1
|
Colli L, Milanesi M, Talenti A, Bertolini F, Chen M, Crisà A, Daly KG, Del Corvo M, Guldbrandtsen B, Lenstra JA, Rosen BD, Vajana E, Catillo G, Joost S, Nicolazzi EL, Rochat E, Rothschild MF, Servin B, Sonstegard TS, Steri R, Van Tassell CP, Ajmone-Marsan P, Crepaldi P, Stella A. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet Sel Evol 2018; 50:58. [PMID: 30449284 PMCID: PMC6240949 DOI: 10.1186/s12711-018-0422-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Goat populations that are characterized within the AdaptMap project cover a large part of the worldwide distribution of this species and provide the opportunity to assess their diversity at a global scale. We analysed genome-wide 50 K single nucleotide polymorphism (SNP) data from 144 populations to describe the global patterns of molecular variation, compare them to those observed in other livestock species, and identify the drivers that led to the current distribution of goats. RESULTS A high degree of genetic variability exists among the goat populations studied. Our results highlight a strong partitioning of molecular diversity between and within continents. Three major gene pools correspond to goats from Europe, Africa and West Asia. Dissection of sub-structures disclosed regional gene pools, which reflect the main post-domestication migration routes. We also identified several exchanges, mainly in African populations, and which often involve admixed and cosmopolitan breeds. Extensive gene flow has taken place within specific areas (e.g., south Europe, Morocco and Mali-Burkina Faso-Nigeria), whereas elsewhere isolation due to geographical barriers (e.g., seas or mountains) or human management has decreased local gene flows. CONCLUSIONS After domestication in the Fertile Crescent in the early Neolithic era (ca. 12,000 YBP), domestic goats that already carried differentiated gene pools spread to Europe, Africa and Asia. The spread of these populations determined the major genomic background of the continental populations, which currently have a more marked subdivision than that observed in other ruminant livestock species. Subsequently, further diversification occurred at the regional level due to geographical and reproductive isolation, which was accompanied by additional migrations and/or importations, the traces of which are still detectable today. The effects of breed formation were clearly detected, particularly in Central and North Europe. Overall, our results highlight a remarkable diversity that occurs at the global scale and is locally partitioned and often affected by introgression from cosmopolitan breeds. These findings support the importance of long-term preservation of goat diversity, and provide a useful framework for investigating adaptive introgression, directing genetic improvement and choosing breeding targets.
Collapse
|
Journal Article |
7 |
72 |
2
|
Genini S, Badaoui B, Sclep G, Bishop SC, Waddington D, Pinard van der Laan MH, Klopp C, Cabau C, Seyfert HM, Petzl W, Jensen K, Glass EJ, de Greeff A, Smith HE, Smits MA, Olsaker I, Boman GM, Pisoni G, Moroni P, Castiglioni B, Cremonesi P, Del Corvo M, Foulon E, Foucras G, Rupp R, Giuffra E. Strengthening insights into host responses to mastitis infection in ruminants by combining heterogeneous microarray data sources. BMC Genomics 2011; 12:225. [PMID: 21569310 PMCID: PMC3118214 DOI: 10.1186/1471-2164-12-225] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 05/11/2011] [Indexed: 12/30/2022] Open
Abstract
Background Gene expression profiling studies of mastitis in ruminants have provided key but fragmented knowledge for the understanding of the disease. A systematic combination of different expression profiling studies via meta-analysis techniques has the potential to test the extensibility of conclusions based on single studies. Using the program Pointillist, we performed meta-analysis of transcription-profiling data from six independent studies of infections with mammary gland pathogens, including samples from cattle challenged in vivo with S. aureus, E. coli, and S. uberis, samples from goats challenged in vivo with S. aureus, as well as cattle macrophages and ovine dendritic cells infected in vitro with S. aureus. We combined different time points from those studies, testing different responses to mastitis infection: overall (common signature), early stage, late stage, and cattle-specific. Results Ingenuity Pathway Analysis of affected genes showed that the four meta-analysis combinations share biological functions and pathways (e.g. protein ubiquitination and polyamine regulation) which are intrinsic to the general disease response. In the overall response, pathways related to immune response and inflammation, as well as biological functions related to lipid metabolism were altered. This latter observation is consistent with the milk fat content depression commonly observed during mastitis infection. Complementarities between early and late stage responses were found, with a prominence of metabolic and stress signals in the early stage and of the immune response related to the lipid metabolism in the late stage; both mechanisms apparently modulated by few genes, including XBP1 and SREBF1. The cattle-specific response was characterized by alteration of the immune response and by modification of lipid metabolism. Comparison of E. coli and S. aureus infections in cattle in vivo revealed that affected genes showing opposite regulation had the same altered biological functions and provided evidence that E. coli caused a stronger host response. Conclusions This meta-analysis approach reinforces previous findings but also reveals several novel themes, including the involvement of genes, biological functions, and pathways that were not identified in individual studies. As such, it provides an interesting proof of principle for future studies combining information from diverse heterogeneous sources.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
41 |
3
|
Colli L, Milanesi M, Vajana E, Iamartino D, Bomba L, Puglisi F, Del Corvo M, Nicolazzi EL, Ahmed SSE, Herrera JRV, Cruz L, Zhang S, Liang A, Hua G, Yang L, Hao X, Zuo F, Lai SJ, Wang S, Liu R, Gong Y, Mokhber M, Mao Y, Guan F, Vlaic A, Vlaic B, Ramunno L, Cosenza G, Ahmad A, Soysal I, Ünal EÖ, Ketudat-Cairns M, Garcia JF, Utsunomiya YT, Baruselli PS, Amaral MEJ, Parnpai R, Drummond MG, Galbusera P, Burton J, Hoal E, Yusnizar Y, Sumantri C, Moioli B, Valentini A, Stella A, Williams JL, Ajmone-Marsan P. New Insights on Water Buffalo Genomic Diversity and Post-Domestication Migration Routes From Medium Density SNP Chip Data. Front Genet 2018; 9:53. [PMID: 29552025 PMCID: PMC5841121 DOI: 10.3389/fgene.2018.00053] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/02/2018] [Indexed: 01/14/2023] Open
