1
|
Dziga D, Wasylewski M, Wladyka B, Nybom S, Meriluoto J. Microbial degradation of microcystins. Chem Res Toxicol 2013; 26:841-52. [PMID: 23621464 DOI: 10.1021/tx4000045] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatotoxic microcystins that are produced by freshwater cyanobacteria pose a risk to public health. These compounds may be eliminated by enzymatic degradation. Here, we review the enzymatic pathways for the degradation of these hepatotoxins, some of which are newly discovered processes. The efficiencies of microcystin biodegradation pathways are documented in several papers and are compared here. Additionally, a comprehensive description of the microcystin enzymatic degradation scheme has been supplemented with a proposal for a new biodegradation pathway. Critical comments on less documented hypotheses are also included. The genetic aspects of biodegradation activity are discussed in detail. We also describe some methods that are useful for studying the biological decomposition of microcystins, including screening for microcystin degraders and detecting microcystin degradation products, with an emphasis on mass spectrometric methodology.
Collapse
|
Review |
12 |
98 |
2
|
Dziga D, Wladyka B, Zielińska G, Meriluoto J, Wasylewski M. Heterologous expression and characterisation of microcystinase. Toxicon 2012; 59:578-86. [PMID: 22326726 DOI: 10.1016/j.toxicon.2012.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 12/08/2011] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
The first enzyme in the microcystin (MC) degradation pathway identified in bacterial strains is coded by mlrA gene and is referred to as microcystinase. To date, there has been no biochemical characterisation of this enzyme. The results presented herein show a successful heterologous expression of MlrA as well as mutational studies, partial purification and biochemical characterisation of the enzyme. The mutation and inhibition study confirmed previous ideas that MlrA is a metalloprotease and allowed to calculate the inhibition parameters. Moreover, the kinetic parameters of MC-LR linearization were measured showing that MlrA exhibits a positive cooperativity towards MC-LR. Furthermore, in vitro experiments with Escherichia coli cells expressing MlrA indicated the potency of the heterologous host to eliminate MCs with very high efficiency. This study reports a new approach to the analysis of a microcystin degrading enzyme, extends the knowledge about MC biodegradation and opens broad scope for future study.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
46 |
3
|
Dziga D, Wasylewski M, Szetela A, Bocheńska O, Wladyka B. Verification of the Role of MlrC in Microcystin Biodegradation by Studies Using a Heterologously Expressed Enzyme. Chem Res Toxicol 2012; 25:1192-4. [DOI: 10.1021/tx300174e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
13 |
24 |
4
|
Wasylewski M, Małecki J, Wasylewski Z. Fluorescence study of Escherichia coli cyclic AMP receptor protein. JOURNAL OF PROTEIN CHEMISTRY 1995; 14:299-308. [PMID: 8590598 DOI: 10.1007/bf01886787] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76-83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.
Collapse
|
|
30 |
23 |
5
|
Wasylewski M. Binding study of riboflavin-binding protein with riboflavin and its analogues by differential scanning calorimetry. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:523-8. [PMID: 11195977 DOI: 10.1023/a:1026509717268] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thermal unfolding parameters of hens' egg-white riboflavin-binding-protein (RBP) were measured by differential scanning calorimetry. Thermal denaturation scans of apoRBP and RBP complexes with riboflavin and its analogues (FMN, N10 DL-glyceryl isoalloxazine, and N10 omega-hydroxypentyl isoalloxazine) have been measured. It was found that ligand binding causes increase of RBP thermal stability, as manifested by a change of denaturation temperature from 60.8 degrees C for apoRBP to 72.8 degrees C for RBP-Rf complex. For RBP-FMN complex, the denaturation temperature of 73.0 degrees C was even higher than for the RBP-Rf complex. The other two flavin analogues showed transition temperatures in between 66.9 degrees C and 68.8 degrees C, respectively. Analysis of excess heat capacity data showed that the best fit was the sum of two independent thermal transitions. One of the transitions, which contributed approximately 70% to the total heat effect, has transition temperature in the broad range of 60.5-73.2 degrees C; the other transition temperature is in the narrower range of 65.4-71.1 degrees C. The observed transitions can be related to RBP domains.
