1
|
Siebeneicher H, Cleve A, Rehwinkel H, Neuhaus R, Heisler I, Müller T, Bauser M, Buchmann B. Identification and Optimization of the First Highly Selective GLUT1 Inhibitor BAY-876. ChemMedChem 2016; 11:2261-2271. [PMID: 27552707 PMCID: PMC5095872 DOI: 10.1002/cmdc.201600276] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/20/2016] [Indexed: 12/12/2022]
Abstract
Despite the long‐known fact that the facilitative glucose transporter GLUT1 is one of the key players safeguarding the increase in glucose consumption of many tumor entities even under conditions of normal oxygen supply (known as the Warburg effect), only few endeavors have been undertaken to find a GLUT1‐selective small‐molecule inhibitor. Because other transporters of the GLUT1 family are involved in crucial processes, these transporters should not be addressed by such an inhibitor. A high‐throughput screen against a library of ∼3 million compounds was performed to find a small molecule with this challenging potency and selectivity profile. The N‐(1H‐pyrazol‐4‐yl)quinoline‐4‐carboxamides were identified as an excellent starting point for further compound optimization. After extensive structure–activity relationship explorations, single‐digit nanomolar inhibitors with a selectivity factor of >100 against GLUT2, GLUT3, and GLUT4 were obtained. The most promising compound, BAY‐876 [N4‐[1‐(4‐cyanobenzyl)‐5‐methyl‐3‐(trifluoromethyl)‐1H‐pyrazol‐4‐yl]‐7‐fluoroquinoline‐2,4‐dicarboxamide], showed good metabolic stability in vitro and high oral bioavailability in vivo.
Collapse
|
Journal Article |
9 |
212 |
2
|
Christian S, Merz C, Evans L, Gradl S, Seidel H, Friberg A, Eheim A, Lejeune P, Brzezinka K, Zimmermann K, Ferrara S, Meyer H, Lesche R, Stoeckigt D, Bauser M, Haegebarth A, Sykes DB, Scadden DT, Losman JA, Janzer A. The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies. Leukemia 2019; 33:2403-2415. [DOI: 10.1038/s41375-019-0461-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
|
|
6 |
100 |
3
|
Müller S, Ackloo S, Arrowsmith CH, Bauser M, Baryza JL, Blagg J, Böttcher J, Bountra C, Brown PJ, Bunnage ME, Carter AJ, Damerell D, Dötsch V, Drewry DH, Edwards AM, Edwards J, Elkins JM, Fischer C, Frye SV, Gollner A, Grimshaw CE, IJzerman A, Hanke T, Hartung IV, Hitchcock S, Howe T, Hughes TV, Laufer S, Li VMJ, Liras S, Marsden BD, Matsui H, Mathias J, O'Hagan RC, Owen DR, Pande V, Rauh D, Rosenberg SH, Roth BL, Schneider NS, Scholten C, Singh Saikatendu K, Simeonov A, Takizawa M, Tse C, Thompson PR, Treiber DK, Viana AYI, Wells CI, Willson TM, Zuercher WJ, Knapp S, Mueller-Fahrnow A. Donated chemical probes for open science. eLife 2018; 7:e34311. [PMID: 29676732 PMCID: PMC5910019 DOI: 10.7554/elife.34311] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project.