Abstract
The domestic water buffalo is native to the Asian continent but through historical migrations and recent importations, nowadays has a worldwide distribution. The two types of water buffalo, i.e., river and swamp, display distinct morphological and behavioral traits, different karyotypes and also have different purposes and geographical distributions. River buffaloes from Pakistan, Iran, Turkey, Egypt, Romania, Bulgaria, Italy, Mozambique, Brazil and Colombia, and swamp buffaloes from China, Thailand, Philippines, Indonesia and Brazil were genotyped with a species-specific medium-density 90K SNP panel. We estimated the levels of molecular diversity and described population structure, which revealed historical relationships between populations and migration events. Three distinct gene pools were identified in pure river as well as in pure swamp buffalo populations. Genomic admixture was seen in the Philippines and in Brazil, resulting from importations of animals for breed improvement. Our results were largely consistent with previous archeological, historical and molecular-based evidence for two independent domestication events for river- and swamp-type buffaloes, which occurred in the Indo-Pakistani region and close to the China/Indochina border, respectively. Based on a geographical analysis of the distribution of diversity, our evidence also indicated that the water buffalo spread out of the domestication centers followed two major divergent migration directions: river buffaloes migrated west from the Indian sub-continent while swamp buffaloes migrated from northern Indochina via an east-south-eastern route. These data suggest that the current distribution of water buffalo diversity has been shaped by the combined effects of multiple migration events occurred at different stages of the post-domestication history of the species.
Collapse
|
Journal Article |
7 |
40 |
4
|
Cremonesi P, Capoferri R, Pisoni G, Del Corvo M, Strozzi F, Rupp R, Caillat H, Modesto P, Moroni P, Williams JL, Castiglioni B, Stella A. Response of the goat mammary gland to infection with Staphylococcus aureus revealed by gene expression profiling in milk somatic and white blood cells. BMC Genomics 2012; 13:540. [PMID: 23046560 PMCID: PMC3532242 DOI: 10.1186/1471-2164-13-540] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 09/28/2012] [Indexed: 11/10/2022] Open
Abstract
Background S. aureus is one of the main pathogens responsible for the intra-mammary infection in dairy ruminants. Although much work has been carried out to understand the complex physiological and cellular events that occur in the mammary gland in response to S. aureus, the protective mechanisms are still poorly understood. The objectives of the present study were to investigate gene expression during the early response of the goat mammary gland to an experimental challenge with S. aureus, in order to better understand the local and systemic response and to compare them in two divergent lines of goat selected for high and low milk somatic cell scores. Results No differences in gene expression were found between high and low SCS (Somatic Cells Score) selection lines. Analysing the two groups together, an expression of 300 genes were found to change from T0 before infection, and T4 at 24 hours and T5 at 30 hours following challenge. In blood derived white blood cells 8 genes showed increased expression between T0 and T5 and 1 gene has reduced expression. The genes showing the greatest increase in expression following challenge (5.65 to 3.16 fold change) play an important role in (i) immune and inflammatory response (NFKB1, TNFAIP6, BASP1, IRF1, PLEK, BATF3); (ii) the regulation of innate resistance to pathogens (PTX3); and (iii) the regulation of cell metabolism (CYTH4, SLC2A6, ARG2). The genes with reduced expression (−1.5 to −2.5 fold) included genes involved in (i) lipid metabolism (ABCG2, FASN), (ii) chemokine, cytokine and intracellular signalling (SPPI), and (iii) cell cytoskeleton and extracellular matrix (KRT19). Conclusions Analysis of genes with differential expression following infection showed an inverse relationship between immune response and lipid metabolism in the early response of the mammary gland to the S. aureus challenge. PTX3 showed a large change in expression in both milk and blood, and is therefore a candidate for further studies on immune response associated with mastitis.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
37 |
5
|
Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, Fumasoni I, Michel C, Paccanaro A, Guiderdoni E, Schaffrath U, Morel JB, Piffanelli P, Faivre-Rampant O. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. MOLECULAR PLANT PATHOLOGY 2012; 13:828-41. [PMID: 22443363 PMCID: PMC6638809 DOI: 10.1111/j.1364-3703.2012.00795.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
With the aim of identifying novel regulators of host and nonhost resistance to fungi in rice, we carried out a systematic mutant screen of mutagenized lines. Two mutant wrky22 knockout lines revealed clear-cut enhanced susceptibility to both virulent and avirulent Magnaporthe oryzae strains and altered cellular responses to nonhost Magnaporthe grisea and Blumeria graminis fungi. In addition, the analysis of the pathogen responses of 24 overexpressor OsWRKY22 lines revealed enhanced resistance phenotypes on infection with virulent M. oryzae strain, confirming that OsWRKY22 is involved in rice resistance to blast. Bioinformatic analyses determined that the OsWRKY22 gene belongs to a well-defined cluster of monocot-specific WRKYs. The co-regulatory analysis revealed no significant co-regulation of OsWRKY22 with a representative panel of OsWRKYs, supporting its unique role in a series of transcriptional responses. In contrast, inquiring a subset of biotic stress-related Affymetrix data, a large number of resistance and defence-related genes were found to be putatively co-expressed with OsWRKY22. Taken together, all gathered experimental evidence places the monocot-specific OsWRKY22 gene at the convergence point of signal transduction circuits in response to both host and nonhost fungi encountering rice plants.
