1
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
|
Review |
10 |
358 |
2
|
Tozzi A, de Iure A, Bagetta V, Tantucci M, Durante V, Quiroga-Varela A, Costa C, Di Filippo M, Ghiglieri V, Latagliata EC, Wegrzynowicz M, Decressac M, Giampà C, Dalley JW, Xia J, Gardoni F, Mellone M, El-Agnaf OM, Ardah MT, Puglisi-Allegra S, Björklund A, Spillantini MG, Picconi B, Calabresi P. Alpha-Synuclein Produces Early Behavioral Alterations via Striatal Cholinergic Synaptic Dysfunction by Interacting With GluN2D N-Methyl-D-Aspartate Receptor Subunit. Biol Psychiatry 2016; 79:402-414. [PMID: 26392130 DOI: 10.1016/j.biopsych.2015.08.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/20/2015] [Accepted: 08/09/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Advanced Parkinson's disease (PD) is characterized by massive degeneration of nigral dopaminergic neurons, dramatic motor and cognitive alterations, and presence of nigral Lewy bodies, whose main constituent is α-synuclein (α-syn). However, the synaptic mechanisms underlying behavioral and motor effects induced by early selective overexpression of nigral α-syn are still a matter of debate. METHODS We performed behavioral, molecular, and immunohistochemical analyses in two transgenic models of PD, mice transgenic for truncated human α-synuclein 1-120 and rats injected with the adeno-associated viral vector carrying wild-type human α-synuclein. We also investigated striatal synaptic plasticity by electrophysiological recordings from spiny projection neurons and cholinergic interneurons. RESULTS We found that overexpression of truncated or wild-type human α-syn causes partial reduction of striatal dopamine levels and selectively blocks the induction of long-term potentiation in striatal cholinergic interneurons, producing early memory and motor alterations. These effects were dependent on α-syn modulation of the GluN2D-expressing N-methyl-D-aspartate receptors in cholinergic interneurons. Acute in vitro application of human α-syn oligomers mimicked the synaptic effects observed ex vivo in PD models. CONCLUSIONS We suggest that striatal cholinergic dysfunction, induced by a direct interaction between α-syn and GluN2D-expressing N-methyl-D-aspartate receptors, represents a precocious biological marker of the disease.
Collapse
|
|
9 |
79 |
3
|
Durante V, de Iure A, Loffredo V, Vaikath N, De Risi M, Paciotti S, Quiroga-Varela A, Chiasserini D, Mellone M, Mazzocchetti P, Calabrese V, Campanelli F, Mechelli A, Di Filippo M, Ghiglieri V, Picconi B, El-Agnaf OM, De Leonibus E, Gardoni F, Tozzi A, Calabresi P. Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain 2020; 142:1365-1385. [PMID: 30927362 DOI: 10.1093/brain/awz065] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 01/07/2019] [Accepted: 01/25/2019] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by altered striatal dopaminergic signalling that leads to motor and cognitive deficits. Parkinson's disease is also characterized by abnormal presence of soluble toxic forms of α-synuclein that, when clustered into Lewy bodies, represents one of the pathological hallmarks of the disease. However, α-synuclein oligomers might also directly affect synaptic transmission and plasticity in Parkinson's disease models. Accordingly, by combining electrophysiological, optogenetic, immunofluorescence, molecular and behavioural analyses, here we report that α-synuclein reduces N-methyl-d-aspartate (NMDA) receptor-mediated synaptic currents and impairs corticostriatal long-term potentiation of striatal spiny projection neurons, of both direct (D1-positive) and indirect (putative D2-positive) pathways. Intrastriatal injections of α-synuclein produce deficits in visuospatial learning associated with reduced function of GluN2A NMDA receptor subunit indicating that this protein selectively targets this subunit both in vitro and ex vivo. Interestingly, this effect is observed in spiny projection neurons activated by optical stimulation of either cortical or thalamic glutamatergic afferents. We also found that treatment of striatal slices with antibodies targeting α-synuclein prevents the α-synuclein-induced loss of long-term potentiation and the reduced synaptic localization of GluN2A NMDA receptor subunit suggesting that this strategy might counteract synaptic dysfunction occurring in Parkinson's disease.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