Collapse
|
discussion |
7 |
75 |
4
|
Quanz M, Bender E, Kopitz C, Grünewald S, Schlicker A, Schwede W, Eheim A, Toschi L, Neuhaus R, Richter C, Toedling J, Merz C, Lesche R, Kamburov A, Siebeneicher H, Bauser M, Hägebarth A. Preclinical Efficacy of the Novel Monocarboxylate Transporter 1 Inhibitor BAY-8002 and Associated Markers of Resistance. Mol Cancer Ther 2018; 17:2285-2296. [PMID: 30115664 DOI: 10.1158/1535-7163.mct-17-1253] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 11/16/2022]
Abstract
The lactate transporter SLC16A1/monocarboxylate transporter 1 (MCT1) plays a central role in tumor cell energy homeostasis. In a cell-based screen, we identified a novel class of MCT1 inhibitors, including BAY-8002, which potently suppress bidirectional lactate transport. We investigated the antiproliferative activity of BAY-8002 in a panel of 246 cancer cell lines and show that hematopoietic tumor cells, in particular diffuse large B-cell lymphoma cell lines, and subsets of solid tumor models are particularly sensitive to MCT1 inhibition. Associated markers of sensitivity were, among others, lack of MCT4 expression, low pleckstrin homology like domain family A member 2, and high pellino E3 ubiquitin protein ligase 1 expression. The antitumor effect of MCT1 inhibition was less pronounced on tumor xenografts, with tumor stasis being the maximal response. BAY-8002 significantly increased intratumor lactate levels and transiently modulated pyruvate levels. In order to address potential acquired resistance mechanisms to MCT1 inhibition, we generated MCT1 inhibitor-resistant cell lines and show that resistance can occur by upregulation of MCT4 even in the presence of sufficient oxygen, as well as by shifting energy generation toward oxidative phosphorylation. These findings provide insight into novel aspects of tumor response to MCT1 modulation and offer further rationale for patient selection in the clinical development of MCT1 inhibitors. Mol Cancer Ther; 17(11); 2285-96. ©2018 AACR.
Collapse
|
Journal Article |
7 |
72 |
5
|
Beyer D, Kroll HP, Endermann R, Schiffer G, Siegel S, Bauser M, Pohlmann J, Brands M, Ziegelbauer K, Haebich D, Eymann C, Brötz-Oesterhelt H. New class of bacterial phenylalanyl-tRNA synthetase inhibitors with high potency and broad-spectrum activity. Antimicrob Agents Chemother 2004; 48:525-32. [PMID: 14742205 PMCID: PMC321521 DOI: 10.1128/aac.48.2.525-532.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 08/24/2003] [Accepted: 10/14/2003] [Indexed: 11/20/2022] Open
Abstract
Phenylalanyl (Phe)-tRNA synthetase (Phe-RS) is an essential enzyme which catalyzes the transfer of phenylalanine to the Phe-specific transfer RNA (tRNA(Phe)), a key step in protein biosynthesis. Phenyl-thiazolylurea-sulfonamides were identified as a novel class of potent inhibitors of bacterial Phe-RS by high-throughput screening and chemical variation of the screening hit. The compounds inhibit Phe-RS of Escherichia coli, Haemophilus influenzae, Streptococcus pneumoniae, and Staphylococcus aureus, with 50% inhibitory concentrations in the nanomolar range. Enzyme kinetic measurements demonstrated that the compounds bind competitively with respect to the natural substrate Phe. All derivatives are highly selective for the bacterial Phe-RS versus the corresponding mammalian cytoplasmic and human mitochondrial enzymes. Phenyl-thiazolylurea-sulfonamides displayed good in vitro activity against Staphylococcus, Streptococcus, Haemophilus, and Moraxella strains, reaching MICs below 1 micro g/ml. The antibacterial activity was partly antagonized by increasing concentrations of Phe in the culture broth in accordance with the competitive binding mode. Further evidence that inhibition of tRNA(Phe) charging is the antibacterial principle of this compound class was obtained by proteome analysis of Bacillus subtilis. Here, the phenyl-thiazolylurea-sulfonamides induced a protein pattern indicative of the stringent response. In addition, an E. coli strain carrying a relA mutation and defective in stringent response was more susceptible than its isogenic relA(+) parent strain. In vivo efficacy was investigated in a murine S. aureus sepsis model and a S. pneumoniae sepsis model in rats. Treatment with the phenyl-thiazolylurea-sulfonamides reduced the bacterial titer in various organs by up to 3 log units, supporting the potential value of Phe-RS as a target in antibacterial therapy.
