1
|
Matias PM, Donner P, Coelho R, Thomaz M, Peixoto C, Macedo S, Otto N, Joschko S, Scholz P, Wegg A, Bäsler S, Schäfer M, Egner U, Carrondo MA. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem 2000; 275:26164-71. [PMID: 10840043 DOI: 10.1074/jbc.m004571200] [Citation(s) in RCA: 425] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structures of the human androgen receptor (hAR) and human progesterone receptor ligand-binding domains in complex with the same ligand metribolone (R1881) have been determined. Both three-dimensional structures show the typical nuclear receptor fold. The change of two residues in the ligand-binding pocket between the human progesterone receptor and hAR is most likely the source for the specificity of R1881 to the hAR. The structural implications of the 14 known mutations in the ligand-binding pocket of the hAR ligand-binding domains associated with either prostate cancer or the partial or complete androgen receptor insensitivity syndrome were analyzed. The effects of most of these mutants could be explained on the basis of the crystal structure.
Collapse
|
|
25 |
425 |
2
|
Enguita FJ, Martins LO, Henriques AO, Carrondo MA. Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 2003; 278:19416-25. [PMID: 12637519 DOI: 10.1074/jbc.m301251200] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endospores produced by the Gram-positive soil bacterium Bacillus subtilis are shielded by a proteinaceous coat formed by over 30 structural components, which self-assemble into a lamellar inner coat and a thicker striated electrodense outer coat. The 65-kDa CotA protein is an abundant component of the outer coat layer. CotA is a highly thermostable laccase, assembly of which into the coat is required for spore resistance against hydrogen peroxide and UV light. Here, we report the structure of CotA at 1.7-A resolution, as determined by x-ray crystallography. This is the first structure of an endospore coat component, and also the first structure of a bacterial laccase. The overall fold of CotA comprises three cupredoxin-like domains and includes one mononuclear and one trinuclear copper center. This arrangement is similar to that of other multicopper oxidases and most similar to that of the copper tolerance protein CueO of Escherichia coli. However, the three cupredoxin domains in CotA are further linked by external interdomain loops, which increase the packing level of the structure. We propose that these interdomain loops contribute to the remarkable thermostability of the enzyme, but our results suggest that additional factors are likely to play a role. Comparisons with the structure of other monomeric multicopper oxidases containing four copper atoms suggest that CotA may accept the largest substrates of any known laccase. Moreover, and unlike other laccases, CotA appears to have a flexible lidlike region close to the substrate-binding site that may mediate substrate accessibility. The implications of these findings for the properties of CotA, its assembly and the properties of the bacterial spore coat structure are discussed.
Collapse
|
Comparative Study |
22 |
253 |
3
|
Carrondo MA. Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO J 2003; 22:1959-68. [PMID: 12727864 PMCID: PMC156087 DOI: 10.1093/emboj/cdg215] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 03/07/2003] [Accepted: 03/12/2003] [Indexed: 11/14/2022] Open
Abstract
Ferritins constitute a broad superfamily of iron storage proteins, widespread in all domains of life, in aerobic or anaerobic organisms. Ferritins isolated from bacteria may be haem-free or contain a haem. In the latter case they are called bacterioferritins. The primary function of ferritins inside cells is to store iron in the ferric form. A secondary function may be detoxification of iron or protection against O(2) and its radical products. Indeed, for bacterioferritins this is likely to be their primary function. Ferritins and bacteroferritins have essentially the same architecture, assembling in a 24mer cluster to form a hollow, roughly spherical construction. In this review, special emphasis is given to the structure of the ferroxidase centres with native iron-containing sites, since oxidation of ferrous iron by molecular oxygen takes place in these sites. Although present in other ferritins, a specific entry route for iron, coupled with the ferroxidase reaction, has been proposed and described in some structural studies. Electrostatic calculations on a few selected proteins indicate further ion channels assumed to be an entry route in the later mineralization processes of core formation.
Collapse
|
Review |
22 |
205 |
4
|
Frazão C, Silva G, Gomes CM, Matias P, Coelho R, Sieker L, Macedo S, Liu MY, Oliveira S, Teixeira M, Xavier AV, Rodrigues-Pousada C, Carrondo MA, Le Gall J. Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. NATURE STRUCTURAL BIOLOGY 2000; 7:1041-5. [PMID: 11062560 DOI: 10.1038/80961] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Desulfovibrio gigas is a strict anaerobe that contains a well-characterized metabolic pathway that enables it to survive transient contacts with oxygen. The terminal enzyme in this pathway, rubredoxin:oxygen oxidoreductase (ROO) reduces oxygen to water in a direct and safe way. The 2.5 A resolution crystal structure of ROO shows that each monomer of this homodimeric enzyme consists of a novel combination of two domains, a flavodoxin-like domain and a Zn-beta-lactamase-like domain that contains a di-iron center for dioxygen reduction. This is the first structure of a member of a superfamily of enzymes widespread in strict and facultative anaerobes, indicating its broad physiological significance.
