1
|
Siddiqui MH, Alamri S, Nasir Khan M, Corpas FJ, Al-Amri AA, Alsubaie QD, Ali HM, Kalaji HM, Ahmad P. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122882. [PMID: 32516727 DOI: 10.1016/j.jhazmat.2020.122882] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
The interplay between melatonin (Mel) and calcium (Ca2+) in enhancing tolerance to metalloid toxicity and underlying physiological and biochemical mechanisms of this relationship still remains unknown. The present study reveals that the signaling molecules Mel and/or Ca2+ enhanced tolerance of Vicia faba (cv. Tara) plant to metalloid arsenic (As) toxicity. However, a combination of Mel and Ca2+ was more efficient than alone. Plants grew with As exhibited enhanced hydrogen peroxide, superoxide anion, electrolyte leakage, lipid peroxidation together with increased reactive oxygen species (ROS) producing enzymes, such as NADPH oxidase and glycolate oxidase (GOX). On the contrary, an inhibition in chlorophyll (Chl) biosynthesis and gas exchange parameters (net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration) was observed. Under As toxicity conditions, the application of Mel and Ca2+ synergistically suppressed the plants' program cell death features (nucleus condensation and nucleus fragmentation) in guard cells of stomata, DNA damage, and formation of ROS in guard cells, leaves and roots. Moreover, it enhanced gas exchange parameters and activity of enzymes involved in photosynthesis process (carbonic anhydrase and RuBisco), Chl biosynthesis (δ-aminolevulinic acid dehydratase), and decreased activity of Chl degrading enzyme (chlorophyllase) under As toxicity conditions. Our investigation evidently established that expression of ATP synthase, Ca2+-ATPase, Ca2+-DPKase, Hsp17.6 and Hsp40 was found maximum in the plants treated with Mel + Ca2+, resulting in higher tolerance of plants to As stress. Also, increased total soluble carbohydrates, cysteine, and Pro accumulation with increased Pro synthesizing enzyme (Δ1-pyrroline-5-carboxylate synthetase (P5CS) and decreased Pro degrading enzyme (proline dehydrogenase) in Mel + Ca2+ treated plants conferred As toxicity tolerance. The obtained results postulate strong evidence that the application of Mel along with Ca2+ enhances resilience against As toxicity by upregulating the activity of plasma membrane H+-ATPase, enzymes involved in antioxidant system, and ascorbate-glutathione pathway.
Collapse
|
|
5 |
170 |
2
|
Siddiqui MH, Al-Whaibi MH. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 2014; 21:13-7. [PMID: 24596495 PMCID: PMC3937468 DOI: 10.1016/j.sjbs.2013.04.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 11/25/2022] Open
Abstract
Agricultural biotechnology is very familiar with the properties of nanomaterial and their potential uses. Therefore, the present experiment was conducted to test the beneficial effects of nanosilicon dioxide (nSiO2: size- 12 nm) on the seed germination of tomato (Lycopersicum esculentum Mill. cv Super Strain B). Application of nSiO2 significantly enhanced the characteristics of seed germination. Among the treatments, 8 g L(-1) of nSiO2 improved percent seed germination, mean germination time, seed germination index, seed vigour index, seedling fresh weight and dry weight. Therefore, it is very clear that nSiO2 has a significant impact on the seed germination potential. These findings could provide that alternative source for fertilizer that may improve sustainable agriculture.
Collapse
|
research-article |
11 |
168 |
3
|
Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2429-37. [PMID: 25066835 DOI: 10.1002/etc.2697] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/28/2014] [Accepted: 07/22/2014] [Indexed: 05/18/2023]
Abstract
Research into nanotechnology, an emerging science, has advanced in almost all fields of technology. The aim of the present study was to evaluate the role of nano-silicon dioxide (nano-SiO2 ) in plant resistance to salt stress through improvement of the antioxidant system of squash (Cucurbita pepo L. cv. white bush marrow). Seeds treated with NaCl showed reduced germination percentage, vigor, length, and fresh and dry weights of the roots and shoots. However, nano-SiO2 improved seed germination and growth characteristics by reducing malondialdehyde and hydrogen peroxide levels as well as electrolyte leakage. In addition, application of nano-SiO2 reduced chlorophyll degradation and enhanced the net photosynthetic rate (Pn ), stomatal conductance (gs ), transpiration rate, and water use efficiency. The increase in plant germination and growth characteristics through application of nano-SiO2 might reflect a reduction in oxidative damage as a result of the expression of antioxidant enzymes, such as catalase, peroxidase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase. These results indicate that nano-SiO2 may improve defense mechanisms of plants against salt stress toxicity by augmenting the Pn , gs , transpiration rate, water use efficiency, total chlorophyll, proline, and carbonic anhydrase activity in the leaves of plants.
Collapse
|
|
11 |
145 |
4
|
Siddiqui MH, Al-Whaibi MH, Basalah MO. Role of nitric oxide in tolerance of plants to abiotic stress. PROTOPLASMA 2011; 248:447-55. [PMID: 20827494 DOI: 10.1007/s00709-010-0206-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/26/2010] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO) has now gained significant place in plant science, mainly due to its properties (free radical, small size, no charge, short-lived, and highly diffusible across biological membranes) and multifunctional roles in plant growth, development, and regulation of remarkable spectrum of plant cellular mechanisms. In the last few years, the role of NO in tolerance of plants to abiotic stress has established much consideration. As it is evident from the present review, recent progress on NO potentiality in tolerance of plants to environmental stresses has been impressive. These investigations suggest that NO, itself, possesses antioxidant properties and might act as a signal in activating ROS-scavenging enzyme activities under abiotic stress. NO plays an important role in resistance to salt, drought, temperature (high and low), UV-B, and heavy metal stress. Rapidly increasing evidences indicate that NO is essentially involve in several physiological processes; however, there has been much disagreement regarding the mechanism(s) by which NO reduces abiotic stress.