Collapse
|
research-article |
21 |
62 |
6
|
Ellermann M, Eheim A, Rahm F, Viklund J, Guenther J, Andersson M, Ericsson U, Forsblom R, Ginman T, Lindström J, Silvander C, Trésaugues L, Giese A, Bunse S, Neuhaus R, Weiske J, Quanz M, Glasauer A, Nowak-Reppel K, Bader B, Irlbacher H, Meyer H, Queisser N, Bauser M, Haegebarth A, Gorjánácz M. Novel Class of Potent and Cellularly Active Inhibitors Devalidates MTH1 as Broad-Spectrum Cancer Target. ACS Chem Biol 2017; 12:1986-1992. [PMID: 28679043 DOI: 10.1021/acschembio.7b00370] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MTH1 is a hydrolase responsible for sanitization of oxidized purine nucleoside triphosphates to prevent their incorporation into replicating DNA. Early tool compounds published in the literature inhibited the enzymatic activity of MTH1 and subsequently induced cancer cell death; however recent studies have questioned the reported link between these two events. Therefore, it is important to validate MTH1 as a cancer dependency with high quality chemical probes. Here, we present BAY-707, a substrate-competitive, highly potent and selective inhibitor of MTH1, chemically distinct compared to those previously published. Despite superior cellular target engagement and pharmacokinetic properties, inhibition of MTH1 with BAY-707 resulted in a clear lack of in vitro or in vivo anticancer efficacy either in mono- or in combination therapies. Therefore, we conclude that MTH1 is dispensable for cancer cell survival.
Collapse
|
Journal Article |
8 |
41 |
7
|
Cantillo D, Damm M, Dallinger D, Bauser M, Berger M, Kappe CO. Sequential Nitration/Hydrogenation Protocol for the Synthesis of Triaminophloroglucinol: Safe Generation and Use of an Explosive Intermediate under Continuous-Flow Conditions. Org Process Res Dev 2014. [DOI: 10.1021/op5001435] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
|
11 |
39 |
8
|
Müller A, Krämer SD, Meletta R, Beck K, Selivanova SV, Rancic Z, Kaufmann PA, Vos B, Meding J, Stellfeld T, Heinrich TK, Bauser M, Hütter J, Dinkelborg LM, Schibli R, Ametamey SM. Gene expression levels of matrix metalloproteinases in human atherosclerotic plaques and evaluation of radiolabeled inhibitors as imaging agents for plaque vulnerability. Nucl Med Biol 2014; 41:562-9. [PMID: 24853402 DOI: 10.1016/j.nucmedbio.2014.04.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Atherosclerotic plaque rupture is the primary cause for myocardial infarction and stroke. During plaque progression macrophages and mast cells secrete matrix-degrading proteolytic enzymes, such as matrix metalloproteinases (MMPs). We studied levels of MMPs and tissue inhibitor of metalloproteinases-3 (TIMP-3) in relation to the characteristics of carotid plaques. We evaluated in vitro two radiolabeled probes targeting active MMPs towards non-invasive imaging of rupture-prone plaques. METHODS Human carotid plaques obtained from endarterectomy were classified into stable and vulnerable by visual and histological analysis. MMP-1, MMP-2, MMP-8, MMP-9, MMP-10, MMP-12, MMP-14, TIMP-3, and CD68 levels were investigated by quantitative polymerase chain reaction. Immunohistochemistry was used to localize MMP-2 and MMP-9 with respect to CD68-expressing macrophages. Western blotting was applied to detect their active forms. A fluorine-18-labeled MMP-2/MMP-9 inhibitor and a tritiated selective MMP-9 inhibitor were evaluated by in vitro autoradiography as potential lead structures for non-invasive imaging. RESULTS Gene expression levels of all MMPs and CD68 were elevated in plaques. MMP-1, MMP-9, MMP-12 and MMP-14 were significantly higher in vulnerable than stable plaques. TIMP-3 expression was highest in stable and low in vulnerable plaques. Immunohistochemistry revealed intensive staining of MMP-9 in vulnerable plaques. Western blotting confirmed presence of the active form in plaque lysates. In vitro autoradiography showed binding of both inhibitors to stable and vulnerable plaques. CONCLUSIONS MMPs differed in their expression patterns among plaque phenotypes, providing possible imaging targets. The two tested MMP-2/MMP-9 and MMP-9 inhibitors may be useful to detect atherosclerotic plaques, but not the vulnerable lesions selectively.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