Collapse
|
|
25 |
22 |
6
|
Mika J, Jurga AM, Starnowska J, Wasylewski M, Rojewska E, Makuch W, Kwiatkowski K, Malek N, Przewlocka B. Effects of chronic doxepin and amitriptyline administration in naïve mice and in neuropathic pain mice model. Neuroscience 2015; 294:38-50. [PMID: 25769941 DOI: 10.1016/j.neuroscience.2015.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 02/02/2023]
Abstract
Neuropathic pain is a severe clinical problem, often appearing as a co-symptom of many diseases or manifesting as a result of damage to the nervous system. Many drugs and agents are currently used for the treatment of neuropathic pain, such as tricyclic antidepressants (TCAs). The aims of this paper were to test the effects of two classic TCAs, doxepin and amitriptyline, in naïve animals and in a model of neuropathic pain and to determine the role of cytokine activation in the effects of these drugs. All experiments were carried out with Albino-Swiss mice using behavioral tests (von Frey test and the cold plate test) and biochemical analyses (qRT-PCR and Western blot). In the mice subjected to chronic constriction injury (CCI), doxepin and amitriptyline attenuated the symptoms of neuropathic pain and diminished the CCI-induced increase in the levels of spinal interleukin (IL)-6 and -1β mRNA, but not the protein levels of these cytokines, measured on day 12. Unexpectedly, chronic administration of doxepin or amitriptyline for 12 days produced allodynia and hyperalgesia in naïve mice. The treatment with these drugs did not influence the spinal levels of IL-1β and IL-6 mRNA, however, the protein levels of these pronociceptive factors were increased. The administration of ondansetron (5-HT3 receptor antagonist) significantly weakened the allodynia and hyperalgesia induced by both antidepressants in naïve mice; in contrast, yohimbine (α2-adrenergic receptors antagonist) did not influence these effects. Allodynia and hyperalgesia induced in naïve animals by amitriptyline and doxepin may be associated with an increase in the levels of pronociceptive cytokines resulting from 5-HT3-induced hypersensitivity. Our results provide new and important information about the possible side effects of antidepressants. Further investigation of these mechanisms may help to guide decisions about the use of classic TCAs for therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
21 |
7
|
Kozdęba M, Borowczyk J, Zimoląg E, Wasylewski M, Dziga D, Madeja Z, Drukala J. Microcystin-LR affects properties of human epidermal skin cells crucial for regenerative processes. Toxicon 2014; 80:38-46. [DOI: 10.1016/j.toxicon.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/03/2014] [Accepted: 01/09/2014] [Indexed: 11/29/2022]
|
|
11 |
21 |
8
|
Goulas T, Ksiazek M, Garcia-Ferrer I, Sochaj-Gregorczyk AM, Waligorska I, Wasylewski M, Potempa J, Gomis-Rüth FX. A structure-derived snap-trap mechanism of a multispecific serpin from the dysbiotic human oral microbiome. J Biol Chem 2017; 292:10883-10898. [PMID: 28512127 PMCID: PMC5491774 DOI: 10.1074/jbc.m117.786533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/04/2017] [Indexed: 10/19/2022] Open
Abstract
Enduring host-microbiome relationships are based on adaptive strategies within a particular ecological niche. Tannerella forsythia is a dysbiotic member of the human oral microbiome that inhabits periodontal pockets and contributes to chronic periodontitis. To counteract endopeptidases from the host or microbial competitors, T. forsythia possesses a serpin-type proteinase inhibitor called miropin. Although serpins from animals, plants, and viruses have been widely studied, those from prokaryotes have received only limited attention. Here we show that miropin uses the serpin-type suicidal mechanism. We found that, similar to a snap trap, the protein transits from a metastable native form to a relaxed triggered or induced form after cleavage of a reactive-site target bond in an exposed reactive-center loop. The prey peptidase becomes covalently attached to the inhibitor, is dragged 75 Å apart, and is irreversibly inhibited. This coincides with a large conformational rearrangement of miropin, which inserts the segment upstream of the cleavage site as