Collapse
|
research-article |
13 |
26 |
6
|
Fricano A, Bakaher N, Corvo MD, Piffanelli P, Donini P, Stella A, Ivanov NV, Pozzi C. Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genet 2012; 13:18. [PMID: 22435796 PMCID: PMC3342901 DOI: 10.1186/1471-2156-13-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 03/21/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The goals of our study were to assess the phylogeny and the population structure of tobacco accessions representing a wide range of genetic diversity; identify a subset of accessions as a core collection capturing most of the existing genetic diversity; and estimate, in the tobacco core collection, the extent of linkage disequilibrium (LD) in seven genomic regions using simple sequence repeat (SSR) markers. To this end, a collection of accessions were genotyped with SSR markers. Molecular diversity was evaluated and LD was analyzed across seven regions of the genome. RESULTS A genotyping database for 312 tobacco accessions was profiled with 49 SSR markers. Principal Coordinate Analysis (PCoA) and Bayesian cluster analysis revealed structuring of the tobacco population with regard to commercial classes and six main clades were identified, which correspond to "Oriental", Flue-Cured", "Burley", "Dark", "Primitive", and "Other" classes. Pairwise kinship was calculated between accessions, and an overall low level of co-ancestry was observed. A set of 89 genotypes was identified that captured the whole genetic diversity detected at the 49 loci. LD was evaluated on these genotypes, using 422 SSR markers mapping on seven linkage groups. LD was estimated as squared correlation of allele frequencies (r2). The pattern of intrachromosomal LD revealed that in tobacco LD extended up to distances as great as 75 cM with r2 > 0.05 or up to 1 cM with r2 > 0.2. The pattern of LD was clearly dependent on the population structure. CONCLUSIONS A global population of tobacco is highly structured. Clustering highlights the accessions with the same market class. LD in tobacco extends up to 75 cM and is strongly dependent on the population structure.
Collapse
|
research-article |
13 |
26 |
7
|
Barbato M, Hailer F, Upadhyay M, Del Corvo M, Colli L, Negrini R, Kim ES, Crooijmans RPMA, Sonstegard T, Ajmone-Marsan P. Adaptive introgression from indicine cattle into white cattle breeds from Central Italy. Sci Rep 2020; 10:1279. [PMID: 31992729 PMCID: PMC6987186 DOI: 10.1038/s41598-020-57880-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/26/2019] [Indexed: 11/19/2022] Open
Abstract
Cattle domestication occurred at least twice independently and gave rise to the modern taurine and indicine cattle breeds. European cattle diversity is generally dominated by taurine cattle, although elevated levels of indicine ancestry have been recorded in several breeds from southern Europe. Here we use genome-wide high-density SNP genotyping data to investigate the taurine and indicine ancestry in southern European cattle, based on a dataset comprising 508 individuals from 23 cattle breeds of taurine, indicine and mixed ancestry, including three breeds from Central Italy known to exhibit the highest levels of indicine introgression among southern European breeds. Based on local genomic ancestry analyses, we reconstruct taurine and indicine ancestry genome-wide and along chromosomes. We scrutinise local genomic introgression signals and identify genomic regions that have introgressed from indicine into taurine cattle under positive selection, harbouring genes with functions related to body size and feed efficiency. These findings suggest that indicine-derived traits helped enhance Central Italian cattle through adaptive introgression. The identified genes could provide genomic targets for selection for improved cattle performance. Our findings elucidate the key role of adaptive introgression in shaping the phenotypic features of modern cattle, aided by cultural and livestock exchange among historic human societies.
Collapse
|
Journal Article |
5 |
24 |
8
|
Namous H, Peñagaricano F, Del Corvo M, Capra E, Thomas DL, Stella A, Williams JL, Marsan PA, Khatib H. Integrative analysis of methylomic and transcriptomic data in fetal sheep muscle tissues in response to maternal diet during pregnancy. BMC Genomics 2018; 19:123. [PMID: 29409445 PMCID: PMC5801776 DOI: 10.1186/s12864-018-4509-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous studies have established a link between maternal diet and the physiological and metabolic phenotypes of their offspring. In previous studies in sheep, we demonstrated that different maternal diets altered the transcriptome of fetal tissues. However, the mechanisms underlying transcriptomic changes are poorly understood. DNA methylation is an epigenetic mark regulating transcription and is largely influenced by dietary components of the one-carbon cycle that generate the methyl group donor, SAM. Therefore, in the present study, we tested whether different maternal diets during pregnancy would alter the DNA methylation and gene expression patterns in fetal tissues. RESULTS Pregnant ewes were randomly divided into two groups which received either hay or corn diet from mid-gestation (day 67 ± 5) until day 131 ± 1 when fetuses were collected by necropsy. A total of 1516 fetal longissimus dorsi (LD) tissues were used for DNA methylation analysis and gene expression profiling. Whole genome DNA methylation using methyl-binding domain enrichment analysis revealed 60 differentially methylated regions (DMRs) between hay and corn fetuses with 39 DMRs more highly methylated in the hay fetuses vs. 21 DMRs more highly methylated in the corn fetuses. Three DMRs (LPAR3, PLIN5-PLIN4, and the differential methylation of a novel lincRNA) were validated using bisulfite sequencing. These DMRs were associated with differential gene expression. Additionally, significant DNA methylation differences were found at the single CpG level. Integrative methylome and transcriptome analysis revealed an association between gene expression and inter-/intragenic methylated regions. Furthermore, intragenic DMRs were found to be associated with expression of neighboring genes. CONCLUSIONS The findings of this study imply that maternal diet from mid- to late-gestation can shape the epigenome and the transcriptome of fetal tissues, and putatively affect phenotypes of the lambs.