38 |
9
|
Leipert D, Nopper D, Bauser M, Gauglitz G, Jung G. Investigation of the Molecular Recognition of Amino Acids by Cyclopeptides with Reflectometric Interference Spectroscopy. Angew Chem Int Ed Engl 1998; 37:3308-3311. [DOI: 10.1002/(sici)1521-3773(19981217)37:23<3308::aid-anie3308>3.0.co;2-#] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/1998] [Indexed: 11/08/2022]
|
|
27 |
35 |
10
|
Lohrke J, Siebeneicher H, Berger M, Reinhardt M, Berndt M, Mueller A, Zerna M, Koglin N, Oden F, Bauser M, Friebe M, Dinkelborg LM, Huetter J, Stephens AW. 18F-GP1, a Novel PET Tracer Designed for High-Sensitivity, Low-Background Detection of Thrombi. J Nucl Med 2017; 58:1094-1099. [DOI: 10.2967/jnumed.116.188896] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/02/2017] [Indexed: 01/09/2023] Open
|
|
8 |
34 |
11
|
Bauser M, Delapierre G, Hauswald M, Flessner T, D'Urso D, Hermann A, Beyreuther B, De Vry J, Spreyer P, Reissmüller E, Meier H. Discovery and optimization of 2-aryl oxazolo-pyrimidines as adenosine kinase inhibitors using liquid phase parallel synthesis. Bioorg Med Chem Lett 2004; 14:1997-2000. [PMID: 15050645 DOI: 10.1016/j.bmcl.2004.01.082] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/04/2003] [Accepted: 01/12/2004] [Indexed: 11/18/2022]
Abstract
Adenosine kinase inhibition is an attractive therapeutic approach for several conditions for example, neurodegeneration, seizures, ischemia, inflammation and pain. Several nucleosidic and non-nucleosidic inhibitors are available. Using a virtual screening approach, we have discovered that 2-aryl oxazolo-pyrimidines are adenosine kinase inhibitors. Subsequent high throughput derivatization enabled the optimization of this new inhibitor chemotype resulting in highly potent derivatives. A variety of analogues were produced by applying liquid phase parallel synthesis to vary the 7-amino residues as well as the 2-aryl moiety.
Collapse
|
|
21 |
32 |
12
|
Selivanova SV, Stellfeld T, Heinrich TK, Müller A, Krämer SD, Schubiger PA, Schibli R, Ametamey SM, Vos B, Meding J, Bauser M, Hütter J, Dinkelborg LM. Design, Synthesis, and Initial Evaluation of a High Affinity Positron Emission Tomography Probe for Imaging Matrix Metalloproteinases 2 and 9. J Med Chem 2013; 56:4912-20. [DOI: 10.1021/jm400156p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
12 |
28 |
13
|
Nguyen D, Lemos C, Wortmann L, Eis K, Holton SJ, Boemer U, Moosmayer D, Eberspaecher U, Weiske J, Lechner C, Prechtl S, Suelzle D, Siegel F, Prinz F, Lesche R, Nicke B, Nowak-Reppel K, Himmel H, Mumberg D, von Nussbaum F, Nising CF, Bauser M, Haegebarth A. Discovery and Characterization of the Potent and Highly Selective (Piperidin-4-yl)pyrido[3,2- d]pyrimidine Based in Vitro Probe BAY-885 for the Kinase ERK5. J Med Chem 2019; 62:928-940. [PMID: 30563338 DOI: 10.1021/acs.jmedchem.8b01606] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The availability of a chemical probe to study the role of a specific domain of a protein in a concentration- and time-dependent manner is of high value. Herein, we report the identification of a highly potent and selective ERK5 inhibitor BAY-885 by high-throughput screening and subsequent structure-based optimization. ERK5 is a key integrator of cellular signal transduction, and it has been shown to play a role in various cellular processes such as proliferation, differentiation, apoptosis, and cell survival. We could demonstrate that inhibition of ERK5 kinase and transcriptional activity with a small molecule did not translate into antiproliferative activity in different relevant cell models, which is in contrast to the results obtained by RNAi technology.
