold. Tooth slices of human healthy extracted third molars were decellularized by 3 different methods. One of the methods generated the maximum observed decellularization with minimal impact on the ECM composition and organization. Furthermore, recellularization of the scaffold supported the proliferation of SCAP throughout the scaffold with differentiation into odontoblast-like cells near the dentinal walls. Thus, this study reports that human dental pulp from healthy extracted teeth can be successfully decellularized, and the resulting scaffold supports the proliferation and differentiation of SCAP. The future application of this form of an autograft in REPs can fulfill a yet unmet need for a suitable scaffold, potentially improving clinical outcomes and ultimately promoting the survival and function of teeth with otherwise poor prognosis.
Collapse
|
Journal Article |
8 |
75 |
11
|
Liu X, Lee C, Law WC, Zhu D, Liu M, Jeon M, Kim J, Prasad PN, Kim C, Swihart MT. Au-Cu(2-x)Se heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. NANO LETTERS 2013; 13:4333-9. [PMID: 23984758 DOI: 10.1021/nl402124h] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We report a new type of heterogeneous nanoparticles (NPs) composed of a heavily doped semiconductor domain (Cu2-xSe) and a metal domain (Au), which exhibit a broad localized surface plasmon resonance (LSPR) across visible and near-infrared (NIR) wavelengths, arising from interactions between the two nanocrystal domains. We demonstrate both in vivo photoacoustic imaging and in vitro dark field imaging, using the broad LSPR in Cu2-xSe-Au hybrid NPs to achieve contrast at different wavelengths. The high photoacoustic imaging depth achieved, up to 17 mm, shows that these novel contrast agents could be clinically relevant. More broadly, this work demonstrates a new strategy for tuning LSPR absorbance by engineering the density of free charge carriers in two interacting domains.
Collapse
|
|
12 |
71 |
12
|
Koo J, Jeon M, Oh Y, Kang HW, Kim J, Kim C, Oh J. In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes. Phys Med Biol 2012; 57:7853-62. [PMID: 23151772 DOI: 10.1088/0031-9155/57/23/7853] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We demonstrate the feasibility of mapping a sentinel lymph node (SLN) and urinary bladder by using modified single-walled carbon nanotubes (SWNTs) as a nonionizing photoacoustic (PA) contrast agent. To improve the PA sensitivity, indocyanine green (ICG) was conjugated with SWNTs and the optical absorption of SWNTs-ICG was enhanced by approximately four times compared to that of plain SWNTs at a concentration of 0.3 µM. In vivo PA imaging results showed that the SLN and bladder were clearly visualized due to accumulation of SWNTs-ICG. This implies that the SWNTs-ICG could be potentially utilized to identify SLNs in breast cancer patients and tracking vesicoureteral reflux in combination with PA imaging.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
56 |
13
|
Jeon M, Alexander M, Pedrycz W, Pizzi N. Unsupervised hierarchical image segmentation with level set and additive operator splitting. Pattern Recognit Lett 2005. [DOI: 10.1016/j.patrec.2004.11.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
20 |
53 |
14
|
Finkenstadt PM, Kang WS, Jeon M, Taira E, Tang W, Baraban JM. Somatodendritic localization of Translin, a component of the Translin/Trax RNA binding complex. J Neurochem 2000; 75:1754-62. [PMID: 10987859 DOI: 10.1046/j.1471-4159.2000.0751754.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies implicating dendritic protein synthesis in synaptic plasticity have focused attention on identifying components of the molecular machinery involved in processing dendritic RNA. Although Translin was originally identified as a protein capable of binding single-stranded DNA, subsequent studies have demonstrated that it also binds RNA in vitro. Because previous studies indicated that Translin-containing RNA/single-stranded DNA binding complexes are highly enriched in brain, we and others have proposed that it may be involved in dendritic RNA processing. To assess this possibility, we have conducted studies aimed at defining the localization of Translin and its partner protein, Trax, in brain. In situ hybridization studies demonstrated that both Translin and Trax are expressed in neurons with prominent staining apparent in cerebellar Purkinje cells and neuronal layers of the hippocampus. Subcellular fractionation studies demonstrated that both Translin and Trax are highly enriched in the cytoplasmic fraction compared with nuclear extracts. Furthermore, immunohistochemical studies with Translin antibodies revealed prominent staining in Purkinje neuron cell bodies that extends into proximal and distal dendrites. A similar pattern of somatodendritic localization was observed in hippocampal and neocortical pyramidal neurons. These findings demonstrate that Translin is expressed in neuronal dendrites and therefore support the hypothesis that the Translin/Trax complex may be involved in dendritic RNA processing.
Collapse
|
|
25 |
51 |
15
|
Jeon M, Song W, Huynh E, Kim J, Kim J, Helfield BL, Leung BYC, Goertz DE, Zheng G, Oh J, Lovell JF, Kim C. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:16005. [PMID: 24390438 DOI: 10.1117/1.jbo.19.1.016005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.