Collapse
|
research-article |
7 |
23 |
9
|
Del Corvo M, Lazzari B, Capra E, Zavarez L, Milanesi M, Utsunomiya YT, Utsunomiya ATH, Stella A, de Paula Nogueira G, Garcia JF, Ajmone-Marsan P. Methylome Patterns of Cattle Adaptation to Heat Stress. Front Genet 2021; 12:633132. [PMID: 34122501 PMCID: PMC8194315 DOI: 10.3389/fgene.2021.633132] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Heat stress has a detrimental impact on cattle health, welfare and productivity by affecting gene expression, metabolism and immune response, but little is known on the epigenetic mechanisms mediating the effect of temperature at the cellular and organism level. In this study, we investigated genome-wide DNA methylation in blood samples collected from 5 bulls of the heat stress resilient Nellore breed and 5 bulls of the Angus that are more heat stress susceptible, exposed to the sun and high temperature-high humidity during the summer season of the Brazilian South-East region. The methylomes were analyzed during and after the exposure by Reduced Representation Bisulfite Sequencing, which provided genome-wide single-base resolution methylation profiles. Significant methylation changes between stressful and recovery periods were observed in 819 genes. Among these, 351 were only seen in Angus, 366 were specific to Nellore, and 102 showed significant changes in methylation patterns in both breeds. KEGG and Gene Ontology (GO) enrichment analyses showed that responses were breed-specific. Interestingly, in Nellore significant genes and pathways were mainly involved in stress responses and cellular defense and were under methylated during heat stress, whereas in Angus the response was less focused. These preliminary results suggest that heat challenge induces changes in methylation patterns in specific loci, which should be further scrutinized to assess their role in heat tolerance.
Collapse
|
Journal Article |
4 |
21 |
10
|
Vajana E, Barbato M, Colli L, Milanesi M, Rochat E, Fabrizi E, Mukasa C, Del Corvo M, Masembe C, Muwanika VB, Kabi F, Sonstegard TS, Huson HJ, Negrini R, Joost S, Ajmone-Marsan P. Combining Landscape Genomics and Ecological Modelling to Investigate Local Adaptation of Indigenous Ugandan Cattle to East Coast Fever. Front Genet 2018; 9:385. [PMID: 30333851 PMCID: PMC6177531 DOI: 10.3389/fgene.2018.00385] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/27/2018] [Indexed: 11/30/2022] Open
Abstract
East Coast fever (ECF) is a fatal sickness affecting cattle populations of eastern, central, and southern Africa. The disease is transmitted by the tick Rhipicephalus appendiculatus, and caused by the protozoan Theileria parva parva, which invades host lymphocytes and promotes their clonal expansion. Importantly, indigenous cattle show tolerance to infection in ECF-endemically stable areas. Here, the putative genetic bases underlying ECF-tolerance were investigated using molecular data and epidemiological information from 823 indigenous cattle from Uganda. Vector distribution and host infection risk were estimated over the study area and subsequently tested as triggers of local adaptation by means of landscape genomics analysis. We identified 41 and seven candidate adaptive loci for tick resistance and infection tolerance, respectively. Among the genes associated with the candidate adaptive loci are PRKG1 and SLA2. PRKG1 was already described as associated with tick resistance in indigenous South African cattle, due to its role into inflammatory response. SLA2 is part of the regulatory pathways involved into lymphocytes' proliferation. Additionally, local ancestry analysis suggested the zebuine origin of the genomic region candidate for tick resistance.
Collapse
|
research-article |
7 |
21 |
11
|
Denoyelle L, Talouarn E, Bardou P, Colli L, Alberti A, Danchin C, Del Corvo M, Engelen S, Orvain C, Palhière I, Rupp R, Sarry J, Salavati M, Amills M, Clark E, Crepaldi P, Faraut T, Masiga CW, Pompanon F, Rosen BD, Stella A, Van Tassell CP, Tosser-Klopp G. VarGoats project: a dataset of 1159 whole-genome sequences to dissect Capra hircus global diversity. Genet Sel Evol 2021; 53:86. [PMID: 34749642 PMCID: PMC8573910 DOI: 10.1186/s12711-021-00659-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Since their domestication 10,500 years ago, goat populations with distinctive genetic backgrounds have adapted to a broad variety of environments and breeding conditions. The VarGoats project is an international 1000-genome resequencing program designed to understand the consequences of domestication and breeding on the genetic diversity of domestic goats and to elucidate how speciation and hybridization have modeled the genomes of a set of species representative of the genus Capra. Findings A dataset comprising 652 sequenced goats and 507 public goat sequences, including 35 animals representing eight wild species, has been collected worldwide. We identified 74,274,427 single nucleotide polymorphisms (SNPs) and 13,607,850 insertion-deletions (InDels) by aligning these sequences to the latest version of the goat reference genome (ARS1). A Neighbor-joining tree based on Reynolds genetic distances showed that goats from Africa, Asia and Europe tend to group into independent clusters. Because goat breeds from Oceania and Caribbean (Creole) all derive from imported animals, they are distributed along the tree according to their ancestral geographic origin. Conclusions We report on an unprecedented international effort to characterize the genome-wide diversity of domestic goats. This large range of sequenced individuals represents a unique opportunity to ascertain how the demographic and selection processes associated with post-domestication history have shaped the diversity of this species. Data generated for the project will also be extremely useful to identify deleterious mutations and polymorphisms with causal effects on complex traits, and thus will contribute to new knowledge that could be used in genomic prediction and genome-wide association studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00659-6.