Collapse
|
|
25 |
169 |
5
|
Matias PM, Soares CM, Saraiva LM, Coelho R, Morais J, Le Gall J, Carrondo MA. [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 A and modelling studies of its interaction with the tetrahaem cytochrome c3. J Biol Inorg Chem 2001; 6:63-81. [PMID: 11191224 DOI: 10.1007/s007750000167] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The primary and three-dimensional structures of a [NiFe] hydrogenase isolated from D. desulfitricans ATCC 27774 were determined, by nucleotide analysis and single-crystal X-ray crystallography. The three-dimensional structural model was refined to R=0.167 and Rfree=0.223 using data to 1.8 A resolution. Two unique structural features are observed: the [4Fe-4S] cluster nearest the [NiFe] centre has been modified [4Fe-3S-3O] by loss of one sulfur atom and inclusion of three oxygen atoms; a three-fold disorder was observed for Cys536 which binds to the nickel atom in the [NiFe] centre. Also, the bridging sulfur atom that caps the active site was found to have partial occupancy, thus corresponding to a partly activated enzyme. These structural features may have biological relevance. In particular, the two less-populated rotamers of Cys536 may be involved in the activation process of the enzyme, as well as in the catalytic cycle. Molecular modelling studies were carried out on the interaction between this [NiFe] hydrogenase and its physiological partner, the tetrahaem cytochrome c3 from the same organism. The lowest energy docking solutions were found to correspond to an interaction between the haem IV region in tetrahaem cytochrome c3 with the distal [4Fe-4S] cluster in [NiFe] hydrogenase. This interaction should correspond to efficient electron transfer and be physiologically relevant, given the proximity of the two redox centres and the fact that electron transfer decay coupling calculations show high coupling values and a short electron transfer pathway. On the other hand, other docking solutions have been found that, despite showing low electron transfer efficiency, may give clues on possible proton transfer mechanisms between the two molecules.
Collapse
|
|
24 |
155 |
6
|
Enguita FJ, Marçal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA. Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. J Biol Chem 2004; 279:23472-6. [PMID: 14764581 DOI: 10.1074/jbc.m314000200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CotA laccase from the endospore coat of Bacillus subtilis has been crystallized in the presence of the non-catalytic co-oxidant 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS), and the structure was determined using synchrotron radiation. The binding site for this adduct is well defined and indicates how ABTS, in conjunction with laccases, could act as an oxidative mediator toward non-phenolic moieties. In addition, a dioxygen moiety is clearly defined within the solvent channel oriented toward one of the T3 copper atoms in the trinuclear center.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
138 |
7
|
Matias PM, Gorynia S, Donner P, Carrondo MA. Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem 2006; 281:38918-29. [PMID: 17060327 DOI: 10.1074/jbc.m605625200] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RuvBL1 is an evolutionarily highly conserved eukaryotic protein belonging to the AAA(+)-family of ATPases (ATPase associated with diverse cellular activities). It plays important roles in essential signaling pathways such as the c-Myc and Wnt pathways in chromatin remodeling, transcriptional and developmental regulation, and DNA repair and apoptosis. Herein we present the three-dimensional structure of the selenomethionine variant of human RuvBL1 refined using diffraction data to 2.2A of resolution. The crystal structure of the hexamer is formed of ADP-bound RuvBL1 monomers. The monomers contain three domains, of which the first and the third are involved in ATP binding and hydrolysis. Although it has been shown that ATPase activity of RuvBL1 is needed for several in vivo functions, we could only detect a marginal activity with the purified protein. Structural homology and DNA binding studies demonstrate that the second domain, which is unique among AAA(+) proteins and not present in the bacterial homolog RuvB, is a novel DNA/RNA-binding domain. We were able to demonstrate that RuvBL1 interacted with single-stranded DNA/RNA and double-stranded DNA. The structure of the RuvBL1.ADP complex, combined with our biochemical results, suggest that although RuvBL1 has all the structural characteristics of a molecular motor, even of an ATP-driven helicase, one or more as yet undetermined cofactors are needed for its enzymatic activity.