Collapse
|
Review |
14 |
142 |
5
|
Khan MN, Siddiqui MH, Mohammad F, Naeem M. Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide 2012; 27:210-8. [DOI: 10.1016/j.niox.2012.07.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/15/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|
|
13 |
102 |
6
|
Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, Siddiqui MH, Hasanuzzaman M. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. PLANT CELL REPORTS 2021; 40:1513-1541. [PMID: 33034676 DOI: 10.1007/s00299-020-02614-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 05/18/2023]
Abstract
Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent discoveries have revealed that phytohormones or plant growth regulators (PGRs), mainly jasmonic acid (JA), have increased our knowledge of hormonal signaling of plants under stressful environments. Jasmonic acid is involved in various physiological and biochemical processes associated with plant growth and development as well as plant defense mechanism against wounding by pathogen and insect attacks. Recent findings suggest that JA can mediate the effect of abiotic stresses and help plants to acclimatize under unfavorable conditions. As a vital PGR, JA contributes in many signal transduction pathways, i.e., gene network, regulatory protein, signaling intermediates and enzymes, proteins, and other molecules that act to defend cells from the harmful effects of various environmental stresses. However, JA does not work as an independent regulator, but acts in a complex signaling pathway along other PGRs. Further, JA can protect and maintain the integrity of plant cells under several stresses by up-regulating the antioxidant defense. In this review, we have documented the biosynthesis and metabolism of JA and its protective role against different abiotic stresses. Further, JA-mediated antioxidant potential and its crosstalk with other PGRs have also been discussed.
Collapse
|
Review |
4 |
96 |
7
|
Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A, Ali HM, Alaraidh IA, Alsahli AA. Exogenous Melatonin Counteracts NaCl-Induced Damage by Regulating the Antioxidant System, Proline and Carbohydrates Metabolism in Tomato Seedlings. Int J Mol Sci 2019; 20:E353. [PMID: 30654468 PMCID: PMC6358940 DOI: 10.3390/ijms20020353] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Melatonin, a natural agent, has multiple functions in animals as well as in plants. However, its possible roles in plants under abiotic stress are not clear. Nowadays, soil salinity is a major threat to global agriculture because a high soil salt content causes multiple stresses (hyperosmotic, ionic, and oxidative). Therefore, the aim of the present study was to explore: (1) the involvement of melatonin in biosynthesis of photosynthetic pigments and in regulation of photosynthetic enzymes, such as carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco); (2) the role of melatonin in osmoregulation by proline and carbohydrate metabolism; and (3) the function of melatonin in the antioxidant defense system under salinity. Outcomes of the study reveal that under non-saline conditions, application of melatonin (20 and 50 µM) improved plant growth, viz. shoot length, root length, shoot fresh weight (FW), root FW, shoot dry weight (DW), root DW and leaf area and physio-biochemical parameters [chlorophyll (Chl) a and b, proline (Pro) and total soluble carbohydrates (TSC) content, and increased the activity of CA and Rubisco]. However, tomato seedlings treated with NaCl exhibited enhanced Chl degradation, electrolyte leakage (EL), malondialdehyde (MDA) and reactive oxygen species (ROS; superoxide and hydrogen peroxide). ROS were detected in leaf and root. Interestingly, application of melatonin improved plant growth and reduced EL, MDA and ROS levels through upregulation of photosynthesis enzymes (CA, Rubisco), antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase and ascorbate reductase) and levels of non-enzymatic antioxidants [ascorbate (ASC) and reduced glutathione (GSH)], as well as by affecting the ASC-GSH cycle. Additionally, exogenous melatonin also improved osmoregulation by increasing the content of TSC, Pro and Δ¹-pyrroline-5-carboxylate synthetase activity. These results suggest that melatonin has beneficial effects on tomato seedlings growth under both stress and non-stress conditions. Melatonin's role in tolerance to salt stress may be associated with the regulation of enzymes involved in photosynthesis, the antioxidant system, metabolism of proline and carbohydrate, and the ASC-GSH cycle. Also, melatonin could be responsible for maintaining the high ratios of GSH/GSSG and ASC/DHA.
Collapse
|
research-article |
6 |
91 |
8
|
Khan MN, Mobin M, Abbas ZK, Siddiqui MH. Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 2017; 68:91-102. [PMID: 28062279 DOI: 10.1016/j.niox.2017.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) have been shown to act as signaling molecules in various physiological processes, play significant roles in plant cellular processes, and also mediate responses to both biotic and abiotic stresses in plants. The present investigation was carried out to test the effect of exogenous NO on endogenous synthesis of H2S in osmotic-stressed wheat (Triticum aestivum L.) seedlings. The results show that application of NO to wheat seedlings, suffered from PEG8000-induced osmotic stress, considerably enhanced the activities of H2S-synthesizing enzymes l-cysteine desulfhydrase (LCD) and d-cysteine desulfhydrase (DCD) leading to enhanced level of endogenous H2S content. At the same time exogenous NO also enhanced the activity of cysteine (Cys)-synthesizing enzyme O-acetylserine(thiol)lyase (OAS-TL) and maintained Cys homeostasis under osmotic stress. NO and H2S together markedly improved the activities of antioxidant enzymes viz. ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT). Furthermore, NO and H2S caused additional accumulation of osmolytes proline (Pro) and glycine betaine (GB), all these collectively resulted in the protection of plants against osmotic stress-induced oxidative stress. On the other hand, NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] and H2S scavenger HT (hypotaurine) invalidated the effect of NO on endogenous H2S levels and Cys homeostasis which resulted in weak protection against osmotic stress. Application of N-ethylmaleimide (NEM) suppressed GR activity and caused an increase in oxidative stress. We concluded that NO in association with endogenous H2S activates the defense system to the level required to counter osmotic stress and maintains normal functioning of cellular machinery.