Collapse
|
Journal Article |
6 |
28 |
14
|
Lohrke J, Berger M, Frenzel T, Hilger CS, Jost G, Panknin O, Bauser M, Ebert W, Pietsch H. Preclinical Profile of Gadoquatrane: A Novel Tetrameric, Macrocyclic High Relaxivity Gadolinium-Based Contrast Agent. Invest Radiol 2022; 57:629-638. [PMID: 35703267 PMCID: PMC9444293 DOI: 10.1097/rli.0000000000000889] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this report was to characterize the key physicochemical, pharmacokinetic (PK), and magnetic resonance imaging (MRI) properties of gadoquatrane (BAY 1747846), a newly designed tetrameric, macrocyclic, extracellular gadolinium-based contrast agent (GBCA) with high relaxivity and stability. MATERIALS AND METHODS The r1-relaxivities of the tetrameric gadoquatrane at 1.41 and 3.0 T were determined in human plasma and the nuclear magnetic relaxation dispersion profiles in water and plasma. The complex stability was analyzed in human serum over 21 days at pH 7.4 at 37°C and was compared with the linear GBCA gadodiamide and the macrocyclic GBCA (mGBCA) gadobutrol. In addition, zinc transmetallation assay was performed to investigate the kinetic inertness. Protein binding and the blood-to-plasma ratio were determined in vitro using rat and human plasma. The PK profile was evaluated in rats (up to 7 days postinjection). Magnetic resonance imaging properties were investigated using a glioblastoma (GS9L) rat model. RESULTS The new chemical entity gadoquatrane is a macrocyclic tetrameric Gd complex with one inner sphere water molecule per Gd ( q = 1). Gadoquatrane showed high solubility in buffer (1.43 mol Gd/L, 10 mM Tris-HCl, pH 7.4), high hydrophilicity (logP -4.32 in 1-butanol/water), and negligible protein binding. The r1-relaxivity of gadoquatrane in human plasma per Gd of 11.8 mM -1 ·s -1 (corresponding to 47.2 mM -1 ·s -1 per molecule at 1.41 T at 37°C, pH 7.4) was more than 2-fold (8-fold per molecule) higher compared with established mGBCAs. Nuclear magnetic relaxation dispersion profiles confirmed the more than 2-fold higher r1-relaxivity in human plasma for the clinically relevant magnetic field strengths from 0.47 to 3.0 T. The complex stability of gadoquatrane at physiological conditions was very high. The observed Gd release after 21 days at 37°C in human serum was below the lower limit of quantification. Gadoquatrane showed no Gd 3+ release in the presence of zinc in the transmetallation assay. The PK profile (plasma elimination, biodistribution, recovery) was comparable to that of gadobutrol. In MRI, the quantitative evaluation of the tumor-to-brain contrast in the rat glioblastoma model showed significantly improved contrast enhancement using gadoquatrane compared with gadobutrol at the same Gd dose administered (0.1 mmol Gd/kg body weight). In comparison to gadoterate meglumine, similar contrast enhancement was reached with gadoquatrane with 75% less Gd dose. In terms of the molecule dose, this was reduced by 90% when compared with gadoterate meglumine. Because of its tetrameric structure and hence lower number of molecules per volume, all prepared formulations of gadoquatrane were iso-osmolar to blood. CONCLUSIONS The tetrameric gadoquatrane is a novel, highly effective mGBCA for use in MRI. Gadoquatrane provides favorable physicochemical properties (high relaxivity and stability, negligible protein binding) while showing essentially the same PK profile (fast extracellular distribution, fast elimination via the kidneys in an unchanged form) to established mGBCAs on the market. Overall, gadoquatrane is an excellent candidate for further clinical development.