Collapse
|
|
4 |
11 |
12
|
Del Corvo M, Bongiorni S, Stefanon B, Sgorlon S, Valentini A, Ajmone Marsan P, Chillemi G. Genome-Wide DNA Methylation and Gene Expression Profiles in Cows Subjected to Different Stress Level as Assessed by Cortisol in Milk. Genes (Basel) 2020; 11:genes11080850. [PMID: 32722461 PMCID: PMC7464205 DOI: 10.3390/genes11080850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Dairy cattle health, wellbeing and productivity are deeply affected by stress. Its influence on metabolism and immune response is well known, but the underlying epigenetic mechanisms require further investigation. In this study, we compared DNA methylation and gene expression signatures between two dairy cattle populations falling in the high- and low-variant tails of the distribution of milk cortisol concentration (MC), a neuroendocrine marker of stress in dairy cows. Reduced Representation Bisulfite Sequencing was used to obtain a methylation map from blood samples of these animals. The high and low groups exhibited similar amounts of methylated CpGs, while we found differences among non-CpG sites. Significant methylation changes were detected in 248 genes. We also identified significant fold differences in the expression of 324 genes. KEGG and Gene Ontology (GO) analysis showed that genes of both groups act together in several pathways, such as nervous system activity, immune regulatory functions and glucocorticoid metabolism. These preliminary results suggest that, in livestock, cortisol secretion could act as a trigger for epigenetic regulation and that peripheral changes in methylation can provide an insight into central nervous system functions.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
8 |
13
|
Lazzari B, Caprera A, Cestaro A, Merelli I, Del Corvo M, Fontana P, Milanesi L, Velasco R, Stella A. Ontology-oriented retrieval of putative microRNAs in Vitis vinifera via GrapeMiRNA: a web database of de novo predicted grape microRNAs. BMC PLANT BIOLOGY 2009; 9:82. [PMID: 19563653 PMCID: PMC2717091 DOI: 10.1186/1471-2229-9-82] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 06/29/2009] [Indexed: 05/04/2023]
Abstract
BACKGROUND Two complete genome sequences are available for Vitis vinifera Pinot noir. Based on the sequence and gene predictions produced by the IASMA, we performed an in silico detection of putative microRNA genes and of their targets, and collected the most reliable microRNA predictions in a web database. The application is available at http://www.itb.cnr.it/ptp/grapemirna/. DESCRIPTION The program FindMiRNA was used to detect putative microRNA genes in the grape genome. A very high number of predictions was retrieved, calling for validation. Nine parameters were calculated and, based on the grape microRNAs dataset available at miRBase, thresholds were defined and applied to FindMiRNA predictions having targets in gene exons. In the resulting subset, predictions were ranked according to precursor positions and sequence similarity, and to target identity. To further validate FindMiRNA predictions, comparisons to the Arabidopsis genome, to the grape Genoscope genome, and to the grape EST collection were performed. Results were stored in a MySQL database and a web interface was prepared to query the database and retrieve predictions of interest. CONCLUSION The GrapeMiRNA database encompasses 5,778 microRNA predictions spanning the whole grape genome. Predictions are integrated with information that can be of use in selection procedures. Tools added in the web interface also allow to inspect predictions according to gene ontology classes and metabolic pathways of targets. The GrapeMiRNA database can be of help in selecting candidate microRNA genes to be validated.
Collapse
|
research-article |
16 |
5 |
14
|
Sapienza MR, Benvenuto G, Ferracin M, Mazzara S, Fuligni F, Tripodo C, Belmonte B, Fanoni D, Melle F, Motta G, Tabanelli V, Consiglio J, Mazzara V, Del Corvo M, Fiori S, Pileri A, Dellino GI, Cerroni L, Facchetti F, Berti E, Sabattini E, Paulli M, Croce CM, Pileri SA. Newly-Discovered Neural Features Expand the Pathobiological Knowledge of Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancers (Basel) 2021; 13:cancers13184680. [PMID: 34572907 PMCID: PMC8469149 DOI: 10.3390/cancers13184680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary For the first time, neuronal features are described in blastic plasmacytoid dendritic cell neoplasm (BPDCN) by a complex array of molecular techniques, including microRNA and gene expression profiling, RNA and Chromatin immunoprecipitation sequencing, and immunohistochemistry. The discovery of unexpected neural features in BPDCN may change our vision of this disease, leading to the designing of a new BPDCN cell model and to re-thinking the relations occurring between BPDCN and nervous system. The observed findings contribute to explaining the extreme tumor aggressiveness and also to propose novel therapeutic targets. In view of this, the identification, in this work of new potential neural metastatic inducers might open the way to therapeutic approaches for BPDCN patients based on the use of anti-neurogenic agents. Abstract Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive hematologic malignancy originating from plasmacytoid dendritic cells (pDCs). The microRNA expression profile of BPDCN was compared to that of normal pDCs and the impact of miRNA dysregulation on the BPDCN transcriptional program was assessed. MiRNA and gene expression profiling data were integrated to obtain the BPDCN miRNA-regulatory network. The biological process mainly dysregulated by this network was predicted to be neurogenesis, a phenomenon raising growing interest in solid tumors. Neurogenesis was explored in BPDCN by querying different molecular sources (RNA sequencing, Chromatin immunoprecipitation-sequencing, and immunohistochemistry). It was shown that BPDCN cells upregulated neural mitogen genes possibly critical for tumor dissemination, expressed neuronal progenitor markers involved in cell migration, exchanged acetylcholine neurotransmitter, and overexpressed multiple neural receptors that may stimulate tumor proliferation, migration and cross-talk with the nervous system. Most neural genes upregulated in BPDCN are currently investigated as therapeutic targets.