Collapse
|
Journal Article |
8 |
78 |
9
|
Ahanger MA, Bhat JA, Siddiqui MH, Rinklebe J, Ahmad P. Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6758-6774. [PMID: 32585681 DOI: 10.1093/jxb/eraa291] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/16/2020] [Indexed: 05/03/2023]
Abstract
As sessile organisms, plants are unable to avoid being subjected to environmental stresses that negatively affect their growth and productivity. Instead, they utilize various mechanisms at the morphological, physiological, and biochemical levels to alleviate the deleterious effects of such stresses. Amongst these, secondary metabolites produced by plants represent an important component of the defense system. Secondary metabolites, namely phenolics, terpenes, and nitrogen-containing compounds, have been extensively demonstrated to protect plants against multiple stresses, both biotic (herbivores and pathogenic microorganisms) and abiotic (e.g. drought, salinity, and heavy metals). The regulation of secondary metabolism by beneficial elements such as silicon (Si) is an important topic. Silicon-mediated alleviation of both biotic and abiotic stresses has been well documented in numerous plant species. Recently, many studies have demonstrated the involvement of Si in strengthening stress tolerance through the modulation of secondary metabolism. In this review, we discuss Si-mediated regulation of the synthesis, metabolism, and modification of secondary metabolites that lead to enhanced stress tolerance, with a focus on physiological, biochemical, and molecular aspects. Whilst mechanisms involved in Si-mediated regulation of pathogen resistance via secondary metabolism have been established in plants, they are largely unknown in the case of abiotic stresses, thus leaving an important gap in our current knowledge.
Collapse
|
Review |
5 |
75 |
10
|
Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P. Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. CHEMOSPHERE 2019; 230:628-639. [PMID: 31128509 DOI: 10.1016/j.chemosphere.2019.05.072] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 05/18/2023]
Abstract
The current study evaluated the synergistic role of Plant growth promoting rhizobacteria (PGPR), Pseudomonas aeruginosa and Burkholderia gladioli on different physiological, biochemical and molecular activities of 10-days old Solanum lycopersicum seedlings under Cd stress. Cd toxicity altered the levels of phenolic compounds (total phenols (30.2%), flavonoids (92.7%), anthocyanin (59.5%), polyphenols (368.7%)), osmolytes (total osmolytes (10.3%), total carbohydrates (94%), reducing sugars (64.5%), trehalose (112.5%), glycine betaine (59%), proline (54.8%), and free amino acids (63%)), and organic acids in S. lycopersicum seedlings. Inoculation of P. aeruginosa and B. gladioli alleviated Cd-induced toxicity, which was manifested through enhanced phenolic compound levels and osmolytes. Additionally, the levels of low molecular weight organic acids (fumaric acid, malic acid, succinic acid, and citric acid) were also elevated. The expression of genes encoding enzymes for phenols and organic acid metabolism were also studied to be modulated that included CHS (chalcone synthase; 138.4%), PAL (phenylalanine ammonia lyase; 206.7%), CS (citrate synthase; 61.3%), SUCLG1 (succinyl Co-A ligase; 33.6%), SDH (succinate dehydrogenase; 23.2%), FH (fumarate hydratase; 12.4%), and MS (malate synthase; 41.2%) and found to be upregulated in seedlings inoculated independently with P. aeruginosa and B. gladioli. The results provide insights into the role of micro-organisms in alleviating Cd-induced physiological damage by altering levels of different metabolites.
Collapse
|
|
6 |
71 |
11
|
Bali S, Jamwal VL, Kohli SK, Kaur P, Tejpal R, Bhalla V, Ohri P, Gandhi SG, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P. Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression. CHEMOSPHERE 2019; 235:734-748. [PMID: 31280042 DOI: 10.1016/j.chemosphere.2019.06.188] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 05/21/2023]
Abstract
Jasmonic acid (JA) is an important phytohormone associated in defense responses against stress. Crop plants experience heavy metal toxicity and needs to be explored to enhance the crop production. Lead (Pb) is one of the dangerous heavy metal that pollutes soil and water bodies and is released from various sources like discharge from batteries, automobile exhaust, and paints. The present study was designed to evaluate the role of JA (100 nM) on photosynthetic pigments, secondary metabolites, organic acids, and metal ligation compounds in tomato seedlings under different concentrations of Pb (0.25, 0.50, and 0.75 mM). It was observed that Pb treatment declined pigment content, relative water content, and heavy metal tolerance index. Expression of chlorophyllase was also enhanced in Pb-treated seedlings. Seeds primed with JA lowered the expression of chlorophyllase under Pb stress. JA application enhanced the contents of secondary metabolites (total phenols, polyphenols, flavonoids, and anthocyanin) which were confirmed with enhanced expression of chalcone synthase and phenylalanine ammonia lyase in Pb-exposed seedlings. Treatment of JA further elevated the levels of organic acids and metal chelating compounds under Pb toxicity. JA up-regulated the expression of succinate dehydrogenase and fumarate hydratase in Pb-exposed seedlings. Results revealed that seeds primed with JA reduced Pb toxicity by elevating, the levels of photosynthetic pigments, secondary metabolites, osmolytes, metal ligation compounds, organic acids, and polyamine accumulation in tomato seedlings.