Collapse
|
|
11 |
51 |
16
|
Lee MY, Lee C, Jung HS, Jeon M, Kim KS, Yun SH, Kim C, Hahn SK. Biodegradable Photonic Melanoidin for Theranostic Applications. ACS NANO 2016; 10:822-831. [PMID: 26623481 DOI: 10.1021/acsnano.5b05931] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Light-absorbing nanoparticles for localized heat generation in tissues have various biomedical applications in diagnostic imaging, surgery, and therapies. Although numerous plasmonic and carbon-based nanoparticles with strong optical absorption have been developed, their clearance, potential cytotoxicity, and long-term safety issues remain unresolved. Here, we show that "generally regarded as safe (GRAS)" melanoidins prepared from glucose and amino acid offer a high light-to-heat conversion efficiency, biocompatibility, biodegradability, nonmutagenicity, and efficient renal clearance, as well as a low cost for synthesis. We exhibit a wide range of biomedical photonic applications of melanoidins, including in vivo photoacoustic mapping of sentinel lymph nodes, photoacoustic tracking of gastrointestinal tracts, photothermal cancer therapy, and photothermal lipolysis. The biodegradation rate and renal clearance of melanoidins are controllable by design. Our results confirm the feasibility of biodegradable melanoidins for various photonic applications to theranostic nanomedicines.
Collapse
|
|
9 |
46 |
17
|
Lee C, Jeon M, Jeon MY, Kim J, Kim C. In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source. APPLIED OPTICS 2014; 53:3884-9. [PMID: 24979418 DOI: 10.1364/ao.53.003884] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We have utilized a single pulsed broadband supercontinuum laser source to photoacoustically sense total hemoglobin concentration (HbT) and oxygen saturation of hemoglobin (SO2) in bloods in vitro. Unlike existing expensive and bulky laser systems typically used for functional photoacoustic imaging (PAI), our laser system is relatively cost-effective and compact. Instead of using two single wavelengths, two wavelength bands were applied to distinguish the concentrations of two different chromophores in the mixture. In addition, we have successfully extracted the total dye concentration and the ratio of the red dye concentration to the total dye concentration in mixed red and blue dye solutions in phantoms. The results indicate that PAI with a cheap and compact fiber based laser source can potentially provide HbT and SO2 in live animals in vivo.
Collapse
|
|
11 |
41 |
18
|
Lee C, Han S, Kim S, Jeon M, Jeon MY, Kim C, Kim J. Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source. APPLIED OPTICS 2013; 52:1824-8. [PMID: 23518723 DOI: 10.1364/ao.52.001824] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We developed an integrated dual-modal photoacoustic and optical coherence tomography (PA-OCT) system using a single near-infrared supercontinuum laser source to simultaneously provide both optical absorption and scattering contrasts. A pulsed broadband supercontinuum source was generated by a pulsed Nd:YAG laser and a photonic-crystal fiber. When we imaged two colored hairs, the black hair was visible in both PA and OCT images, whereas the white hair was only mapped in the OCT image. The single laser source will potentially allow us to implement relatively simple, cheap, and compact dual-modal PA-OCT systems, which are key criteria for fast clinical translation and commercialization.
Collapse
|
|
12 |
39 |
19
|
Zhang Y, Hong H, Sun B, Carter K, Qin Y, Wei W, Wang D, Jeon M, Geng J, Nickles RJ, Chen G, Prasad PN, Kim C, Xia J, Cai W, Lovell JF. Surfactant-stripped naphthalocyanines for multimodal tumor theranostics with upconversion guidance cream. NANOSCALE 2017; 9:3391-3398. [PMID: 28247896 PMCID: PMC5435468 DOI: 10.1039/c6nr09321c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Surfactant-stripped, nanoformulated naphthalocyanines (nanonaps) can be formed with Pluronic F127 and low temperature membrane processing, resulting in dispersed frozen micelles with extreme contrast in the near infrared region. Here, we demonstrate that nanonaps can be used for multifunctional cancer theranostics. This includes lymphatic mapping and whole tumor photoacoustic imaging following intradermal or intravenous injection in rodents. Without further modification, pre-formed nanonaps were used for positron emission tomography and passively accumulated in subcutaneous murine tumors. Because the nanonaps used absorb light beyond the visible range, a topical upconversion skin cream was developed for anti-tumor photothermal therapy with laser placement that can be guided by the naked eye.