Collapse
|
|
4 |
4 |
15
|
Gandini G, Del Corvo M, Biscarini F, Stella A. Genetic improvement of small ruminant local breeds with nucleus and inbreeding control: A simulation study. Small Rumin Res 2014. [DOI: 10.1016/j.smallrumres.2014.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
11 |
3 |
16
|
Busconi M, Wischnitzki E, Del Corvo M, Colli L, Soffritti G, Stagnati L, Fluch S, Sehr EM, de los Mozos Pascual M, Fernández JA. Epigenetic Variability Among Saffron Crocus ( Crocus sativus L.) Accessions Characterized by Different Phenotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:642631. [PMID: 33747022 PMCID: PMC7970008 DOI: 10.3389/fpls.2021.642631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/15/2021] [Indexed: 05/10/2023]
Abstract
This work represents the first epigenomic study carried out on saffron crocus. Five accessions of saffron, showing differences in tepal pigmentation, yield of saffron and flowering time, were analyzed at the epigenetic level by applying a methylation-sensitive restriction enzyme-sequencing (MRE-seq) approach. Five accession-specific hypomethylomes plus a reference hypomethylome, generated by combining the sequence data from the single accessions, were obtained. Assembled sequences were annotated against existing online databases. In the absence of the Crocus genome, the rice genome was mainly used as the reference as it is the best annotated genome among monocot plants. Comparison of the hypomethylomes revealed many differentially methylated regions, confirming the high epigenetic variability present among saffron accessions, including sequences encoding for proteins that could be good candidates to explain the accessions' alternative phenotypes. In particular, transcription factors involved in flowering process (MADS-box and TFL) and for the production of pigments (MYB) were detected. Finally, by comparing the generated sequences of the different accessions, a high number of SNPs, likely having arisen as a consequence of the prolonged vegetative propagation, were detected, demonstrating surprisingly high genetic variability. Gene ontology (GO) was performed to map and visualize sequence polymorphisms located within the GOs and to compare their distributions among different accessions. As well as suggesting the possible existence of alternative phenotypes with a genetic basis, a clear difference in polymorphic GO is present among accessions based on their geographic origin, supporting a possible signature of selection in the Indian accession with respect to the Spanish ones.
Collapse
|
research-article |
4 |
3 |
17
|
Capoferri R, Cremonesi P, Castiglioni B, Pisoni G, Roccabianca P, Riva F, Filipe J, Del Corvo M, Stella A, Williams JL, Rupp R, Moroni P. Comparison of the response of mammary gland tissue from two divergent lines of goat with high and low milk somatic cell scores to an experimental Staphylococcus aureus infection. Vet Immunol Immunopathol 2021; 234:110208. [PMID: 33640660 DOI: 10.1016/j.vetimm.2021.110208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Mastitis represents one of the major economic and health threats to the livestock sector associated with reduction in milk quality, loss of production and is a major reason for culling. Somatic cell score (SCS) is used as a criterion in breeding programmes to select cows genetically less susceptible to mastitis. The relevance of SCS as a predictor of udder health and susceptibility to mastitis is still untested in goats. In this study, two lines of French Alpine goats selected for extreme breeding values for somatic cell scores, one line with high SCS (HSCS) and the other with low SCS (LSCS), were used to test the hypothesis that the mammary response and function differed between the lines. The aim of the present study was to investigate differences in the early immune response in caprine mammary gland tissues challenged with Staphylococcus aureus, one of the main pathogens responsible for the intra-mammary infection in small ruminants, using transcriptomic and histopathology analyses. The comparison between HSCS and LSCS goat lines, showed differences in the response at the histological level for inflammation, presence of neutrophils and micro-abscess formation, and at the molecular level in the expression of CXCL8, IL-6, NFKBIZ and IL-1β. CXCL8 and CXCL2 genes, which showed a higher level of expression in the experimentally infected HSCS line. The molecular data and histopathology both suggested that following S. aureus infection, mobilization, recruitment, infiltration, and chemotaxis of neutrophil, leads to a more severe inflammation in the HSCS compared to LSCS animals. Our results represent an initial basis for further studies to unravel the genetic basis of early mastitis inflammatory responses and the selection of dairy animals more resistant to bacterial mastitis.
Collapse
|
Journal Article |
4 |
3 |
18
|
Capra E, Toschi P, Del Corvo M, Lazzari B, Scapolo PA, Loi P, Williams JL, Stella A, Ajmone-Marsan P. Genome-Wide Epigenetic Characterization of Tissues from Three Germ Layers Isolated from Sheep Fetuses. Front Genet 2017; 8:115. [PMID: 28928767 PMCID: PMC5591608 DOI: 10.3389/fgene.2017.00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/22/2017] [Indexed: 01/21/2023] Open
Abstract
DNA methylation of regulatory and growth-related genes contributes to fetal programming which is important for maintaining the correct development of three germ layers of the embryo that develope into different tissues and organs, and which persists into adult life. In this study, a preliminary epigenetic screen was performed to define genomic regions that are involved in fetal epigenome remodeling. Embryonic ectodermic tissues (origin of nervous tissue), mesenchymal tissues (origin of connective and muscular tissues), and foregut endoderm tissues (origin of epithelial tissue), from day 28 sheep fetuses were collected and the distribution of methylated CpGs was analyzed using whole-genome bisulfite sequencing. Patterns of methylation among the three tissues showed a high level of conservation of hypo-methylated CpG islands CGIs, and a consistent level of methylation in regulatory genetic elements. Analysis of tissue specific differentially methylated regions, revealed that 20% of the total CGIs differed between tissues. A proportion of the methylome was remodeled in gene bodies, 5′ UTRs and 3′ UTRs (7, 11, and 11%, respectively). Genes with overlapping differentially methylated regions in gene bodies and CGIs showed a significant enrichment for tissue morphogenesis and development pathways. The data presented here provides a “reference” for the epigenetic status of genes potentially involved in the maintenance and regulation of fetal developmental during early life, a period expected to be particularly prone to epigenetic alterations induced by environmental and nutritional stressors.