Collapse
|
|
6 |
66 |
12
|
Siddiqui MH, Al-Whaibi MH, Basalah MO. Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. PROTOPLASMA 2011; 248:503-11. [PMID: 20730631 DOI: 10.1007/s00709-010-0197-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 08/10/2010] [Indexed: 05/04/2023]
Abstract
Nickel toxicity affects many metabolic facets of plants and induces anatomical and morphological changes resulting in reduced growth and productivity. To overcome the damaging effects of nickel (Ni) stress, different strategies of the application of nutrients with plant hormones are being adopted. The present experiment was carried out to assess the growth and physiological response of wheat plant (Triticum aestivum L.) cv. Samma to pre-sowing seed treatment with GA(3) alone as well as in combination with Ca(2+) and/or Ni stress. The pre-sowing seed treatment of Ni decreased all the growth characteristics (plant height, root length, fresh, and dry weight) as well as chlorophyll (Chl) content and enzyme carbonic anhydrase (CA: E.C. 4.2.1.1) activity. However, an escalation was recorded in malondialdehyde content and electrolyte leakage in plants raised from seed soaked with Ni alone. Moreover, all the growth parameters and physiological attributes (Chl content, proline (Pro) content, CA, peroxidase (E.C.1.11.1.7), catalase (E.C. 1.11.1.6), superoxide dismutase (E.C. 1.15.1.1), ascorbate peroxidase (E.C. 1.11.1.11), and glutathione reductase (E.C. 1.6.4.2) were enhanced in the plants developed from the seeds soaked with the combination of GA(3) (10(-6) M), Ca(2+), and Ni. The present study showed that pre-sowing seed treatment of GA(3) with Ca(2+) was more capable in mitigation of adverse effect of Ni toxicity by improving the antioxidant system and Pro accumulation.
Collapse
|
|
14 |
65 |
13
|
Al-Huqail AA, Behiry SI, Salem MZM, Ali HM, Siddiqui MH, Salem AZM. Antifungal, Antibacterial, and Antioxidant Activities of Acacia Saligna (Labill.) H. L. Wendl. Flower Extract: HPLC Analysis of Phenolic and Flavonoid Compounds. Molecules 2019; 24:molecules24040700. [PMID: 30781352 PMCID: PMC6412425 DOI: 10.3390/molecules24040700] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, for the environmental development, the antifungal, antibacterial, and antioxidant activities of a water extract of flowers from Acacia saligna (Labill.) H. L. Wendl. were evaluated. The extract concentrations were prepared by dissolving them in 10% DMSO. Wood samples of Melia azedarach were treated with water extract, and the antifungal activity was examined at concentrations of 0%, 1%, 2%, and 3% against three mold fungi; Fusarium culmorum MH352452, Rhizoctonia solani MH352450, and Penicillium chrysogenum MH352451 that cause root rot, cankers, and green fruit rot, respectively, isolated from infected Citrus sinensis L. Antibacterial evaluation of the extract was assayed against four phytopathogenic bacteria, including Agrobacterium tumefaciens, Enterobacter cloacae, Erwinia amylovora, and Pectobacterium carotovorum subsp. carotovorum, using the micro-dilution method to determine the minimum inhibitory concentrations (MICs). Further, the antioxidant capacity of the water extract was measured via 2,2'-diphenylpicrylhydrazyl (DPPH). Phenolic and flavonoid compounds in the water extract were analyzed using HPLC: benzoic acid, caffeine, and o-coumaric acid were the most abundant phenolic compounds; while the flavonoid compounds naringenin, quercetin, and kaempferol were identified compared with the standard flavonoid compounds. The antioxidant activity of the water extract in terms of IC50 was considered weak (463.71 μg/mL) compared to the standard used, butylated hydroxytoluene (BHT) (6.26 μg/mL). The MIC values were 200, 300, 300, and 100 µg/mL against the growth of A. tumefaciens, E. cloacae, E. amylovora, and P. carotovorum subsp. carotovorum, respectively, which were lower than the positive control used (Tobramycin 10 μg/disc). By increasing the extract concentration, the percentage inhibition of fungal mycelial was significantly increased compared to the control treatment, especially against P. chrysogenum, suggesting that the use of A. saligna flower extract as an environmentally friendly wood bio-preservative inhibited the growth of molds that cause discoloration of wood and wood products.
Collapse
|
Journal Article |
6 |
61 |
14
|
Siddiqui MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM, Al-Wahibi MS, Bukhari NA. Response of different genotypes of faba bean plant to drought stress. Int J Mol Sci 2015; 16:10214-27. [PMID: 25950766 PMCID: PMC4463642 DOI: 10.3390/ijms160510214] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
Drought stress is one of the major abiotic stresses that are a threat to crop production worldwide. Drought stress impairs the plants growth and yield. Therefore, the aim of the present experiment was to select the tolerant genotype/s on the basis of moprpho-physiological and biochemical characteristics of 10 Vicia faba genotypes (Zafar 1, Zafar 2, Shebam, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853) under drought stress. We studied the effect of different levels of drought stress i.e., (i) normal irrigation (ii) mild stress (iii) moderate stress, and (iv) severe stress on plant height (PH) plant-1, fresh weight (FW) and dry weight (DW) plant-1, area leaf-1, leaf relative water content (RWC), proline (Pro) content, total chlorophyll (Total Chl) content, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) content, and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) of genotypes of faba bean. Drought stress reduced all growth parameters and Total Chl content of all genotypes. However, the deteriorating effect of drought stress on the growth performance of genotypes "C5" and "Zafar 1" were relatively low due to its better antioxidant enzymes activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, genotype "C5" and "Zafar 1" were found to be relatively tolerant to drought stress and genotypes "G853" and "C4" were sensitive to drought stress.
