1
|
Cui C, Gan L, Heggen M, Rudi S, Strasser P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. NATURE MATERIALS 2013; 12:765-71. [PMID: 23770725 DOI: 10.1038/nmat3668] [Citation(s) in RCA: 657] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/19/2013] [Indexed: 05/18/2023]
Abstract
Shape-selective monometallic nanocatalysts offer activity benefits based on structural sensitivity and high surface area. In bimetallic nanoalloys with well-defined shape, site-dependent metal surface segregation additionally affects the catalytic activity and stability. However, segregation on shaped alloy nanocatalysts and their atomic-scale evolution is largely unexplored. Exemplified by three octahedral PtxNi1-x alloy nanoparticle electrocatalysts with unique activity for the oxygen reduction reaction at fuel cell cathodes, we reveal an unexpected compositional segregation structure across the {111} facets using aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy. In contrast to theoretical predictions, the pristine PtxNi1-x nano-octahedra feature a Pt-rich frame along their edges and corners, whereas their Ni atoms are preferentially segregated in their {111} facet region. We follow their morphological and compositional evolution in electrochemical environments and correlate this with their exceptional catalytic activity. The octahedra preferentially leach in their facet centres and evolve into 'concave octahedra'. More generally, the segregation and leaching mechanisms revealed here highlight the complexity with which shape-selective nanoalloys form and evolve under reactive conditions.
Collapse
|
|
12 |
657 |
2
|
Oezaslan M, Heggen M, Strasser P. Size-Dependent Morphology of Dealloyed Bimetallic Catalysts: Linking the Nano to the Macro Scale. J Am Chem Soc 2011; 134:514-24. [DOI: 10.1021/ja2088162] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
14 |
306 |
3
|
Cui C, Gan L, Li HH, Yu SH, Heggen M, Strasser P. Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. NANO LETTERS 2012; 12:5885-5889. [PMID: 23062102 DOI: 10.1021/nl3032795] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We demonstrate how shape selectivity and optimized surface composition result in exceptional oxygen reduction activity of octahedral PtNi nanoparticles (NPs). The alloy octahedra were obtained by utilizing a facile, completely surfactant-free solvothermal synthesis. We show that the choice of precursor ligands controls the shape, while the reaction time tunes the surface Pt:Ni composition. The 9.5 nm sized PtNi octahedra reached a 10-fold surface area-specific (~3.14 mA/cm(Pt)(2)) as well as an unprecedented 10-fold Pt mass based (~1.45 A/mg(Pt)) activity gain over the state-of-art Pt electrocatalyst, approaching the theoretically predicted limits.
Collapse
|
|
13 |
299 |
4
|
Gan L, Cui C, Heggen M, Dionigi F, Rudi S, Strasser P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014; 346:1502-6. [DOI: 10.1126/science.1261212] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Morphological shape in chemistry and biology owes its existence to anisotropic growth and is closely coupled to distinct functionality. Although much is known about the principal growth mechanisms of monometallic shaped nanocrystals, the anisotropic growth of shaped alloy nanocrystals is still poorly understood. Using aberration-corrected scanning transmission electron microscopy, we reveal an element-specific anisotropic growth mechanism of platinum (Pt) bimetallic nano-octahedra where compositional anisotropy couples to geometric anisotropy. A Pt-rich phase evolves into precursor nanohexapods, followed by a slower step-induced deposition of an M-rich (M = Ni, Co, etc.) phase at the concave hexapod surface forming the octahedral facets. Our finding explains earlier reports on unusual compositional segregations and chemical degradation pathways of bimetallic polyhedral catalysts and may aid rational synthesis of shaped alloy catalysts with desired compositional patterns and properties.