Collapse
|
Journal Article |
8 |
2 |
19
|
Capra E, Toschi P, Del Corvo M, Lazzari B, Stella A, Williams JL, Loi P, Ajmone Marsan P. Short Communication: Maternal undernutrition during peri-conceptional period affects whole genome ovine muscle methylation in adult offspring. J Anim Sci 2022; 100:6586878. [PMID: 35580043 DOI: 10.1093/jas/skac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Experimental and epidemiological studies suggest that maternal nutritional status during early pregnancy, including the period around the time of conception, may induce long-lasting epigenetic changes in the offspring. However, this remains largely unexplored in livestock. Therefore, the objective of this study was to evaluate if modification of the maternal diet of sheep (CTR: control; UND: 50% undernutrition) during the peri-conceptional period (42 days in total: -14/+28 from mating), would impact CpG methylation in muscle tissue (Longissimus dorsi) of adult offspring (11.5 months old). Reduced Representation Bisulfite Sequencing (RRBS), identified 262 (Edge-R, FDR<0.05) and 686 (Logistic Regression, FDR <0.001) differentially methylated regions (DMRs) between the UND and CTR groups. Gene ontology (GO) analysis identified genes related to development, functions of the muscular system and steroid hormone receptor activity within the DMRs. The data reported here show that nutritional stress during early pregnancy leads to epigenetic modifications in the muscle of the resulting offspring, with possible implications for cardiac dysfunction, muscle physiology and meat production.
Collapse
|
|
3 |
|
20
|
Alberti-Violetti S, Sapienza MR, Del Corvo M, Melle F, Motta G, Venegoni L, Cerroni L, Cota C, Pileri A, Berti E, Pileri SA. A Microenvironment-Related Nine-Gene Signature May Predict Survival in Mycosis Fungoides Patients at Diagnosis. Cells 2023; 12:1944. [PMID: 37566023 PMCID: PMC10417031 DOI: 10.3390/cells12151944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Mycosis fungoides (MF) is the most common cutaneous lymphoma characterized by an indolent course. Prognosis is stage-based but this approach does not reflect the different outcomes within stages. Considering that tumor microenvironment is known to be involved in MF pathogenesis and progression, we decided to investigate 99 MF cases by using the PanCancer Immune Profiling Panel. We identified and validated a signature of 9 genes able to predict MF survival and distinguish a high-risk group with a worse outcome from a low-risk group of cases with a better outcome. At the molecular level, low-risk vs. high-risk cases reported a global upregulation of immune genes, enriched in cytokines, and a higher density of dendritic cells and mast cells, possibly associated with a more favorable clinical course.
Collapse
|
brief-report |
2 |
|
21
|
Lolli G, Davini A, Tabanelli V, Sapienza MR, Melle F, Motta G, Del Corvo M, Calleri A, Vanazzi A, Nierychlewska P, Maraglino AME, Castelli M, Quattrocchi MC, Chiarle R, Pileri S, Tarella C, Derenzini E. Immune Signatures Identify Patient Subsets Deriving Long-Term Benefit From First-Line Rituximab in Follicular Lymphoma. EJHAEM 2025; 6:e1103. [PMID: 39927328 PMCID: PMC11804214 DOI: 10.1002/jha2.1103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Background The role of first-line single-agent rituximab immunotherapy in follicular lymphoma (FL) remains debated, as most patients eventually undergo chemotherapy. Methods In this study, we retrospectively analyzed 81 FL patients treated with first-line single-agent rituximab monotherapy with (n = 53) or without (n = 28) consolidation. Fifty-one patients (63%) were high-tumor burden according to Group d'Etude des Lymphomes Folliculaires (GELF) criteria. Results After a median follow-up of 11 years, overall survival (OS) and progression-free survival (PFS) rates were 85% and 32%, respectively. Targeted gene expression profiling (T-GEP) was performed in 40 patients, revealing a 26-gene expression signature distinguishing complete responders and non-responders. This signature included genes involved in T-regulatory (Treg) and natural-killer cell activity, and interleukin-17 signaling. A simplified 14-gene prognostic score (ImSig) enabled accurate outcome stratification in terms of PFS. These data were validated in silico using two independent publicly available cohorts of FL patients treated with chemoimmunotherapy. Deconvolution analyses demonstrated an enrichment in Treg cells in high-risk ImSig patients, which was validated by immunohistochemistry. Conclusions These findings demonstrate that the efficacy of front-line anti-CD20 immunotherapy may depend on microenvironment-related factors, and that specific immune signatures could identify patient subsets obtaining long-term benefit from a chemo-free immunotherapeutic approach. Trial Registration The authors have confirmed clinical trial registration is not needed for this submission.