Collapse
|
research-article |
10 |
57 |
15
|
Wahid I, Kumari S, Ahmad R, Hussain SJ, Alamri S, Siddiqui MH, Khan MIR. Silver Nanoparticle Regulates Salt Tolerance in Wheat Through Changes in ABA Concentration, Ion Homeostasis, and Defense Systems. Biomolecules 2020; 10:E1506. [PMID: 33147820 PMCID: PMC7694077 DOI: 10.3390/biom10111506] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
Salinity is major abiotic stress affecting crop yield, productivity and reduces the land-usage area for agricultural practices. The purpose of this study is to analyze the effect of green-synthesized silver nanoparticle (AgNP) on physiological traits of wheat (Triticum aestivum) under salinity stress. Using augmented and high-throughput characterization of synthesized AgNPs, this study investigated the proximity of AgNPs-induced coping effects under stressful cues by measuring the germination efficiency, oxidative-biomarkers, enzymatic and non-enzymatic antioxidants, proline and nitrogen metabolism, stomatal dynamics, and ABA content. Taken together, the study shows a promising approach in salt tolerance and suggests that mechanisms of inducing the salt tolerance depend on proline metabolism, ions accumulation, and defense mechanisms. This study ascertains the queries regarding the correlation between nanoparticles use and traditional agriculture methodology; also significantly facilitates to reach the goal of sustainable developments for increasing crop productivity via much safer and greener approachability.
Collapse
|
research-article |
5 |
52 |
16
|
Siddiqui MH, Alamri S, Alsubaie QD, Ali HM, Ibrahim AA, Alsadon A. Potential roles of melatonin and sulfur in alleviation of lanthanum toxicity in tomato seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:656-667. [PMID: 31136876 DOI: 10.1016/j.ecoenv.2019.05.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 05/25/2023]
Abstract
Owing to the active use of rare-earth elements in many areas, it is necessary to study their behavior in the environment and their biological impact on plants. Despite the role of melatonin and sulfur in plant growth, development and abiotic stress tolerance; it is still not clear how they have a strong regulatory influence and synergistic effect on growth, physiological and biochemical characteristics of plants under different environmental stresses. Therefore, this study highlights how melatonin and sulfur together potentially involved in a reversal of lanthanum-inhibited photosynthetic and growth responses in tomato seedlings. Here, we reported that seedlings grown in a medium containing 150 μM lanthanum exhibited increased overproduction of reactive oxygen species (ROS) and lipid peroxidation together with increased Chlorophyll degradation, and activity of chlorophyllase, proline dehydrogenase and glycolate oxidase (GOx), and decreased photosynthesis and growth. However, the application of melatonin and sulfur showed significant responses on tomato seedlings, although the response of their combined treatment was more effective by further increasing photosynthesis and growth under lanthanum toxicity. Melatonin supplied with sulfur suppressed ROS formation, lipid peroxidation and activity of GOx, and increased photosynthesis by upregulating activities of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase. Also, sulfur supplementation with melatonin to seedlings resulted in an elevation in the accumulation of Chl and proline by increasing δ-aminolevulinic acid and activity of δ-aminolevulinic acid dehydratase and Δ1-pyrroline-5-carboxylate synthetase activity. The administration of melatonin with sulfur substantially induced upregulation of enzymes (superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase) activities involved in the antioxidant system, thereby mitigating ROS-induced oxidative damage. Thus, this study provides strong evidence that melatonin and sulfur have strong regulatory influence and synergistic role in alleviating the adverse effect of lanthanum-toxicity by increasing photosynthesis and growth.
Collapse
|
|
6 |
45 |
17
|
Alamri S, Ali HM, Khan MIR, Singh VP, Siddiqui MH. Exogenous nitric oxide requires endogenous hydrogen sulfide to induce the resilience through sulfur assimilation in tomato seedlings under hexavalent chromium toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:20-34. [PMID: 32738579 DOI: 10.1016/j.plaphy.2020.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 05/24/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S), versatile signaling molecules, play multiple roles in plant growth, physiological and biochemical processes under heavy metal stress. However, the mechanisms through which NO in association with endogenous H2S mediated hexavalent chromium Cr(VI) toxicity mitigation are still not fully understood. Therefore, we investigated the role of NO and H2S in sulfur (S)-assimilation and the effect of NO on endogenous H2S, and cysteine (Cys) biosynthesis and maintenance of cellular glutathione (GSH) pool in tomato seedlings under Cr(VI) stress. Cr(VI) toxicity caused an increase in reactive oxygen species (ROS; O2•- and H2O2) formation and activity of chlorophyll (Chl) degrading enzyme [Chlorophyllase (Chlase)] and decrease in seedlings growth attributes, Chl a and b content, and activity of Chl synthesizing enzyme [δ-aminolevulinic acid dehydratase (δ-ALAD)], gas exchange parameters, S-assimilation, and Cys and H2S metabolism. An increase in the content of glycinebetaine (GB), total soluble carbohydrates (TSCs) and total phenols (TPls), and decrease in DNA damage and ROS in NO treated seedlings conferred Cr(VI) toxicity tolerance. Under Cr(VI) toxicity conditions, the inclusion of H2S scavenger hypotaurine (HT) in growth medium containing NO validated the role of endogenous H2S in S-assimilation, H2S and Cys and GSH metabolism by withdrawing activity of enzymes involved in S-assimilation [adenosine 5-phosphosulfatereductase (APS-R), ATP-sulfurylase (ATP-S)], in the biosynthesis of H2S [L-cysteine desulfhydrase (L-CD) and D-cysteine desulfhydrase (D-CD)], Cys [O-acetylserin (thiol) lyase (OAST-L)], and GSH [glutamylcysteine synthetase (γ-GCS) and glutathione synthetase (GS)], and in antioxidant system. On the other hand, application of cPTIO [2-(4-32 carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], a NO scavenger and HT diminished the effect of NO on internal H2S levels, Cys and glutathione homeostasis, and S-assimilation, which resulted in poor immunity against oxidative stress induced by Cr(VI) toxicity. The obtained results postulate that NO-induced internal H2S conferred tolerance of tomato seedlings to Cr(VI) toxicity and maintained better photosynthesis process and plant growth.