Collapse
|
research-article |
3 |
28 |
15
|
Lemos C, Schulze VK, Baumgart SJ, Nevedomskaya E, Heinrich T, Lefranc J, Bader B, Christ CD, Briem H, Kuhnke LP, Holton SJ, Bömer U, Lienau P, von Nussbaum F, Nising CF, Bauser M, Hägebarth A, Mumberg D, Haendler B. The potent AMPK inhibitor BAY-3827 shows strong efficacy in androgen-dependent prostate cancer models. Cell Oncol (Dordr) 2021; 44:581-594. [PMID: 33492659 DOI: 10.1007/s13402-020-00584-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE 5' adenosine monophosphate-activated kinase (AMPK) is an essential regulator of cellular energy homeostasis and has been associated with different pathologies, including cancer. Precisely defining the biological role of AMPK necessitates the availability of a potent and selective inhibitor. METHODS High-throughput screening and chemical optimization were performed to identify a novel AMPK inhibitor. Cell proliferation and mechanistic assays, as well as gene expression analysis and chromatin immunoprecipitation were used to investigate the cellular impact as well as the crosstalk between lipid metabolism and androgen signaling in prostate cancer models. Also, fatty acid turnover was determined by examining lipid droplet formation. RESULTS We identified BAY-3827 as a novel and potent AMPK inhibitor with additional activity against ribosomal 6 kinase (RSK) family members. It displays strong anti-proliferative effects in androgen-dependent prostate cancer cell lines. Analysis of genes involved in AMPK signaling revealed that the expression of those encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), fatty acid synthase (FASN) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), all of which are involved in lipid metabolism, was strongly upregulated by androgen in responsive models. Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) analysis identified several androgen receptor (AR) binding peaks in the HMGCR and PFKFB2 genes. BAY-3827 strongly down-regulated the expression of lipase E (LIPE), cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) and serine-threonine kinase AKT3 in responsive prostate cancer cell lines. Also, the expression of members of the carnitine palmitoyl-transferase 1 (CPT1) family was inhibited by BAY-3827, and this was paralleled by impaired lipid flux. CONCLUSIONS The availability of the potent inhibitor BAY-3827 will contribute to a better understanding of the role of AMPK signaling in cancer, especially in prostate cancer.
Collapse
|
|
4 |
25 |
16
|
Berger M, Bauser M, Frenzel T, Hilger CS, Jost G, Lauria S, Morgenstern B, Neis C, Pietsch H, Sülzle D, Hegetschweiler K. Hafnium-Based Contrast Agents for X-ray Computed Tomography. Inorg Chem 2017; 56:5757-5761. [PMID: 28430423 DOI: 10.1021/acs.inorgchem.7b00359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heavy-metal-based contrast agents (CAs) offer enhanced X-ray absorption for X-ray computed tomography (CT) compared to the currently used iodinated CAs. We report the discovery of new lanthanide and hafnium azainositol complexes and their optimization with respect to high water solubility and stability. Our efforts culminated in the synthesis of BAY-576, an uncharged hafnium complex with 3:2 stoichiometry and broken complex symmetry. The superior properties of this asymmetrically substituted hafnium CA were demonstrated by a CT angiography study in rabbits that revealed excellent signal contrast enhancement.
Collapse
|
Journal Article |
8 |
23 |
17
|
Rahm F, Viklund J, Trésaugues L, Ellermann M, Giese A, Ericsson U, Forsblom R, Ginman T, Günther J, Hallberg K, Lindström J, Persson LB, Silvander C, Talagas A, Díaz-Sáez L, Fedorov O, Huber KVM, Panagakou I, Siejka P, Gorjánácz M, Bauser M, Andersson M. Creation of a Novel Class of Potent and Selective MutT Homologue 1 (MTH1) Inhibitors Using Fragment-Based Screening and Structure-Based Drug Design. J Med Chem 2018; 61:2533-2551. [DOI: 10.1021/acs.jmedchem.7b01884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
|
7 |
22 |
18
|
Haftchenary S, Nelson SD, Furst L, Dandapani S, Ferrara SJ, Bošković ŽV, Figueroa Lazú S, Guerrero AM, Serrano JC, Crews DK, Brackeen C, Mowat J, Brumby T, Bauser M, Schreiber SL, Phillips AJ. Efficient Routes to a Diverse Array of Amino Alcohol-Derived Chiral Fragments. ACS COMBINATORIAL SCIENCE 2016; 18:569-74. [PMID: 27518324 PMCID: PMC5022782 DOI: 10.1021/acscombsci.6b00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/18/2016] [Indexed: 12/12/2022]
Abstract
Efficient syntheses of chiral fragments derived from chiral amino alcohols are described. Several unique scaffolds were readily accessed in 1-5 synthetic steps leading to 45 chiral fragments, including oxazolidinones, morpholinones, lactams, and sultams. These fragments have molecular weights ranging from 100 to 255 Da and are soluble in water (0.085 to >15 mM).