Collapse
|
research-article |
1 |
|
22
|
Merelli I, Caprera A, Stella A, Del Corvo M, Milanesi L, Lazzari B. The Human EST Ontology Explorer: a tissue-oriented visualization system for ontologies distribution in human EST collections. BMC Bioinformatics 2009; 10 Suppl 12:S2. [PMID: 19828078 PMCID: PMC2762067 DOI: 10.1186/1471-2105-10-s12-s2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The NCBI dbEST currently contains more than eight million human Expressed Sequenced Tags (ESTs). This wide collection represents an important source of information for gene expression studies, provided it can be inspected according to biologically relevant criteria. EST data can be browsed using different dedicated web resources, which allow to investigate library specific gene expression levels and to make comparisons among libraries, highlighting significant differences in gene expression. Nonetheless, no tool is available to examine distributions of quantitative EST collections in Gene Ontology (GO) categories, nor to retrieve information concerning library-dependent EST involvement in metabolic pathways. In this work we present the Human EST Ontology Explorer (HEOE) http://www.itb.cnr.it/ptp/human_est_explorer, a web facility for comparison of expression levels among libraries from several healthy and diseased tissues. RESULTS The HEOE provides library-dependent statistics on the distribution of sequences in the GO Direct Acyclic Graph (DAG) that can be browsed at each GO hierarchical level. The tool is based on large-scale BLAST annotation of EST sequences. Due to the huge number of input sequences, this BLAST analysis was performed with the aid of grid computing technology, which is particularly suitable to address data parallel task. Relying on the achieved annotation, library-specific distributions of ESTs in the GO Graph were inferred. A pathway-based search interface was also implemented, for a quick evaluation of the representation of libraries in metabolic pathways. EST processing steps were integrated in a semi-automatic procedure that relies on Perl scripts and stores results in a MySQL database. A PHP-based web interface offers the possibility to simultaneously visualize, retrieve and compare data from the different libraries. Statistically significant differences in GO categories among user selected libraries can also be computed. CONCLUSION The HEOE provides an alternative and complementary way to inspect EST expression levels with respect to approaches currently offered by other resources. Furthermore, BLAST computation on the whole human EST dataset was a suitable test of grid scalability in the context of large-scale bioinformatics analysis. The HEOE currently comprises sequence analysis from 70 non-normalized libraries, representing a comprehensive overview on healthy and unhealthy tissues. As the analysis procedure can be easily applied to other libraries, the number of represented tissues is intended to increase.
Collapse
|
research-article |
16 |
|
23
|
Del Corvo M, Mazzara S, Pileri SA. TOSCA: an automated Tumor Only Somatic CAlling workflow for somatic mutation detection without matched normal samples. BIOINFORMATICS ADVANCES 2022; 2:vbac070. [PMID: 36699358 PMCID: PMC9710689 DOI: 10.1093/bioadv/vbac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023]
Abstract
Motivation Accurate classification of somatic variants in a tumor sample is often accomplished by utilizing a paired normal tissue sample from the same patient to enable the separation of private germline mutations from somatic variants. However, a paired normal sample is not always available, making a reliable somatic variant calling more challenging. In silico screening of variants against public or private databases and other filtering approaches are often used in absence of a paired normal sample. Nevertheless, difficulties in performing a tumor-only calling with sufficient accuracy and lack of open-source software have limited their applications in clinical research. Results To address these limitations, we developed TOSCA, the first automated tumor-only somatic calling workflow in whole-exome sequencing and targeted panel sequencing data which performs an end-to-end analysis from raw read files, via quality checks, alignment and variant calling to functional annotation, databases filtering, tumor purity and ploidy estimation and variant classification. Application of our workflow to tumor-only data provides estimates of somatic and germline variants that are consistent with results from paired analyses. Availability and implementation TOSCA is a Snakemake-based workflow and freely available at https://github.com/mdelcorvo/TOSCA. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
|
brief-report |
3 |
|
24
|
Siciliano MC, Bertolazzi G, Morello G, Tornambè S, Del Corvo M, Granai M, Sapienza MR, Leahy CI, Fennell E, Belmonte B, Arcuri F, Vannucchi M, Mancini V, Guazzo R, Boccacci R, Onyango N, Nyagol J, Santi R, Di Stefano G, Ferrara D, Bellan C, Marafioti T, Ott G, Siebert R, Quintanilla-Fend L, Fend F, Murray P, Tripodo C, Pileri S, Lazzi S, Leoncini L. Tumor microenvironment of Burkitt lymphoma: different immune signatures with different clinical behavior. Blood Adv 2024; 8:4330-4343. [PMID: 38861355 PMCID: PMC11372814 DOI: 10.1182/bloodadvances.2023011506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
ABSTRACT Burkitt lymphoma (BL) is characterized by a tumor microenvironment (TME) in which macrophages represent the main component, determining a distinct histological appearance known as "starry sky" pattern. However, in some instances, BL may exhibit a granulomatous reaction that has been previously linked to favorable prognosis and spontaneous regression. The aim of our study was to deeply characterize the immune landscape of 7 cases of Epstein-Barr virus-positive (EBV+) BL with granulomatous reaction compared with 8 cases of EBV+ BL and 8 EBV-negative (EBV-) BL, both with typical starry sky pattern, by Gene expression profiling performed on the NanoString nCounter platform. Subsequently, the data were validated using multiplex and combined immunostaining. Based on unsupervised clustering of differentially expressed genes, BL samples formed 3 distinct clusters differentially enriched in BL with a diffuse granulomatous reaction (cluster 1), EBV+ BL with typical starry sky pattern (cluster 2), EBV- BL with typical "starry sky" (cluster 3). We observed variations in the immune response signature among BL with granulomatous reaction and BL with typical "starry sky," both EBV+ and EBV-. The TME signature in BL with diffuse granulomatous reaction showed a proinflammatory response, whereas BLs with "starry sky" were characterized by upregulation of M2 polarization and protumor response. Moreover, the analysis of additional signatures revealed an upregulation of the dark zone signature and epigenetic signature in BL with a typical starry sky. Tumor-associated macrophages and epigenetic regulators may be promising targets for additional therapies for BL lymphoma, opening novel immunotherapeutic strategies.
Collapse
|
research-article |
1 |
|