Collapse
|
research-article |
8 |
36 |
20
|
Mehtala JG, Torregrosa-Allen S, Elzey BD, Jeon M, Kim C, Wei A. Synergistic effects of cisplatin chemotherapy and gold nanorod-mediated hyperthermia on ovarian cancer cells and tumors. Nanomedicine (Lond) 2014; 9:1939-55. [PMID: 24498890 DOI: 10.2217/nnm.13.209] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM The synergistic effects of gold nanorod (GNR)-mediated mild hyperthermia (MHT; 42-43°C) and cisplatin (CP) activity was evaluated against chemoresistant SKOV3 cells in vitro and with a tumor xenograft model. MATERIALS & METHODS In vitro studies were performed using CP at cytostatic concentrations (5 µM) and polyethylene glycol-stabilized GNRs, using near-infrared laser excitation for MHT. RESULTS The amount of polyethylene glycol-GNRs used for environmental MHT was 1 µg/ml, several times lower than the loadings used in tumor tissue ablation. GNR-mediated MHT increased CP-mediated cytotoxicity by 80%, relative to the projected additive effect, and flow cytometry analysis suggested MHT also enhanced CP-induced apoptosis. In a pilot in vivo study, systemically administered polyethylene glycol-GNRs generated sufficient levels of MHT to enhance CP-induced reductions in tumor volume, despite their heterogeneous distribution in tumor tissue. CONCLUSION These studies imply that effective chemotherapies can be developed in combination with low loadings of nanoparticles for localized MHT. Original submitted 6 July 2013; Revised submitted 20 October 2013.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
35 |
21
|
Jeon M, Zhao Y. Honey in combination with vacuum impregnation to prevent enzymatic browning of fresh-cut apples. Int J Food Sci Nutr 2005; 56:165-76. [PMID: 16009631 DOI: 10.1080/09637480500131053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study evaluated the antioxidative capacity of 13 US Northwest honeys from different floral sources and their anti-browning effect on fresh-cut apples. The inhibitory effect of honey on enzymatic browning of fresh-cut apples were studied by simply immersing apple slices in 10% honey solution for 30 min or vacuum impregnating (vacuum at 75 mmHg for 15 min followed with 30 min restoration at atmospheric pressure) in the same honey solution. The 10% diluted high-fructose corn syrup solution was used as a comparison. The surface color of the apple slices was monitored during 14 days of storage at 3 degrees C and 90% relative humidity. Physicochemical properties of the apples immediately after treatment were also evaluated. Wildflower honey had the darkest color and the highest antioxidative capacity among all test honeys. Vacuum impregnation with honey was more effective in controlling browning discoloration than that of simple immersion treatment. Honey in combination with vacuum impregnating operation may have a great potential for developing high-quality fresh-cut fruits.
Collapse
|
Journal Article |
20 |
27 |
22
|
Abstract
We demonstrate the feasibility of a novel and nonionizing process for bladder imaging in vivo, called photoacoustic cystography (PAC). Using a photoacoustic imaging system, we have successfully imaged a rat bladder filled with clinically used Methylene Blue (MB) dye. An image contrast of ~8 was achieved. Further, spectroscopic PAC confirmed the accumulation of MB in the bladder. Using a laser pulse energy of less than 1 mJ/cm² (1/20 of the ANSI safety limit), a deeply (1.2 cm) positioned bladder in biological tissues was clearly visible in the PA image. Our results suggest that PAC can potentially provide a nonionizing, relatively cheap, and portable tool for bladder mapping. Among our clinical interests, nonionizing PAC with an injection of MB can potentially monitor vesicoureteral reflux in children.
Collapse
|
|
14 |
26 |
23
|
Park S, Kim J, Jeon M, Song J, Kim C. In vivo photoacoustic and fluorescence cystography using clinically relevant dual modal indocyanine green. SENSORS (BASEL, SWITZERLAND) 2014; 14:19660-8. [PMID: 25337743 PMCID: PMC4239921 DOI: 10.3390/s141019660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 01/02/2023]
Abstract
Conventional X-ray-based cystography uses radio-opaque materials, but this method uses harmful ionizing radiation and is not sensitive. In this study, we demonstrate nonionizing and noninvasive photoacoustic (PA) and fluorescence (FL) cystography using clinically relevant indocyanine green (ICG) in vivo. After transurethral injection of ICG into rats through a catheter, their bladders were photoacoustically and fluorescently visualized. A deeply positioned bladder below the skin surface (i.e., ~1.5-5 mm) was clearly visible in the PA and FL image using a laser pulse energy of less than 2 mJ/cm2 (1/15 of the safety limit). Then, the in vivo imaging results were validated through in situ studies. Our results suggest that dual modal cystography can provide a nonionizing and noninvasive imaging tool for bladder mapping.
Collapse
|
research-article |
11 |
24 |
24
|
Jeon M, Kim J, Jung U, Lee C, Jung W, Boppart SA. Full-range k-domain linearization in spectral-domain optical coherence tomography. APPLIED OPTICS 2011; 50:1158-63. [PMID: 21394187 PMCID: PMC3199945 DOI: 10.1364/ao.50.001158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
22 |
25
|
Ohulchanskyy TY, Kopwitthaya A, Jeon M, Guo M, Law WC, Furlani EP, Kim C, Prasad PN. Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1192-202. [DOI: 10.1016/j.nano.2013.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/19/2013] [Accepted: 05/25/2013] [Indexed: 12/29/2022]
|
|
12 |
21 |