75 |
4
|
Mellone M, Stanic J, Hernandez LF, Iglesias E, Zianni E, Longhi A, Prigent A, Picconi B, Calabresi P, Hirsch EC, Obeso JA, Di Luca M, Gardoni F. NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Front Cell Neurosci 2015. [PMID: 26217176 PMCID: PMC4491616 DOI: 10.3389/fncel.2015.00245] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Levodopa-induced dyskinesias (LIDs) are major complications in the pharmacological management of Parkinson's disease (PD). Abnormal glutamatergic transmission in the striatum is considered a key factor in the development of LIDs. This work aims at: (i) characterizing N-methyl-D-aspartate (NMDA) receptor GluN2A/GluN2B subunit ratio as a common synaptic trait in rat and primate models of LIDs as well as in dyskinetic PD patients; and (ii) validating the potential therapeutic effect of a cell-permeable peptide (CPP) interfering with GluN2A synaptic localization on the dyskinetic behavior of these experimental models of LIDs. Here we demonstrate an altered ratio of synaptic GluN2A/GluN2B-containing NMDA receptors in the striatum of levodopa-treated dyskinetic rats and monkeys as well as in post-mortem tissue from dyskinetic PD patients. The modulation of synaptic NMDA receptor composition by a cell-permeable peptide interfering with GluN2A subunit interaction with the scaffolding protein postsynaptic density protein 95 (PSD-95) leads to a reduction in the dyskinetic motor behavior in the two animal models of LIDs. Our results indicate that targeting synaptic NMDA receptor subunit composition may represent an intriguing therapeutic approach aimed at ameliorating levodopa motor side effects.
Collapse
|
Journal Article |
10 |
57 |
5
|
Mellone M, Pelucchi S, Alberti L, Genazzani AA, Di Luca M, Gardoni F. Zinc transporter-1: a novel NMDA receptor-binding protein at the postsynaptic density. J Neurochem 2015; 132:159-68. [PMID: 25319628 DOI: 10.1111/jnc.12968] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 01/31/2023]
Abstract
Zinc (Zn(2+) ) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn(2+) homeostasis is critical and involves different classes of molecules, including Zn(2+) transporters. The ubiquitous Zn(2+) transporter-1 (ZNT-1) is a transmembrane protein that pumps cytosolic Zn(2+) to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT-1 interacts with GluN2A-containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT-1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two-hybrid screening, coimmunoprecipitation experiments and clustering assay in COS-7 cells demonstrated that ZNT-1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull-down assays indicated GluN2A(1390-1464) domain as necessary for the binding to ZNT-1. Most importantly, ZNT-1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT-1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD-95 clusters and GluN2A surface levels, supporting the involvement of ZNT-1 in the dynamics of excitatory PSD. Zn(2+) transporter-1 (ZNT-1) pumps cytosolic Zn(2+) to the extracellular space, but its function in the central nervous system is not fully understood. We show that ZNT-1 interacts with GluN2A-containing NMDA receptors at the glutamatergic synapse. Most importantly, ZNT-1/GluN2A complex is regulated by induction of synaptic plasticity. Modulation of ZNT-1 expression in hippocampal neurons determined a shrinkage of dendritic spines and a reduction of GluN2A surface levels supporting the involvement of ZNT-1 in the dynamics of the excitatory synapse.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
43 |
6
|
Ghiglieri V, Mineo D, Vannelli A, Cacace F, Mancini M, Pendolino V, Napolitano F, di Maio A, Mellone M, Stanic J, Tronci E, Fidalgo C, Stancampiano R, Carta M, Calabresi P, Gardoni F, Usiello A, Picconi B. Modulation of serotonergic transmission by eltoprazine in L-DOPA-induced dyskinesia: Behavioral, molecular, and synaptic mechanisms. Neurobiol Dis 2016; 86:140-53. [DOI: 10.1016/j.nbd.2015.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022] Open
|
|
9 |
38 |
7
|
