Zeppilli S, Gurrola AO, Demetci P, Brann DH, Pham TM, Attey R, Zilkha N, Kimchi T, Datta SR, Singh R, Tosches MA, Crombach A, Fleischmann A. Single-cell genomics of the mouse olfactory cortex reveals contrasts with neocortex and ancestral signatures of cell type evolution.
Nat Neurosci 2025:10.1038/s41593-025-01924-3. [PMID:
40200010 DOI:
10.1038/s41593-025-01924-3]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/19/2025] [Indexed: 04/10/2025]
Abstract
Understanding the molecular logic of cortical cell-type diversity can illuminate cortical circuit function and evolution. Here, we performed single-nucleus transcriptome and chromatin accessibility analyses to compare neurons across three- to six-layered cortical areas of adult mice and across tetrapod species. We found that, in contrast to the six-layered neocortex, glutamatergic neurons of the three-layered mouse olfactory (piriform) cortex displayed continuous rather than discrete variation in transcriptomic profiles. Subsets of piriform and neocortical glutamatergic cells with conserved transcriptomic profiles were distinguished by distinct, area-specific epigenetic states. Furthermore, we identified a prominent population of immature neurons in piriform cortex and observed that, in contrast to the neocortex, piriform cortex exhibited divergence between glutamatergic cells in laboratory versus wild-derived mice. Finally, we showed that piriform neurons displayed greater transcriptomic similarity to cortical neurons of turtles, lizards and salamanders than to those of the neocortex. In summary, despite over 200 million years of coevolution alongside the neocortex, olfactory cortex neurons retain molecular signatures of ancestral cortical identity.
Collapse