an extra β-strand in a central β-sheet. Standard serpins possess a single target bond and inhibit selected endopeptidases of particular specificity and class. In contrast, miropin uniquely blocked many serine and cysteine endopeptidases of disparate architecture and substrate specificity owing to several potential target bonds within the reactive-center loop and to plasticity in accommodating extra β-strands of variable length. Phylogenetic studies revealed a patchy distribution of bacterial serpins incompatible with a vertical descent model. This finding suggests that miropin was acquired from the host through horizontal gene transfer, perhaps facilitated by the long and intimate association of T. forsythia with the human gingiva.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
12 |
9
|
Dziga D, Sworzen M, Wladyka B, Wasylewski M. Genetically Engineered Bacteria Immobilized in Alginate as an Option of Cyanotoxins Removal. ACTA ACUST UNITED AC 2013. [DOI: 10.7763/ijesd.2013.v4.371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
|
12 |
8 |
10
|
Luchter-Wasylewska E, Wasylewski M, Röhm KH. Concentration-dependent dissociation/association of human prostatic acid phosphatase. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:243-7. [PMID: 12962324 DOI: 10.1023/a:1025016402860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The apparent molecular mass of human prostatic acid phosphatase (PAP) was estimated over a wide range of enzyme concentrations using equilibrium centrifugation in the "Airfuge" tabletop ultracentrifuge. We show that the average mass of all active PAP species steeply increases at enzyme concentrations around 100 nM. The data indicate that at lower concentrations, active monomer prevail, whereas at concentrations above 100 nM, PAP active dimers are formed. These findings were confirmed by measurements of fluorescence emission intensity as a function of enzyme concentration. A shift of the normalized PAP fluorescence intensity around 100 nM independently indicates that a major structural change of the PAP protein occurs in that range of concentrations. From these findings, we conclude that in dilute solutions, several active PAP species exist, which are involved in concentration-dependent dissociation/association equilibria.
Collapse
|
|
22 |
7 |
11
|
Wasylewski M. Evaluation of riboflavin binding protein domain interaction using differential scanning calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1702:137-43. [PMID: 15488765 DOI: 10.1016/j.bbapap.2004.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 07/01/2004] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
Riboflavin binding (or carrier) protein (RfBP) is a monomeric, two-domain protein, originally purified from hens' egg white. RfBP contains nine disulfide bridges; as a result, the protein forms a compact structure and undergoes reversible three-state thermal denaturation. This was demonstrated using a differential scanning calorimetry (DSC) method [Wasylewski M. (2000) J. Prot. Chem. 19(6), 523-528]. It has been shown that the RfBP complex with riboflavin denaturates in a three-state process which may be attributed to sequential unfolding of the RfBP domains. In case of apo RfBP, the ligand binding domain denaturates at a lower temperature than the C-terminal domain. Ligand binding greatly enhances the thermostability of the N-terminal domain, whereas the C-terminal domain thermostability is only slightly affected and, in case of the examined holo RfBPs, the denaturation peaks of both domains merge or cross over. The magnitude of the changes depends on ligand structure. A detailed study of protein concentration effects carried out in this work allowed to estimate not only the thermostability of both domains but also the strength of domain interactions. The DeltaCp, of denaturation was found for C-terminus and N-terminus of RfBP-riboflavin complex to amount to 2.5 and -1.9 kcal mol(-1), respectively. The calculated domain interaction free energy, DeltaGCN, was estimated to be approximately -1580 cal mol(-1) at 67.0 degrees C. This value indicates that the interdomain interaction is of medium strength.
Collapse
|
Evaluation Study |
21 |
2 |
12
|
|
|
18 |
2 |