Collapse
|
Journal Article |
19 |
134 |
8
|
Carrondo MA, Coll M, Aymami J, Wang AH, van der Marel GA, van Boom JH, Rich A. Binding of a Hoechst dye to d(CGCGATATCGCG) and its influence on the conformation of the DNA fragment. Biochemistry 1989; 28:7849-59. [PMID: 2482071 DOI: 10.1021/bi00445a047] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hoechst dye 33258 is a planar drug molecule that binds to the minor groove of DNA, especially where there are a number of A.T base pairs. We have solved the structure of the Hoechst dye bound to the DNA dodecamer d(CGCGATATCGCG) at 2.3 A. This structure is compared to that of the same dodecamer with the minor-groove-binding drug netropsin bound to it, as well as to structures that have been solved for this Hoechst dye bound to a DNA dodecamer containing the central four base pairs with the sequence AATT. We find that the position of the Hoechst drug in this dodecamer is quite different from that found in the other dodecamer since it has an opposite orientation compared to the other two structures. The drug covers three of the four A.T base pairs and extends its piperazine ring to the first G.C base pair adjacent to the alternating AT segment. Furthermore, the drug binding has modified the structure of the DNA dodecamer. Other DNA dodecamers with alternating AT sequences show an alternation in the size of the helical twist between the ApT step (small twist) and the TpA step (large twist). In this structure the alternation is reversed with larger twists in the ApT steps than in the TpA step. In addition, there is a rotation of one of the thymine bases in the DNA dodecamer that is associated with hydrogen bonding to the Hoechst drug. This structure illustrates the considerable plasticity found in the DNA molecule when it binds to different planar molecules inserted into the minor groove.
Collapse
|
|
36 |
133 |
9
|
Bento I, Martins LO, Gato Lopes G, Arménia Carrondo M, Lindley PF. Dioxygen reduction by multi-copper oxidases; a structural perspective. Dalton Trans 2005:3507-13. [PMID: 16234932 DOI: 10.1039/b504806k] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multi-copper oxidases oxidise substrate molecules by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear centre. Dioxygen binds to the trinuclear centre and, following the transfer of four electrons, is reduced to two molecules of water. The precise mechanism of this reduction has been unclear, but recent X-ray structural studies using the CotA endospore coat protein from Bacillus subtilis have given further insights into the principal stages. It is proposed that the mechanism involves binding of the dioxygen into the trinuclear centre so that it is sited approximately symmetrically between the two type 3 copper ions with one oxygen atom close to the type 2 copper ion. Further stages involve the formation of a peroxide intermediate and following the splitting of this intermediate, the migration of the hydroxide moieties towards the solvent exit channel. The migration steps are likely to involve a movement of the type 2 copper ion and its environment. Details of a putative mechanism are described herein based both on structures already reported in the literature and on structures of the CotA protein in the oxidised and reduced states and with the addition of peroxide and the inhibitor, azide.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
124 |
10
|
Gorynia S, Bandeiras TM, Pinho FG, McVey CE, Vonrhein C, Round A, Svergun DI, Donner P, Matias PM, Carrondo MA. Structural and functional insights into a dodecameric molecular machine – The RuvBL1/RuvBL2 complex. J Struct Biol 2011; 176:279-91. [DOI: 10.1016/j.jsb.2011.09.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/12/2011] [Accepted: 09/02/2011] [Indexed: 11/24/2022]
|
|
14 |
87 |
11
|
Matias PM, Pereira IAC, Soares CM, Carrondo MA. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 89:292-329. [PMID: 15950057 DOI: 10.1016/j.pbiomolbio.2004.11.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sulphate-reducing organisms are widespread in anaerobic enviroments, including the gastrointestinal tract of man and other animals. The study of these bacteria has attracted much attention over the years, due also to the fact that they can have important implications in industry (in biocorrosion and souring of oil and gas deposits), health (in inflamatory bowel diseases) and the environment (bioremediation). The characterization of the various components of the electron transport chain associated with the hydrogen metabolism in Desulfovibrio has generated a large and comprehensive list of studies. This review summarizes the more relevant aspects of the current information available on the structural data of various molecules associated with hydrogen metabolism, namely hydrogenases and cytochromes. The transmembrane redox complexes known to date are also described and discussed. Redox-Bohr and cooperativity effects, observed in a few cytochromes, and believed to be important for their functional role, are discussed. Kinetic studies performed with these redox proteins, showing clues to their functional inter-relationship, are also addressed. These provide the groundwork for the application of a variety of molecular modelling approaches to understanding electron transfer and protein interactions among redox partners, leading to the characterization of several transient periplasmic complexes. In contrast to the detailed understanding of the periplasmic hydrogen oxidation process, very little is known about the cytoplasmic side of the respiratory electron transfer chain, in terms of molecular components (with exception of the terminal reductases), their structure and the protein-protein interactions involved in sulphate reduction. Therefore, a thorough understanding of the sulphate respiratory chain in Desulfovibrio remains a challenging task.