Stanic J, Mellone M, Napolitano F, Racca C, Zianni E, Minocci D, Ghiglieri V, Thiolat ML, Li Q, Longhi A, De Rosa A, Picconi B, Bezard E, Calabresi P, Di Luca M, Usiello A, Gardoni F. Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias. Neurobiol Dis 2017; 108:54-64. [PMID: 28823933 DOI: 10.1016/j.nbd.2017.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/19/2017] [Accepted: 08/16/2017] [Indexed: 11/26/2022] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR) subunit composition strictly commands receptor function and pharmacological responses. Changes in NMDAR subunit composition have been documented in brain disorders such as Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesias (LIDs), where an increase of NMDAR GluN2A/GluN2B subunit ratio at striatal synapses has been observed. A therapeutic approach aimed at rebalancing NMDAR synaptic composition represents a valuable strategy for PD and LIDs. To this, the comprehension of the molecular mechanisms regulating the synaptic localization of different NMDAR subtypes is required. We have recently demonstrated that Rabphilin 3A (Rph3A) is a new binding partner of NMDARs containing the GluN2A subunit and that it plays a crucial function in the synaptic stabilization of these receptors. Considering that protein-protein interactions govern the synaptic retention of NMDARs, the purpose of this work was to analyse the role of Rph3A and Rph3A/NMDAR complex in PD and LIDs, and to modulate Rph3A/GluN2A interaction to counteract the aberrant motor behaviour associated to chronic L-DOPA administration. Thus, an array of biochemical, immunohistochemical and pharmacological tools together with electron microscopy were applied in this study. Here we found that Rph3A is localized at the striatal postsynaptic density where it interacts with GluN2A. Notably, Rph3A expression at the synapse and its interaction with GluN2A-containing NMDARs were increased in parkinsonian rats displaying a dyskinetic profile. Acute treatment of dyskinetic animals with a cell-permeable peptide able to interfere with Rph3A/GluN2A binding significantly reduced their abnormal motor behaviour. Altogether, our findings indicate that Rph3A activity is linked to the aberrant synaptic localization of GluN2A-expressing NMDARs characterizing LIDs. Thus, we suggest that Rph3A/GluN2A complex could represent an innovative therapeutic target for those pathological conditions where NMDAR composition is significantly altered.
Collapse
|
|
8 |
35 |
8
|
Dinamarca MC, Guzzetti F, Karpova A, Lim D, Mitro N, Musardo S, Mellone M, Marcello E, Stanic J, Samaddar T, Burguière A, Caldarelli A, Genazzani AA, Perroy J, Fagni L, Canonico PL, Kreutz MR, Gardoni F, Di Luca M. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus. eLife 2016; 5:e12430. [PMID: 26977767 PMCID: PMC4805553 DOI: 10.7554/elife.12430] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
Synapses and nuclei are connected by bidirectional communication mechanisms that enable information transfer encoded by macromolecules. Here, we identified RNF10 as a novel synaptonuclear protein messenger. RNF10 is activated by calcium signals at the postsynaptic compartment and elicits discrete changes at the transcriptional level. RNF10 is enriched at the excitatory synapse where it associates with the GluN2A subunit of NMDA receptors (NMDARs). Activation of synaptic GluN2A-containing NMDARs and induction of long term potentiation (LTP) lead to the translocation of RNF10 from dendritic segments and dendritic spines to the nucleus. In particular, we provide evidence for importin-dependent long-distance transport from synapto-dendritic compartments to the nucleus. Notably, RNF10 silencing prevents the maintenance of LTP as well as LTP-dependent structural modifications of dendritic spines. DOI:http://dx.doi.org/10.7554/eLife.12430.001 Brain activity depends on the communication between neurons. This process takes place at the junctions between neurons, which are known as synapses, and typically involves one of the cells releasing a chemical messenger that binds to receptors on the other cell. The binding triggers a cascade of events inside the recipient cell, including the production of new receptors and their insertion into the cell membrane. These changes strengthen the synapse and are thought to be one of the ways in which the brain