Collapse
|
|
11 |
254 |
5
|
Armbrüster M, Kovnir K, Friedrich M, Teschner D, Wowsnick G, Hahne M, Gille P, Szentmiklósi L, Feuerbacher M, Heggen M, Girgsdies F, Rosenthal D, Schlögl R, Grin Y. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. NATURE MATERIALS 2012; 11:690-3. [PMID: 22683821 DOI: 10.1038/nmat3347] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/02/2012] [Indexed: 05/06/2023]
Abstract
Replacing noble metals in heterogeneous catalysts by low-cost substitutes has driven scientific and industrial research for more than 100 years. Cheap and ubiquitous iron is especially desirable, because it does not bear potential health risks like, for example, nickel. To purify the ethylene feed for the production of polyethylene, the semi-hydrogenation of acetylene is applied (80 × 10(6) tons per annum; refs 1-3). The presence of small and separated transition-metal atom ensembles (so-called site-isolation), and the suppression of hydride formation are beneficial for the catalytic performance. Iron catalysts necessitate at least 50 bar and 100 °C for the hydrogenation of unsaturated C-C bonds, showing only limited selectivity towards semi-hydrogenation. Recent innovation in catalytic semi-hydrogenation is based on computational screening of substitutional alloys to identify promising metal combinations using scaling functions and the experimental realization of the site-isolation concept employing structurally well-ordered and in situ stable intermetallic compounds of Ga with Pd (refs 15-19). The stability enables a knowledge-based development by assigning the observed catalytic properties to the crystal and electronic structures of the intermetallic compounds. Following this approach, we identified the low-cost and environmentally benign intermetallic compound Al(13)Fe(4) as an active and selective semi-hydrogenation catalyst. This knowledge-based development might prove applicable to a wide range of heterogeneously catalysed reactions.
Collapse
|
|
13 |
224 |
6
|
Gan L, Heggen M, Rudi S, Strasser P. Core-shell compositional fine structures of dealloyed Pt(x)Ni(1-x) nanoparticles and their impact on oxygen reduction catalysis. NANO LETTERS 2012; 12:5423-5430. [PMID: 22978641 DOI: 10.1021/nl302995z] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Using aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy line profiles with Ångstrom resolution, we uncover novel core-shell fine structures in a series of catalytically active dealloyed Pt(x)Ni(1-x) core-shell nanoparticles, showing the formation of unusual near-surface Ni-enriched inner shells. The radial location and the composition of the Ni-enriched inner shells were sensitively dependent on the initial alloy compositions. We further discuss how these self-organized Ni-enriched inner shells play a key role in maintaining surface lattice strain and thus control the surface catalytic activity for oxygen reduction.
Collapse
|
|
13 |
187 |
7
|
Armbrüster M, Wowsnick G, Friedrich M, Heggen M, Cardoso-Gil R. Synthesis and Catalytic Properties of Nanoparticulate Intermetallic Ga–Pd Compounds. J Am Chem Soc 2011; 133:9112-8. [DOI: 10.1021/ja202869d] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
14 |
147 |
8
|
Zhang C, Li H, Lu J, Zhang X, MacArthur KE, Heggen M, Wang F. Promoting Lignin Depolymerization and Restraining the Condensation via an Oxidation−Hydrogenation Strategy. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00148] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
|
8 |
137 |
9
|