Collapse
|
Research Support, N.I.H., Extramural |
9 |
22 |
19
|
Mortier J, Friberg A, Badock V, Moosmayer D, Schroeder J, Steigemann P, Siegel F, Gradl S, Bauser M, Hillig RC, Briem H, Eis K, Bader B, Nguyen D, Christ CD. Computationally Empowered Workflow Identifies Novel Covalent Allosteric Binders for KRAS G12C. ChemMedChem 2020; 15:827-832. [PMID: 32237114 PMCID: PMC7318243 DOI: 10.1002/cmdc.201900727] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/25/2023]
Abstract
Due to its frequent mutations in multiple lethal cancers, KRAS is one of the most-studied anticancer targets nowadays. Since the discovery of the druggable allosteric binding site containing a G12C mutation, KRASG12C has been the focus of attention in oncology research. We report here a computationally driven approach aimed at identifying novel and selective KRASG12C covalent inhibitors. The workflow involved initial enumeration of virtual molecules tailored for the KRAS allosteric binding site. Tools such as pharmacophore modeling, docking, and free-energy perturbations were deployed to prioritize the compounds with the best profiles. The synthesized naphthyridinone scaffold showed the ability to react with G12C and inhibit KRASG12C . Analogues were prepared to establish structure-activity relationships, while molecular dynamics simulations and crystallization of the inhibitor-KRASG12C complex highlighted an unprecedented binding mode.
Collapse
|
brief-report |
5 |
17 |
20
|
Bauser M. Preparative high-performance liquid chromatography-mass spectrometry for the high-throughput purification of combinatorial libraries. J Chromatogr Sci 2002; 40:292-6. [PMID: 12049158 DOI: 10.1093/chromsci/40.5.292] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Accurate results for the testing of combinatorial libraries necessitates high purity of the library members. Therefore, combinatorial libraries derived from a combinatorial solution or solid-phase synthesis often require the purification of compounds that do not achieve a certain purity threshold. This study describes that preparative high-performance liquid chromatography (HPLC)-mass spectrometry (MS) is the method of choice for the purification of large arrays of diverse compounds. The adoption of this technology to the workflow of a solution phase combinatorial chemistry laboratory producing more than 20,000 compounds per year is described. Furthermore, the setup and logistics are discussed as well as the purity achievable for large libraries. Efficiency, speed, quality, and universality of preparative HPLC-MS are presented in detail for a library of 140 compounds, including data logistics and downstream processes as well.
Collapse
|
|
23 |
16 |
21
|
Kundu B, Bauser M, Betschinger J, Kraas W, Jung G. Identification of a potent analogue of Nazumamide A through iteration of combinatorial tetrapeptide libraries. Bioorg Med Chem Lett 1998; 8:1669-72. [PMID: 9873411 DOI: 10.1016/s0960-894x(98)00281-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Five sets of N-acylated tetrapeptide libraries and sublibraries related to Nazumamide A have been prepared using 25 natural and unnatural amino acids. They were evaluated in antithrombin assay, in order to quantify inhibition at each step of the tetrapeptide sublibrary iteration. The studies led to the identification of 2,5-dihydroxybenzoyl-lysyl-isoleucyl-phenylalanyl-arginine as a novel inhibitor of thrombin and was found to be at least 25 times more potent than the natural tetrapeptide 2,5-dihydroxybenzoyl-arginyl-prolyl-isoleucyl-alpha-aminobutyric acid (NAZA).