establishes and maintains memories. However, in order to induce these changes at the synapse, neurons must be able to activate the genes that encode their component parts. These genes are present inside the cell nucleus, which is located some distance away from the synapse. Studies have shown that signals can be sent from the nucleus to the synapse and vice versa, enabling the two parts of the cell to exchange information. Synapses that communicate using a chemical called glutamate have been particularly well studied; but it still remains unclear how the activation of receptors at these “glutamatergic synapses” is linked to activation of genes inside the nucleus at the molecular level. Dinamarca, Guzzetti et al. have now discovered that this process at glutamatergic synapses involves the movement of a protein messenger to the nucleus. Specifically, activation at synapses of a particularly common subtype of receptor, called NMDA, causes a protein called Ring Finger protein 10 (or RNF10 for short) to move from the synapse to the nucleus. To leave the synapse, RNF10 first has to bind to proteins called importins, which transport RNF10 into the nucleus. Once inside the nucleus, RNF10 binds to another protein that interacts with the DNA to start the production of new synaptic proteins. Further work is required to identify the molecular mechanisms that trigger RNF10 to leave the synapse. In addition, future studies should evaluate the levels and activity of RNF10 in brain disorders in which synapses are known to function abnormally. DOI:http://dx.doi.org/10.7554/eLife.12430.002
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
35 |
9
|
Palese F, Bonomi E, Nuzzo T, Benussi A, Mellone M, Zianni E, Cisani F, Casamassa A, Alberici A, Scheggia D, Padovani A, Marcello E, Di Luca M, Pittaluga A, Usiello A, Borroni B, Gardoni F. Anti-GluA3 antibodies in frontotemporal dementia: effects on glutamatergic neurotransmission and synaptic failure. Neurobiol Aging 2019; 86:143-155. [PMID: 31784278 DOI: 10.1016/j.neurobiolaging.2019.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/10/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022]
Abstract
Despite the great effort of the scientific community in the field, the pathogenesis of frontotemporal dementia (FTD) remains elusive. Recently, a role for autoimmunity and altered glutamatergic neurotransmission in triggering disease onset has been put forward. We reported the presence of autoantibodies recognizing the GluA3 subunit of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in about 25% of FTD cases. In this study, we evaluated the mechanisms involved in anti-GluA3 autoimmunity, through molecular/neurochemical analyses conducted on patients' brain specimens with frontotemporal lobar degeneration-tau neuropathology. We then corroborated these results in vivo in FTD patients with transcranial magnetic stimulation and glutamate, D-serine, and L-serine dosages in the cerebrospinal fluid and serum. We observed that GluA3 autoantibodies affect glutamatergic neurotransmission, decreasing glutamate release and altering GluA3-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor levels. These alterations were accompanied by changes of scaffolding proteins involved in receptor synaptic retention/internalization. The above results were confirmed by transcranial magnetic stimulation, suggesting a significant impairment of indirect measures of glutamatergic neurotransmission in FTD patients compared with controls, with further add-on harmful effect in those FTD patients with anti-GluA3 antibodies. Finally, FTD patients showed a significant increase of glutamate, D-serine, and L-serine levels in the cerebrospinal fluid.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
34 |
10
|