Beermann V, Gocyla M, Kühl S, Padgett E, Schmies H, Goerlin M, Erini N, Shviro M, Heggen M, Dunin-Borkowski RE, Muller DA, Strasser P. Tuning the Electrocatalytic Oxygen Reduction Reaction Activity and Stability of Shape-Controlled Pt-Ni Nanoparticles by Thermal Annealing - Elucidating the Surface Atomic Structural and Compositional Changes. J Am Chem Soc 2017; 139:16536-16547. [PMID: 29019692 DOI: 10.1021/jacs.7b06846] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Shape-controlled octahedral Pt-Ni alloy nanoparticles exhibit remarkably high activities for the electroreduction of molecular oxygen (oxygen reduction reaction, ORR), which makes them fuel-cell cathode catalysts with exceptional potential. To unfold their full and optimized catalytic activity and stability, however, the nano-octahedra require post-synthesis thermal treatments, which alter the surface atomic structure and composition of the crystal facets. Here, we address and strive to elucidate the underlying surface chemical processes using a combination of ex situ analytical techniques with in situ transmission electron microscopy (TEM), in situ X-ray diffraction (XRD), and in situ electrochemical Fourier transformed infrared (FTIR) experiments. We present a robust fundamental correlation between annealing temperature and catalytic activity, where a ∼25 times higher ORR activity than for commercial Pt/C (2.7 A mgPt-1 at 0.9 VRHE) was reproducibly observed upon annealing at 300 °C. The electrochemical stability, however, peaked out at the most severe heat treatments at 500 °C. Aberration-corrected scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy (EDX) in combination with in situ electrochemical CO stripping/FTIR data revealed subtle, but important, differences in the formation and chemical nature of Pt-rich and Ni-rich surface domains in the octahedral (111) facets. Estimating trends in surface chemisorption energies from in situ electrochemical CO/FTIR investigations suggested that balanced annealing generates an optimal degree of Pt surface enrichment, while the others exhibited mostly Ni-rich facets. The insights from our study are quite generally valid and aid in developing suitable post-synthesis thermal treatments for other alloy nanocatalysts as well.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
121 |
10
|
Baldizzone C, Mezzavilla S, Carvalho HWP, Meier JC, Schuppert AK, Heggen M, Galeano C, Grunwaldt JD, Schüth F, Mayrhofer KJJ. Confined-Space Alloying of Nanoparticles for the Synthesis of Efficient PtNi Fuel-Cell Catalysts. Angew Chem Int Ed Engl 2014; 53:14250-4. [DOI: 10.1002/anie.201406812] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/18/2014] [Indexed: 11/12/2022]
|
|
11 |
121 |
11
|
Beermann V, Gocyla M, Willinger E, Rudi S, Heggen M, Dunin-Borkowski RE, Willinger MG, Strasser P. Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability. NANO LETTERS 2016; 16:1719-1725. [PMID: 26854940 DOI: 10.1021/acs.nanolett.5b04636] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Thanks to their remarkably high activity toward oxygen reduction reaction (ORR), platinum-based octahedrally shaped nanoparticles have attracted ever increasing attention in last years. Although high activities for ORR catalysts have been attained, the practical use is still limited by their long-term stability. In this work, we present Rh-doped Pt-Ni octahedral nanoparticles with high activities up to 1.14 A mgPt(-1) combined with improved performance and shape stability compared to previous bimetallic Pt-Ni octahedral particles. The synthesis, the electrocatalytic performance of the particles toward ORR, and atomic degradation mechanisms are investigated with a major focus on a deeper understanding of strategies to stabilize morphological particle shape and consequently their performance. Rh surface-doped octahedral Pt-Ni particles were prepared at various Rh levels. At and above about 3 atom %, the nanoparticles maintained their octahedral shape even past 30,000 potential cycles, while undoped bimetallic reference nanoparticles show a complete loss in octahedral shape already after 8000 cycles in the same potential window. Detailed atomic insight in these observations is obtained from aberration-corrected scanning transmission electron microscopy (STEM) and energy dispersive X-ray (EDX) analysis. Our analysis shows that it is the migration of Pt surface atoms and not, as commonly thought, the dissolution of Ni that constitutes the primary origin of the octahedral shape loss for Pt-Ni nanoparticles. Using small amounts of Rh we were able to suppress the migration rate of platinum atoms and consequently suppress the octahedral shape loss of Pt-Ni nanoparticles.