Collapse
|
|
5 |
44 |
18
|
Khan MN, Siddiqui MH, AlSolami MA, Alamri S, Hu Y, Ali HM, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Al-Ghamdi A. Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:278-290. [PMID: 32987258 DOI: 10.1016/j.plaphy.2020.09.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) have been known to affect vast number of processes in plants under abiotic stresses. Also, calcium (Ca) works as a second messenger in plants, which underpins the abiotic stress-induced damage. However, the sequence of action of these signaling molecules against cadmium (Cd)-induced cellular oxidative damage remains unidentified. Therefore, we studied the synergistic actions and/or relationship of signaling molecules and Ca-dependent activation of tolerance mechanisms in Vigna radiata seedlings under Cd stress. The present study shows that exogenous Ca supplemented to Cd-stressed V. radiata seedlings reduced Cd accumulation and improved the activity of nitrate reductase, and L/D-cysteine desulfhydrase (LCD/DCD) that resulted in improved synthesis of NO and H2S content. Application of Ca also elevated the level of cysteine (Cys) by upregulating the activity of Cys-synthesizing enzymes serine acetyltransferase and O-acetylserine(thiol)lyase in Cd-stressed seedlings. Maintenance of Cys pool under Cd stress contributed to improved H2S content which together with Ca and NO improved antioxidant enzymes and components of ascorbate-glutathione (AsA-GSH) cycle. All these collectively regulated the activity of NADPH oxidase and glycolate oxidase, resulting in the inhibition of Cd-induced generation of reactive oxygen species. The elevated level of Cys also assisted the Cd-stressed seedlings in maintaining GSH pool which retained normal functioning of AsA-GSH cycle and led to enhanced content of phytochelatins coupled with reduced Cd content. The positive effect of these events manifested in an enhanced rate of photosynthesis, carbohydrate accumulation, and growth attributes of the plants. On the contrary, addition of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], H2S scavenger HT (Hypotaurine) and Ca-chelator EGTA (Ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid) again developed a condition similar to stress and positive effect of the signaling molecules was abolished. The findings of the study postulate that Ca in association with NO and H2S mitigates Cd-induced impairment and enhances the tolerance of the V. radiata plants against Cd stress. The results of the study also substantiate that Ca acts both upstream as well as downstream of NO signals whereas, H2S acts downstream of Ca and NO during Cd-stress responses of the plants.
Collapse
|
|
5 |
44 |
19
|
Hossain MN, Sarker U, Raihan MS, Al-Huqail AA, Siddiqui MH, Oba S. Influence of Salinity Stress on Color Parameters, Leaf Pigmentation, Polyphenol and Flavonoid Contents, and Antioxidant Activity of Amaranthus lividus Leafy Vegetables. Molecules 2022; 27:molecules27061821. [PMID: 35335185 PMCID: PMC8955103 DOI: 10.3390/molecules27061821] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022] Open
Abstract
This is the first attempt to evaluate the impact of four salinity levels on the color parameters, pigments, polyphenols, flavonoids, and antioxidant capacities of four promising A. lividus genotypes. The color parameters, such as the yellowness/blueness (b*) and the chroma (C*); the antioxidant components, such as the polyphenols and flavonoids; and the antioxidant capacities of the leaves were remarkably increased by 39, 1, 5, 10 and 43%, respectively, at 50 mM of NaCl, and by 55, 5, 60, 34, 58 and 82%, respectively, at 100 mM NaCl concentrations. The green tower and SA6 genotypes were identified as tolerant varieties. The total phenolic content (TPC) and the total flavonoid content (TFC) played vital roles in scavenging reactive oxygen species (ROS), and they would be beneficial for the human diet and would serve as good antioxidants for the prevention of aging, and they are also essential to human health. A correlation study revealed the strong antioxidant capacities of the pigments and antioxidant components that were studied. It was revealed that A. lividus could tolerate a certain level of salinity stress without compromising the antioxidant quality of the final product. Taken together, our results suggest that A. lividus could be a promising alternative crop for farmers, especially in saline-prone areas in the tropical and subtropical regions.