Borroni B, Stanic J, Verpelli C, Mellone M, Bonomi E, Alberici A, Bernasconi P, Culotta L, Zianni E, Archetti S, Manes M, Gazzina S, Ghidoni R, Benussi L, Stuani C, Di Luca M, Sala C, Buratti E, Padovani A, Gardoni F. Anti-AMPA GluA3 antibodies in Frontotemporal dementia: a new molecular target. Sci Rep 2017; 7:6723. [PMID: 28751743 PMCID: PMC5532270 DOI: 10.1038/s41598-017-06117-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal Dementia (FTD) is a neurodegenerative disorder mainly characterised by Tau or TDP43 inclusions. A co-autoimmune aetiology has been hypothesised. In this study, we aimed at defining the pathogenetic role of anti-AMPA GluA3 antibodies in FTD. Serum and cerebrospinal fluid (CSF) anti-GluA3 antibody dosage was carried out and the effect of CSF with and without anti-GluA3 antibodies was tested in rat hippocampal neuronal primary cultures and in differentiated neurons from human induced pluripotent stem cells (hiPSCs). TDP43 and Tau expression in hiPSCs exposed to CSF was assayed. Forty-one out of 175 screened FTD sera were positive for the presence of anti-GluA3 antibodies (23.4%). FTD patients with anti-GluA3 antibodies more often presented presenile onset, behavioural variant FTD with bitemporal atrophy. Incubation of rat hippocampal neuronal primary cultures with CSF with anti-GluA3 antibodies led to a decrease of GluA3 subunit synaptic localization of the AMPA receptor (AMPAR) and loss of dendritic spines. These results were confirmed in differentiated neurons from hiPSCs, with a significant reduction of the GluA3 subunit in the postsynaptic fraction along with increased levels of neuronal Tau. In conclusion, autoimmune mechanism might represent a new potentially treatable target in FTD and might open new lights in the disease underpinnings.
Collapse
|
research-article |
8 |
34 |
11
|
Prime SS, Cirillo N, Hassona Y, Lambert DW, Paterson IC, Mellone M, Thomas GJ, James ENL, Parkinson EK. Fibroblast activation and senescence in oral cancer. J Oral Pathol Med 2016; 46:82-88. [PMID: 27237745 DOI: 10.1111/jop.12456] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 12/13/2022]
Abstract
There is now compelling evidence that the tumour stroma plays an important role in the pathogenesis of cancers of epithelial origin. The pre-eminent cell type of the stroma is carcinoma-associated fibroblasts. These cells demonstrate remarkable heterogeneity with activation and senescence being common stress responses. In this review, we summarise the part that these cells play in cancer, particularly oral cancer, and present evidence to show that activation and senescence reflect a unified programme of fibroblast differentiation. We report advances concerning the senescent fibroblast metabolome, mechanisms of gene regulation in these cells and ways in which epithelial cell adhesion is dysregulated by the fibroblast secretome. We suggest that the identification of fibroblast stress responses may be a valuable diagnostic tool in the determination of tumour behaviour and patient outcome. Further, the fact that stromal fibroblasts are a genetically stable diploid cell population suggests that they may be ideal therapeutic targets and early work in this context is encouraging.
Collapse
|
Review |
9 |
28 |
12
|
Mellone M, Gardoni F. Modulation of NMDA receptor at the synapse: promising therapeutic interventions in disorders of the nervous system. Eur J Pharmacol 2013; 719:75-83. [PMID: 23872417 DOI: 10.1016/j.ejphar.2013.04.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 12/25/2022]
Abstract
There is general agreement that excessive activation of N-methyl-D-aspartate (NMDA) receptors plays a key role in mediating at least some aspects of synaptic dysfunction in several central nervous system disorders. On this view, in the last decades, research focused on the discovery of different compounds able to reduce NMDA receptor activity, such as classical and/or subunit-specific antagonists. However, the increasing body of knowledge on specific signaling pathways downstream NMDA receptors led to the identification of new pharmacological targets for NMDA receptor-related pathological conditions. Moreover, besides over-activation, several studies indicated that also abnormal NMDA receptor trafficking, resulting in the modification of the receptor subunit composition at the synapse, has a major role in the pathogenesis of several brain disorders. For this reason, the discovery of the molecular mechanisms regulating the abundance of synaptic versus extra-synaptic NMDA receptors as well as the activation of the specific signaling pathways downstream the different NMDA receptor subtypes is needed for the development of novel therapeutic approaches for NMDA receptor-dependent synaptic dysfunction.