Collapse
|
|
9 |
119 |
12
|
Gan L, Heggen M, O'Malley R, Theobald B, Strasser P. Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. NANO LETTERS 2013; 13:1131-8. [PMID: 23360425 DOI: 10.1021/nl304488q] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoporosity is a frequently reported phenomenon in bimetallic particle ensembles used as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells. It is generally considered a favorable characteristic, because it increases the catalytically active surface area. However, the effect of nanoporosity on the intrinsic activity and stability of a nanoparticle electrocatalyst has remained unclear. Here, we present a facile atmosphere-controlled acid leaching technique to control the formation of nanoporosity in Pt-Ni bimetallic nanoparticles. By statistical analysis of particle size, composition, nanoporosity, and atomic-scale core-shell fine structures before and after electrochemical stability test, we uncover that nanoporosity formation in particles larger than ca. 10 nm is intrinsically tied to a drastic dissolution of Ni and, as a result of this, a rapid drop in intrinsic catalytic activity during ORR testing, translating into severe catalyst performance degradation. In contrast, O2-free acid leaching enabled the suppression of nanoporosity resulting in more solid core-shell particle architectures with thin Pt-enriched shells; surprisingly, such particles maintained high intrinsic activity and improved catalytic durability under otherwise identical ORR tests. On the basis of these findings, we suggest that catalytic stability could further improve by controlling the particle size below ca. 10 nm to avoid nanoporosity. Our findings provide an explanation for the degradation of bimetallic particle ensembles and show an easy to implement pathway toward more durable fuel cell cathode catalysts.
Collapse
|
|
12 |
112 |
13
|
An J, Wang Y, Lu J, Zhang J, Zhang Z, Xu S, Liu X, Zhang T, Gocyla M, Heggen M, Dunin-Borkowski RE, Fornasiero P, Wang F. Acid-Promoter-Free Ethylene Methoxycarbonylation over Ru-Clusters/Ceria: The Catalysis of Interfacial Lewis Acid–Base Pair. J Am Chem Soc 2018; 140:4172-4181. [DOI: 10.1021/jacs.8b01742] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
7 |
109 |
14
|
Kasel D, Bradford SA, Šimůnek J, Heggen M, Vereecken H, Klumpp E. Transport and retention of multi-walled carbon nanotubes in saturated porous media: effects of input concentration and grain size. WATER RESEARCH 2013; 47:933-44. [PMID: 23228890 DOI: 10.1016/j.watres.2012.11.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 05/13/2023]
Abstract
Water-saturated column experiments were conducted to investigate the effect of input concentration (C₀) and sand grain size on the transport and retention of low concentrations (1, 0.01, and 0.005 mg L⁻¹) of functionalized ¹⁴C-labeled multi-walled carbon nanotubes (MWCNT) under repulsive electrostatic conditions that were unfavorable for attachment. The breakthrough curves (BTCs) for MWCNT typically did not reach a plateau, but had an asymmetric shape that slowly increased during breakthrough. The retention profiles (RPs) were not exponential with distance, but rather exhibited a hyper-exponential shape with greater retention near the column inlet. The collected BTCs and RPs were simulated using a numerical model that accounted for both time- and depth-dependent blocking functions on the retention coefficient. For a given C₀, the depth-dependent retention coefficient and the maximum solid phase concentration of MWCNT were both found to increase with decreasing grain size. These trends reflect greater MWCNT retention rates and a greater number of retention locations in the finer textured sand. The fraction of the injected MWCNT mass that was recovered in the effluent increased and the RPs became less hyper-exponential in shape with higher C₀ due to enhanced blocking/filling of retention locations. This concentration dependency of MWCNT transport increased with smaller grain size because of the effect of pore structure and MWCNT shape on MWCNT retention. In particular, MWCNT have a high aspect ratio and we hypothesize that solid phase MWCNT may create a porous network with enhanced ability to retain particles in smaller grain sized sand, especially at higher C₀. Results demonstrate that model simulations of MWCNT transport and fate need to accurately account for observed behavior of both BTCs and RPs.