Collapse
|
|
27 |
14 |
22
|
Romanov-Michailidis F, Hsiao CC, Urner LM, Jerhaoui S, Surkyn M, Miller B, Vos A, Dominguez Blanco M, Bueters R, Vinken P, Bekkers M, Walker D, Pietrak B, Eyckmans W, Dores-Sousa JL, Joo Koo S, Lento W, Bauser M, Philippar U, Rombouts FJR. Discovery of an Oral, Beyond-Rule-of-Five Mcl-1 Protein-Protein Interaction Modulator with the Potential of Treating Hematological Malignancies. J Med Chem 2023; 66:6122-6148. [PMID: 37114951 DOI: 10.1021/acs.jmedchem.2c01953] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Avoidance of apoptosis is critical for the development and sustained growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family of proteins which is overexpressed in many cancers. Upregulation of Mcl-1 in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy. Therefore, pharmacological inhibition of Mcl-1 is regarded as an attractive approach to treating relapsed or refractory malignancies. Herein, we disclose the design, synthesis, optimization, and early preclinical evaluation of a potent and selective small-molecule inhibitor of Mcl-1. Our exploratory design tactics focused on structural modifications which improve the potency and physicochemical properties of the inhibitor while minimizing the risk of functional cardiotoxicity. Despite being in the "non-Lipinski" beyond-Rule-of-Five property space, the developed compound benefits from exquisite oral bioavailability in vivo and induces potent pharmacodynamic inhibition of Mcl-1 in a mouse xenograft model.
Collapse
|
|
2 |
12 |
23
|
Wortmann L, Bräuer N, Holton SJ, Irlbacher H, Weiske J, Lechner C, Meier R, Karén J, Siöberg CB, Pütter V, Christ CD, Ter Laak A, Lienau P, Lesche R, Nicke B, Cheung SH, Bauser M, Haegebarth A, von Nussbaum F, Mumberg D, Lemos C. Discovery and Characterization of the Potent and Highly Selective 1,7-Naphthyridine-Based Inhibitors BAY-091 and BAY-297 of the Kinase PIP4K2A. J Med Chem 2021; 64:15883-15911. [PMID: 34699202 DOI: 10.1021/acs.jmedchem.1c01245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P2). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis. Herein, we report the identification of the novel potent and highly selective inhibitors BAY-091 and BAY-297 of the kinase PIP4K2A by high-throughput screening and subsequent structure-based optimization. Cellular target engagement of BAY-091 and BAY-297 was demonstrated using cellular thermal shift assay technology. However, inhibition of PIP4K2A with BAY-091 or BAY-297 did not translate into the hypothesized mode of action and antiproliferative activity in p53-deficient tumor cells. Therefore, BAY-091 and BAY-297 serve as valuable chemical probes to study PIP4K2A signaling and its involvement in pathophysiological conditions such as cancer.
Collapse
|
|
4 |
11 |
24
|
Bauser M, Winter M, Valenti CA, Wiesmüller KH, Jung G. Synthesis of hydantoins via N,N'-ureas derived from polymer-bound amino acids. Mol Divers 1998; 3:257-60. [PMID: 9850523 DOI: 10.1023/a:1009639804397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Starting from carboxy-linked amino acids on trityl functionalized polystyrene resin a highly efficient solid-phase synthesis of hydantoins via N,N'-ureas was elaborated. The polymer-bound hydantoins can be used as a scaffolds for further combinatorial transformations, such as alkylation. Cleavage from the resins yielded the corresponding hydantoins in good yields and purities as shown by ESI-MS and HPLC.
Collapse
|
|
27 |
9 |
25
|
Leipert D, Nopper D, Bauser M, Gauglitz G, Jung G. Untersuchung der molekularen Erkennung von Aminosäuren durch Cyclopeptide mit reflektometrischer Interferenzspektroskopie. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19981204)110:23<3503::aid-ange3503>3.0.co;2-f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
27 |
8 |