Collapse
|
Review |
12 |
25 |
13
|
Gardoni F, Morari M, Kulisevsky J, Brugnoli A, Novello S, Pisanò CA, Caccia C, Mellone M, Melloni E, Padoani G, Sosti V, Vailati S, Keywood C. Safinamide Modulates Striatal Glutamatergic Signaling in a Rat Model of Levodopa-Induced Dyskinesia. J Pharmacol Exp Ther 2018; 367:442-451. [PMID: 30291173 DOI: 10.1124/jpet.118.251645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/17/2018] [Indexed: 03/08/2025] Open
Abstract
Safinamide (Xadago) is a novel dual-mechanism drug that has been approved in the European Union and United States as add-on treatment to levodopa in Parkinson's disease therapy. In addition to its selective and reversible monoamine oxidase B inhibition, safinamide through use-dependent sodium channel blockade reduces overactive glutamatergic transmission in basal ganglia, which is believed to contribute to motor symptoms and complications including levodopa-induced dyskinesia (LID). The present study investigated the effects of safinamide on the development of LID in 6-hydroxydopamine (6-OHDA)-lesioned rats, evaluating behavioral, molecular, and neurochemical parameters associated with LID appearance. 6-OHDA-lesioned rats were treated with saline, levodopa (6 mg/kg), or levodopa plus safinamide (15 mg/kg) for 21 days. Abnormal involuntary movements, motor performance, molecular composition of the striatal glutamatergic synapse, glutamate, and GABA release were analyzed. In the striatum, safinamide prevented the rearrangement of the subunit composition of N-methyl-d-aspartate receptors and the levodopa-induced increase of glutamate release associated with dyskinesia without affecting the levodopa-stimulated motor performance and dyskinesia. Overall, these findings suggest that the striatal glutamate-modulating component of safinamide's activity may contribute to its clinical effects, where its long-term use as levodopa add-on therapy significantly improves motor function and "on" time without troublesome dyskinesia.
Collapse
|
|
7 |
24 |
14
|
Mellone M, Gardoni F. Glutamatergic mechanisms in l-DOPA-induced dyskinesia and therapeutic implications. J Neural Transm (Vienna) 2018; 125:1225-1236. [DOI: 10.1007/s00702-018-1846-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/23/2018] [Indexed: 02/01/2023]
|
|
7 |
17 |
15
|
Cerignoli F, Ambrosi C, Mellone M, Assimi I, di Marcotullio L, Gulino A, Giannini G. HMGA molecules in neuroblastic tumors. Ann N Y Acad Sci 2005; 1028:122-32. [PMID: 15650238 DOI: 10.1196/annals.1322.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The high mobility group A (HMGA) proteins are thought to work as ancillary transcription factors and to regulate the expression of a growing number of genes through direct binding to DNA or via protein-protein interactions. Both HMGA1 and HMGA2 are important regulators of basic biological processes, including cell growth, differentiation and transformation. Their qualitatively or quantitatively altered expression has been described in a number of human tumors. We studied and review here their expression in neuroblastic tumors. HMGA2 is expressed only in a subset of ex vivo neuroblastoma (NB) tumors and in the embryonic adrenal gland, but it is undetectable in the adult adrenal gland, suggesting that its anomalous expression might be associated with NB tumorigenesis and/or tumor progression. In vitro, its expression is easily detectable in retinoic acid (RA)-resistant cell lines. The exogenous expression of HMGA2 is sufficient to convert RA-sensitive SY5Y NB cells into RA-resistant cells, thus suggesting that HMGA2 might be a relevant player in determining NB cell responses to endogenous or therapeutically important growth inhibitory substances. In contrast, HMGA1 expression is readily detectable in all NB cell lines and tumors, but its expression is consistently higher in less differentiated NBs compared with ganglioneuromas and ganglioneuroblastomas. Interestingly, RA increases HMGA1 expression in RA-resistant NB cells but inhibits it in cells undergoing RA-induced growth inhibition and neuronal differentiation. Our studies indicate that HMGA molecules might be biologically and pathologically relevant factors in neuroblastic tumor development and progression.