Collapse
|
|
3 |
44 |
20
|
Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, Raza A, Ahmad M, Siddiqui MH. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:47-59. [PMID: 33075710 DOI: 10.1016/j.plaphy.2020.09.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 05/25/2023]
Abstract
Soil salinity and drought stress (DS) are the massive problem for worldwide agriculture. Both stresses together become more toxic to the plant growth and development. Silicon (Si) being the second most abundant element in the earth's crust, exerts beneficial effects on plants under both stress and non-stress conditions. However, limited information is available to substantiate the beneficial role of Si in delaying the premature leaf senescence and imparting tolerance of mustard (Brassica juncea L.) plants to salinity and DS. Therefore, the present study aimed to explore the role of Si (source K2SiO3) in chlorophyll (Chl) biosynthesis, nutrients uptake, relative water content (RWC), proline (Pro) metabolism, antioxidant system and delaying of premature leaf senescence in mustard plants under sodium chloride (NaCl) and DS conditions. Results of this study show that exogenous Si (1.7 mM) significantly delayed the salt plus DS-induced premature leaf senescence. This was further accompanied by the enhanced nutrients accumulation and activity of chlorophyll metabolizing enzymes [δ-aminolevulinic acid (δ-ALA) dehydratase and porphobilinogen deaminase] and levels of δ-ALA, and Chls a and b and also by decreased the Chl degradation and Chl degrading enzymes (Chlorophyllase, Chl-degrading peroxidase, pheophytinase) activity. Exogenous Si treatment induced redox homoeostasis in B. juncea L. plants, which is evident by a reduced generation of reactive oxygen species (ROS) resulting due to suppressed activity of their generating enzymes (glycolate oxidase and NADPH oxidase) and enhanced defence system. Furthermore, application of Si inhibited the activity of protease and triggered the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) and plasma membrane H+-ATPase activity. In conclusion, all these results reveal that Si could help in the modulation of Chl metabolism, redox hemostasis, and the regulation of nutrients (nitrogen, phosphorus, Si and potassium) uptake in the mustard plants that lead to the postponement of premature leaf senescence under salinity plus DS.
Collapse
|
|
5 |
41 |
21
|
El-Naggar ME, Abdelsalam NR, Fouda MM, Mackled MI, Al-Jaddadi MA, Ali HM, Siddiqui MH, Kandil EE. Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest. NANOMATERIALS 2020; 10:nano10040739. [PMID: 32290620 PMCID: PMC7221732 DOI: 10.3390/nano10040739] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
Abstract
Maize is considered one of the most imperative cereal crops worldwide. In this work, high throughput silica nanoparticles (SiO2-NPs) were prepared via the sol-gel technique. SiO2-NPs were attained in a powder form followed by full analysis using the advanced tools (UV-vis, HR-TEM, SEM, XRD and zeta potential). To this end, SiO2-NPs were applied as both nanofertilizer and pesticide against four common pests that infect the stored maize and cause severe damage to crops. As for nanofertilizers, the response of maize hybrid to mineral NPK, "Nitrogen (N), Phosphorus (P), and Potassium (K)" (0% = untreated, 50% of recommended dose and 100%), with different combinations of SiO2-NPs; (0, 2.5, 5, 10 g/kg soil) was evaluated. Afterward, post-harvest, grains were stored and fumigated with different concentrations of SiO2-NPs (0.0031, 0.0063. 0.25, 0.5, 1.0, 2.0, 2.5, 5, 10 g/kg) in order to identify LC50 and mortality % of four common insects, namely Sitophilus oryzae, Rhizopertha dominica, Tribolium castaneum, and Orizaephilus surinamenisis. The results revealed that, using the recommended dose of 100%, mineral NPK showed the greatest mean values of plant height, chlorophyll content, yield, its components, and protein (%). By feeding the soil with SiO2-NPs up to 10 g/kg, the best growth and yield enhancement of maize crop is noticed. Mineral NPK interacted with SiO2-NPs, whereas the application of mineral NPK at the rate of 50% with 10 g/kg SiO2-NPs, increased the highest mean values of agronomic characters. Therefore, SiO2-NPs can be applied as a growth promoter, and in the meantime, as strong unconventional pesticides for crops during storage, with a very small and safe dose.
Collapse
|
Journal Article |
5 |
38 |
22
|
Siddiqui MH, Mohammad F, Khan MN, Al-Whaibi MH, Bahkali AHA. Nitrogen in Relation to Photosynthetic Capacity and Accumulation of Osmoprotectant and Nutrients in Brassica Genotypes Grown Under Salt Stress. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60142-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
15 |
37 |
23
|
Khan MN, AlSolami MA, Basahi RA, Siddiqui MH, Al-Huqail AA, Abbas ZK, Siddiqui ZH, Ali HM, Khan F. Nitric oxide is involved in nano-titanium dioxide-induced activation of antioxidant defense system and accumulation of osmolytes under water-deficit stress in Vicia faba L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110152. [PMID: 31927357 DOI: 10.1016/j.ecoenv.2019.110152] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 05/22/2023]
Abstract
Nano-titanium dioxide (nTiO2) has been reported to improve tolerance of plants against different environmental stresses by modulating various physiological and biochemical processes. Nitric oxide (NO) has been shown to act as an important stress signaling molecule during plant responses to abiotic stresses. The present work was planned to investigate the involvement of endogenous NO in nTiO2-induced activation of defense system of fava bean (Vicia faba L.) plants under water-deficit stress (WDS) conditions. Water-suffered plants showed increased concentration of hydrogen peroxide (H2O2) and superoxide (O2-) content coupled with increased electrolyte leakage and lipid peroxidation which adversely affected nitrate reductase (NR) activity, chlorophyll content and growth of the plants. However, application of 15 mg L-1 nTiO2 to stressed plants significantly induced NR activity and synthesis of NO which elevated enzymatic and non-enzymatic defense system of the stressed plants and suppressed the generation of H2O2 and O2- content, leakage of electrolytes, and lipid peroxidation. Application of nTiO2, in association with NO, also enhanced the accumulation of osmolytes (proline and glycine betaine) that assisted the stressed plants in osmotic adjustment as witnessed by improved hydration level of the plants. Involvement of NO in nTiO2-induced activation of defense system was confirmed with NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] which caused recurrence of WDS.