Collapse
|
|
20 |
81 |
12
|
Crowley PB, Carrondo MA. The architecture of the binding site in redox protein complexes: Implications for fast dissociation. Proteins 2004; 55:603-12. [PMID: 15103624 DOI: 10.1002/prot.20043] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interprotein electron transfer is characterized by protein interactions on the millisecond time scale. Such transient encounters are ensured by extremely high rates of complex dissociation. Computational analysis of the available crystal structures of redox protein complexes reveals features of the binding site that favor fast dissociation. In particular, the complex interface is shown to have low geometric complementarity and poor packing. These features are consistent with the necessity for fast dissociation since the absence of close packing facilitates solvation of the interface and disruption of the complex.
Collapse
|
|
21 |
81 |
13
|
Archer M, Huber R, Tavares P, Moura I, Moura JJ, Carrondo MA, Sieker LC, LeGall J, Romão MJ. Crystal structure of desulforedoxin from Desulfovibrio gigas determined at 1.8 A resolution: a novel non-heme iron protein structure. J Mol Biol 1995; 251:690-702. [PMID: 7666420 DOI: 10.1006/jmbi.1995.0465] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The crystal structure of desulforedoxin from Desulfovibrio gigas, a new homo-dimeric (2 x 36 amino acids) non-heme iron protein, has been solved by the SIRAS method using the indium-substituted protein as the single derivative. The structure was refined to a crystallographic R-factor of 16.9% at 1.8 A resolution. Native desulforedoxin crystals were grown from either PEG 4K or lithium sulfate, with cell constants a = b = 42.18 A, c = 72.22 A (for crystals grown from PEG 4K), and they belong to space group P3(2)21. The indium-substituted protein crystallized isomorphously under the same conditions. The 2-fold symmetric dimer is firmly hydrogen bonded and folds as an incomplete beta-barrel with the two iron centers placed on opposite poles of the molecule. Each iron atom is coordinated to four cysteinyl residues in a distorted tetrahedral arrangement. Both iron atoms are 16 A apart but connected across the 2-fold axis by 14 covalent bonds along the polypeptide chain plus two hydrogen bonds. Desulforedoxin and rubredoxin share some structural features but show significant differences in terms of metal environment and water structure, which account for the known spectroscopic differences between rubredoxin and desulforedoxin.
Collapse
|
|
30 |
81 |
14
|
Matias PM, Frazão C, Morais J, Coll M, Carrondo MA. Structure analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 1.9 A resolution. J Mol Biol 1993; 234:680-99. [PMID: 8254667 DOI: 10.1006/jmbi.1993.1620] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The three-dimensional X-ray structure of cytochrome c3 from sulfate-reducing bacteria Desulfovibrio vulgaris Hildenborough (DvH) (M(r) 13 kDa, 107 residues, 4 heme groups) has been determined at 1.9 A resolution, by the method of molecular replacement, using the homologous part of the refined structure of cytochrome c3 from D. vulgaris Miyazaki F (DvMF). Crystals of c3 DvH were obtained with space group P61, a = 77.0 A, c = 77.2 A, Z = 12, corresponding to two independent molecules in the asymmetric unit. The structure was refined to an R-factor of 19.6%. The structures of the two molecules are analyzed, compared with each other and also with that of c3 DvMF. The main-chain atoms are, for the three structures, generally within 1.0 A. The intramolecular heme edge to edge distances and interplanar angles indicate two groups of values. Shorter distances are associated with near-normal angles, while longer distances with acute angles. Moreover, two of the four hemes, II and IV, are close to only one other heme, while the remaining two hemes, I and III, have two close neighbors each. The two histidine residues that co-ordinate the heme irons on the fifth and sixth positions are nearly parallel, except in the case of heme II. The only substitution from DvMF which is inside the molecule, A68V, occurs in the vicinity of that same heme. However, the non-paralellism between the two flanking histidine residues was also observed in DvMF. Heme II has a conserved higher exposure to solvent and one of the lowest redox potentials in the fully oxidized forms of the two cytochromes. A comparison between data obtained by spectroscopic techniques, nuclear magnetic resonance and electron paramagnetic resonance, and the structural results presented here, indicates two types of interactions, between hemes I and II and between hemes III and IV.