Collapse
|
Review |
20 |
17 |
16
|
Mellone M, Zianni E, Stanic J, Campanelli F, Marino G, Ghiglieri V, Longhi A, Thiolat ML, Li Q, Calabresi P, Bezard E, Picconi B, Di Luca M, Gardoni F. NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiol Dis 2019; 121:338-349. [DOI: 10.1016/j.nbd.2018.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022] Open
|
|
6 |
15 |
17
|
Stanic J, Mellone M, Cirnaru MD, Perez-Carrion M, Zianni E, Di Luca M, Gardoni F, Piccoli G. LRRK2 phosphorylation level correlates with abnormal motor behaviour in an experimental model of levodopa-induced dyskinesias. Mol Brain 2016; 9:53. [PMID: 27169991 PMCID: PMC4866295 DOI: 10.1186/s13041-016-0234-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022] Open
Abstract
Levodopa (L-DOPA)-induced dyskinesias (LIDs) represent the major side effect in Parkinson’s disease (PD) therapy. Leucine-rich repeat kinase 2 (LRRK2) mutations account for up to 13 % of familial cases of PD. LRRK2 N-terminal domain encompasses several serine residues that undergo phosphorylation influencing LRRK2 function. This work aims at investigating whether LRRK2 phosphorylation/function may be involved in the molecular pathways downstream D1 dopamine receptor leading to LIDs. Here we show that LRRK2 phosphorylation level at serine 935 correlates with LIDs induction and that inhibition of LRRK2 induces a significant increase in the dyskinetic score in L-DOPA treated parkinsonian animals. Our findings support a close link between LRKK2 functional state and L-DOPA-induced abnormal motor behaviour and highlight that LRRK2 phosphorylation level may be implicated in LIDs, calling for novel therapeutic strategies.
Collapse
|
Journal Article |
9 |
9 |
18
|
Bullock MD, Pickard KM, Nielsen BS, Sayan AE, Jenei V, Mellone M, Mitter R, Primrose JN, Thomas GJ, Packham GK, Mirnezami AH. Erratum: Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression. Cell Death Dis 2013. [PMCID: PMC3763450 DOI: 10.1038/cddis.2013.288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
12 |
1 |
19
|
Gardoni F, Morari M, Kulisevsky J, Brugnoli A, Caccia C, Mellone M, Melloni E, Padoani G, Sosti M, Vailati S, Keywood C. Safinamide modulates levodopa induced striatal glutamatergic overactivity in a rat model of Parkinson's disease. J Neurol Sci 2017. [DOI: 10.1016/j.jns.2017.08.1027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
8 |
1 |
20
|
Ciacci C, Cirillo M, Mellone M, Basile F, Mazzacca G, De Santo NG. Hypocalciuria in overt and subclinical celiac disease. Am J Gastroenterol 1995; 90:1480-4. [PMID: 7661174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate indices of calcium (Ca) homeostasis in celiac disease (CD). METHODS Urinary Ca excretion rate, intestinal absorption of strontium (Sr) (used as index of intestinal Ca absorption), and other variables related to these end points were measured in newly diagnosed, untreated adult patients (n = 32) with overt and subclinical CD and compared with those of healthy controls (n = 27). Subclinical CD was defined by the absence of diarrhea (> or = 3 bowel movements/24 h), steatorrhea (fecal fat excretion > 6 g/24 h), and low body mass index (weight/height, kg/m2 < 21). RESULTS Compared with controls, untreated celiac patients had 2 x lower Ca excretion (p < 0.0001) in 24-h and overnight urine (fed condition) but normal Ca excretion in urine samples collected under fasting (2-h) condition; the increase in urinary Ca excretion from fast to fed condition was 4 x lower in untreated celiac patients (p < 0.0001). Patients with overt and subclinical CD did not have significantly different urinary Ca excretion rates. Sr absorption rate was 45% lower in untreated patients than controls (p < 0.0001). Patients with overt and subclinical CD did not have significantly different Sr absorption rates. Sr absorption rate (r = 0.576, p < 0.0001) related to the increase in urinary Ca excretion from fast to fed condition. In celiac patients, 24-h urinary Ca excretion increased by 52% (p < 0.0001) over baseline after 6 months of gluten-free diet, and urinary Ca excretion under fasting condition did not significantly change. CONCLUSIONS Overt and subclinical CD is associated with low urinary Ca excretion under fed condition, which relates to low intestinal absorption.