Collapse
|
|
12 |
100 |
15
|
Baldizzone C, Gan L, Hodnik N, Keeley GP, Kostka A, Heggen M, Strasser P, Mayrhofer KJJ. Stability of Dealloyed Porous Pt/Ni Nanoparticles. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01151] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
10 |
98 |
16
|
Friedrich M, Penner S, Heggen M, Armbrüster M. High CO2 selectivity in methanol steam reforming through ZnPd/ZnO teamwork. Angew Chem Int Ed Engl 2013; 52:4389-92. [PMID: 23494806 DOI: 10.1002/anie.201209587] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/06/2013] [Indexed: 11/07/2022]
|
Research Support, Non-U.S. Gov't |
12 |
94 |
17
|
Cui C, Gan L, Neumann M, Heggen M, Cuenya BR, Strasser P. Carbon monoxide-assisted size confinement of bimetallic alloy nanoparticles. J Am Chem Soc 2014; 136:4813-6. [PMID: 24592858 DOI: 10.1021/ja4124658] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Colloid-based chemical synthesis methods of bimetallic alloy nanoparticles (NPs) provide good monodispersity, yet generally show a strong variation of the resulting mean particle size with alloy composition. This severely compromises accurate correlation between composition of alloy particles and their size-dependent properties. To address this issue, a general CO adsorption-assisted capping ligand-free solvothermal synthesis method is reported which provides homogeneous bimetallic NPs with almost perfectly constant particle size over an unusually wide compositional range. Using Pt-Ni alloy NPs as an example, we show that variation of the reaction temperature between 160 and 240 °C allows for precise control of the resulting alloy particle bulk composition between 15 and 70 atomic % Ni, coupled with a constant mean particle size of ∼4 nm. The size-confining and Ni content-controlling role of CO during the nucleation and growth processes are investigated and discussed. Data suggest that size-dependent CO surface chemisorption and reversible Ni-carbonyl formation are key factors for the achievement of a constant particle size and temperature-controlled Ni content. To demonstrate the usefulness of the independent control of size and composition, size-deconvoluted relations between composition and electrocatalytic properties are established. Refining earlier reports, we uncover intrinsic monotonic relations between catalytic activity and initial Ni content, as expected from theoretical considerations.
Collapse
|
Journal Article |
11 |
87 |
18
|
Liang Y, Bradford SA, Simunek J, Heggen M, Vereecken H, Klumpp E. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12229-37. [PMID: 24106877 DOI: 10.1021/es402046u] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Column experiments were conducted with undisturbed loamy sand soil under unsaturated conditions (around 90% saturation degree) to investigate the retention of surfactant stabilized silver nanoparticles (AgNPs) with various input concentration (Co), flow velocity, and ionic strength (IS), and the remobilization of AgNPs by changing the cation type and IS. The mobility of AgNPs in soil was enhanced with decreasing solution IS, increasing flow rate and input concentration. Significant retardation of AgNP breakthrough and hyperexponential retention profiles (RPs) were observed in almost all the transport experiments. The retention of AgNPs was successfully analyzed using a numerical model that accounted for time- and depth-dependent retention. The simulated retention rate coefficient (k1) and maximum retained concentration on the solid phase (Smax) increased with increasing IS and decreasing Co. The high k1 resulted in retarded breakthrough curves (BTCs) until Smax was filled and then high effluent concentrations were obtained. Hyperexponential RPs were likely caused by the hydrodynamics at the column inlet which produced a concentrated AgNP flux to the solid surface. Higher IS and lower Co produced more hyperexponential RPs because of larger values of Smax. Retention of AgNPs was much more pronounced in the presence of Ca(2+) than K(+) at the same IS, and the amount of AgNP released with a reduction in IS was larger for K(+) than Ca(2+) systems. These stronger AgNP interactions in the presence of Ca(2+) were attributed to cation bridging. Further release of AgNPs and clay from the soil was induced by cation exchange (K(+) for Ca(2+)) that reduced the bridging interaction and IS reduction that expanded the electrical double layer. Transmission electron microscopy, energy-dispersive X-ray spectroscopy, and correlations between released soil colloids and AgNPs indicated that some of the released AgNPs were associated with the released clay fraction.