Collapse
|
|
5 |
36 |
24
|
Shah MZ, Guan ZH, Din AU, Ali A, Rehman AU, Jan K, Faisal S, Saud S, Adnan M, Wahid F, Alamri S, Siddiqui MH, Ali S, Nasim W, Hammad HM, Fahad S. Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities. Sci Rep 2021; 11:20754. [PMID: 34675270 PMCID: PMC8531362 DOI: 10.1038/s41598-021-00296-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Silver nanoparticles (Ag. NPs) have shown a biological activity range, synthesized under different environment-friendly approaches. Ag. NPs were synthesized using aqueous crude extract (ACE) isolated from Plantago lanceolata. The ACE and Ag. NPs were characterized and assessed their biological and antioxidant activities. The existence of nanoparticles (NPs) was confirmed by color shift, atomic force microscopy (AFM), and UV-Vis's spectroscopy. The FT-IR analysis indicated the association of biomolecules (phenolic acid and flavonoids) to reduce silver (Ag+) ions. The SEM study demonstrated a sphere-shaped and mean size in the range of 30 ± 4 nm. The EDX spectrum revealed that the Ag. NPs were composed of 54.87% Ag with 20 nm size as identified by SEM and TEM. AFM has ended up being exceptionally useful in deciding morphological elements and the distance across of Ag. NPs in the scope of 23-30 nm. The TEM image showed aggregations of NPs and physical interaction. Ag. NPs formation also confirmed by XPS, DRS and BET studies. Ag. NPs showed efficient activity as compared to ACE, and finally, the bacterial growth was impaired by biogenic NPs. The lethal dose (LD50) of Ag. NPs against Agrobacterium tumefaciens, Proteus vulgaris, Staphylococcus aureus, and Escherichia coli were 45.66%, 139.71%, 332.87%, and 45.54%, with IC50 (08.02 ± 0.68), (55.78 ± 1.01), (12.34 ± 1.35) and (11.68 ± 1.42) respectively, suppressing the growth as compared to ACE. The antioxidant capacity, i.e., 2,2-diphenyl-1-picrylhydrazyl (DPPH) of Ag. NPs were assayed. ACE and Ag. NPs achieved a peak antioxidant capacity of 62.43 ± 2.4 and 16.85 ± 0.4 μg mL-1, compared to standard (69.60 ± 1.1 at 100 μg mL-1) with IC50 (369.5 ± 13.42 and 159.5 ± 10.52 respectively). Finally, the Ag. NPs synthesized by P. lanceolata extract have an excellent source of bioactive natural products (NP). Outstanding antioxidant, antibacterial activities have been shown by NPs and can be used in various biological techniques in future research.
Collapse
|
Retracted Publication |
4 |
36 |
25
|
Khan MN, AlZuaibr FM, Al-Huqail AA, Siddiqui MH, M Ali H, Al-Muwayhi MA, Al-Haque HN. Hydrogen Sulfide-Mediated Activation of O-Acetylserine (Thiol) Lyase and l/d-Cysteine Desulfhydrase Enhance Dehydration Tolerance in Eruca sativa Mill. Int J Mol Sci 2018; 19:E3981. [PMID: 30544896 PMCID: PMC6321631 DOI: 10.3390/ijms19123981] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022] Open
Abstract
Hydrogen sulfide (H₂S) has emerged as an important signaling molecule and plays a significant role during different environmental stresses in plants. The present work was carried out to explore the potential role of H₂S in reversal of dehydration stress-inhibited O-acetylserine (thiol) lyase (OAS-TL), l-cysteine desulfhydrase (LCD), and d-cysteine desulfhydrase (DCD) response in arugula (Eruca sativa Mill.) plants. Dehydration-stressed plants exhibited reduced water status and increased levels of hydrogen peroxide (H₂O₂) and superoxide (O₂•-) content that increased membrane permeability and lipid peroxidation, and caused a reduction in chlorophyll content. However, H₂S donor sodium hydrosulfide (NaHS), at the rate of 2 mM, substantially reduced oxidative stress (lower H₂O₂ and O₂•-) by upregulating activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and increasing accumulation of osmolytes viz. proline and glycine betaine (GB). All these, together, resulted in reduced membrane permeability, lipid peroxidation, water loss, and improved hydration level of plants. The beneficial role of H₂S in the tolerance of plants to dehydration stress was traced with H₂S-mediated activation of carbonic anhydrase activity and enzyme involved in the biosynthesis of cysteine (Cys), such as OAS-TL. H₂S-treated plants showed maximum Cys content. The exogenous application of H₂S also induced the activity of LCD and DCD enzymes that assisted the plants to synthesize more H₂S from accumulated Cys. Therefore, an adequate concentration of H₂S was maintained, that improved the efficiency of plants to mitigate dehydration stress-induced alterations. The central role of H₂S in the reversal of dehydration stress-induced damage was evident with the use of the H₂S scavenger, hypotaurine.
Collapse
|
research-article |
7 |
33 |