Collapse
|
Comparative Study |
30 |
|
21
|
Borroni B, Stanic J, Verpelli C, Mellone M, Bonomi E, Alberici A, Bernasconi P, Culotta L, Zianni E, Archetti S, Manes M, Gazzina S, Ghidoni R, Benussi L, Stuani C, Di Luca M, Sala C, Buratti E, Padovani A, Gardoni F. Publisher Correction: Anti-AMPA GluA3 antibodies in Frontotemporal dementia: a new molecular target. Sci Rep 2018; 8:272. [PMID: 29305592 PMCID: PMC5756233 DOI: 10.1038/s41598-017-18750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
|
7 |
|
22
|
Cirillo M, Ciacci C, Laurénzi M, Mellone M, Mazzacca G, De Santo NG. Salt intake, urinary sodium, and hypercalciuria. MINERAL AND ELECTROLYTE METABOLISM 1997; 23:265-8. [PMID: 9387130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several studies have reported that high sodium (Na) intake increases not only urinary Na but also urinary calcium (Ca), suggesting that high Na intake could be involved in the pathogenesis of hypercalciuria. No research data are available on the relationship of Na intake to the prevalence of hypercalciuria within the general population. Moreover, it is not clear if Na intake relates only to urinary Ca or also to other indices of Ca homeostasis, including intestinal Ca absorption. In the present paper, two distinct studies addressed these points using 24-hour urinary Na as an index of salt intake in individuals on their habitual unrestricted free diet. Study 1 analyzed the relationship between 24-hour urinary Na and hypercalciuria (24-hour urinary Ca > or = 7.5 mmol in men, > or = 6.25 mmol in women) in a population sample of 203 men and women, aged 20-59 years. Study 2 analyzed the relationship between 24-hour urinary Na and intestinal strontium (Sr) absorption, used as an index of intestinal Ca absorption, urinary (24-hour and fasting) and plasma Ca, and plasma parathyroid hormone in 36 healthy men and women, aged 18-65 years. Within the population sample (study 1), 24-hour urinary Na was directly and significantly correlated with prevalence of hypercalciuria when controlling for gender, age, weight, and urinary creatinine: the relationship was continuous and linear for urinary Na ranging between 40 and 200 mmol/24 h. In the 36 volunteers (study 2), 24-hour urinary Na was related to 24-hour and fasting urinary Ca (p < 0.001) but not to intestinal Sr absorption: the relationship between 24-hour urinary Na and urinary Ca (both 24 h and fasting) was also significant, controlling for other variables. The results indicate that in adults on their habitual diet, urinary Na, which reflects dietary salt intake, correlates with the prevalence of hypercalciuria independently of intestinal Ca absorption and mainly via renal mechanisms.
Collapse
|
|
28 |
|