Collapse
|
|
12 |
78 |
19
|
Cui C, Ahmadi M, Behafarid F, Gan L, Neumann M, Heggen M, Cuenya BR, Strasser P. Shape-selected bimetallic nanoparticle electrocatalysts: evolution of their atomic-scale structure, chemical composition, and electrochemical reactivity under various chemical environments. Faraday Discuss 2013; 162:91-112. [PMID: 24015578 DOI: 10.1039/c3fd20159g] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
12 |
77 |
20
|
Arán-Ais RM, Dionigi F, Merzdorf T, Gocyla M, Heggen M, Dunin-Borkowski RE, Gliech M, Solla-Gullón J, Herrero E, Feliu JM, Strasser P. Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt-Ni-Co Alloy Nanocatalysts. NANO LETTERS 2015; 15:7473-7480. [PMID: 26441293 DOI: 10.1021/acs.nanolett.5b03057] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction "one-step" conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a "two-step" route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.
Collapse
|
|
10 |
76 |
21
|
Gan L, Heggen M, Cui C, Strasser P. Thermal Facet Healing of Concave Octahedral Pt–Ni Nanoparticles Imaged in Situ at the Atomic Scale: Implications for the Rational Synthesis of Durable High-Performance ORR Electrocatalysts. ACS Catal 2015. [DOI: 10.1021/acscatal.5b02620] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
10 |
71 |
22
|
Xu J, Wei XK, Costa JD, Lado JL, Owens-Baird B, Gonçalves LPL, Fernandes SPS, Heggen M, Petrovykh DY, Dunin-Borkowski RE, Kovnir K, Kolen’ko YV. Interface Engineering in Nanostructured Nickel Phosphide Catalyst for Efficient and Stable Water Oxidation. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01954] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
|
8 |
66 |
23
|
Erini N, Beermann V, Gocyla M, Gliech M, Heggen M, Dunin-Borkowski RE, Strasser P. The Effect of Surface Site Ensembles on the Activity and Selectivity of Ethanol Electrooxidation by Octahedral PtNiRh Nanoparticles. Angew Chem Int Ed Engl 2017; 56:6533-6538. [DOI: 10.1002/anie.201702332] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Indexed: 11/10/2022]
|
|
8 |
61 |
24
|
Gan L, Rudi S, Cui C, Heggen M, Strasser P. Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3189-3196. [PMID: 27152487 DOI: 10.1002/smll.201600027] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Dealloyed Pt bimetallic core-shell catalysts derived from low-Pt bimetallic alloy nanoparticles (e.g, PtNi3 ) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control their particle size below a critical value (≈10 nm) to suppress nanoporosity formation and hence reduce significant base metal (e.g., Ni) leaching under the corrosive ORR condition. Fine size control of the sub-10 nm PtNi3 nanoparticles and understanding their size dependent ORR electrocatalysis are crucial to further improve their ORR activity and stability yet still remain unexplored. A robust synthetic approach is presented here for size-controlled PtNi3 nanoparticles between 3 and 10 nm while keeping a constant particle composition and their size-selected growth mechanism is studied comprehensively. This enables us to address their size-dependent ORR activities and stabilities for the first time. Contrary to the previously established monotonic increase of ORR specific activity and stability with increasing particle size on Pt and Pt-rich bimetallic nanoparticles, the Pt-poor PtNi3 nanoparticles exhibit an unusual "volcano-shaped" size dependence, showing the highest ORR activity and stability at the particle sizes between 6 and 8 nm due to their highest Ni retention during long-term catalyst aging. The results of this study provide important practical guidelines for the size selection of the low Pt bimetallic ORR electrocatalysts with further improved durably high activity.
Collapse
|
|
9 |
58 |
25
|
Hou T, Luo N, Li H, Heggen M, Lu J, Wang Y, Wang F. Yin and Yang Dual Characters of CuOx Clusters for C–C Bond Oxidation Driven by Visible Light. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00629] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
|
8 |
57 |