Collapse
|
Comparative Study |
32 |
80 |
15
|
Frazão C, Soares CM, Carrondo MA, Pohl E, Dauter Z, Wilson KS, Hervás M, Navarro JA, De la Rosa MA, Sheldrick GM. Ab initio determination of the crystal structure of cytochrome c6 and comparison with plastocyanin. Structure 1995; 3:1159-69. [PMID: 8591027 DOI: 10.1016/s0969-2126(01)00252-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Electron transfer between cytochrome f and photosystem I (PSI) can be accomplished by the heme-containing protein cytochrome c6 or by the copper-containing protein plastocyanin. Higher plants use plastocyanin as the only electron donor to PSI, whereas most green algae and cyanobacteria can use either, with similar kinetics, depending on the copper concentration in the culture medium. RESULTS We report here the determination of the structure of cytochrome c6 from the green alga Monoraphidium braunii. Synchrotron X-ray data with an effective resolution of 1.2 A and the presence of one iron and three sulfur atoms enabled, possibly for the first time, the determination of an unknown protein structure by ab initio methods. Anisotropic refinement was accompanied by a decrease in the 'free' R value of over 7% the anisotropic motion is concentrated at the termini and between residues 38 and 53. The heme geometry is in very good agreement with a new set of heme distances derived from the structures of small molecules. This is probably the most precise structure of a heme protein to date. CONCLUSIONS On the basis of this cytochrome c6 structure, we have calculated potential electron transfer pathways and made comparisons with similar analyses for plastocyanin. Electron transfer between the copper redox center of plastocyanin to PSI and from cytochrome f is believed to involve two sites on the protein. In contrast, cytochrome c6 may well use just one electron transfer site, close to the heme unit, in its corresponding reactions with the same two redox partners.
Collapse
|
|
30 |
79 |
16
|
Frazão C, Bento I, Costa J, Soares CM, Veríssimo P, Faro C, Pires E, Cooper J, Carrondo MA. Crystal structure of cardosin A, a glycosylated and Arg-Gly-Asp-containing aspartic proteinase from the flowers of Cynara cardunculus L. J Biol Chem 1999; 274:27694-701. [PMID: 10488111 DOI: 10.1074/jbc.274.39.27694] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aspartic proteinases (AP) have been widely studied within the living world, but so far no plant AP have been structurally characterized. The refined cardosin A crystallographic structure includes two molecules, built up by two glycosylated peptide chains (31 and 15 kDa each). The fold of cardosin A is typical within the AP family. The glycosyl content is described by 19 sugar rings attached to Asn-67 and Asn-257. They are localized on the molecular surface away from the conserved active site and show a new glycan of the plant complex type. A hydrogen bond between Gln-126 and Manbeta4 renders the monosaccharide oxygen O-2 sterically inaccessible to accept a xylosyl residue, therefore explaining the new type of the identified plant glycan. The Arg-Gly-Asp sequence, which has been shown to be involved in recognition of a putative cardosin A receptor, was found in a loop between two beta-strands on the molecular surface opposite the active site cleft. Based on the crystal structure, a possible mechanism whereby cardosin A might be orientated at the cell surface of the style to interact with its putative receptor from pollen is proposed. The biological implications of these findings are also discussed.
Collapse
|
|
26 |
74 |
17
|
Bonifácio MJ, Archer M, Rodrigues ML, Matias PM, Learmonth DA, Carrondo MA, Soares-Da-Silva P. Kinetics and crystal structure of catechol-o-methyltransferase complex with co-substrate and a novel inhibitor with potential therapeutic application. Mol Pharmacol 2002; 62:795-805. [PMID: 12237326 DOI: 10.1124/mol.62.4.795] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Catechol-O-methyltransferase (COMT; E.C. 2.1.1.6) is a ubiquitous enzyme in nature that plays an important role in the metabolism of catechol neurotransmitters and xenobiotics. In particular, inactivation of drugs such as L-3,4-dihydroxyphenylalanine (L-DOPA) via O-methylation is of relevant pharmacological importance, because L-DOPA is currently the most effective drug used in the treatment of Parkinson's disease. This justified the interest in developing COMT inhibitors as potential adjuncts to L-DOPA therapy. The kinetics of inhibition by BIA 3-335 (1-[3,4-dihydroxy-5-nitrophenyl]-3-(N-3'-trifluormethylphenyl)-piperazine-1-propanone dihydrochloride) were characterized using recombinant rat soluble COMT. BIA 3-335 was found to act as a potent, reversible, tight-binding inhibitor of COMT with a K(i) of 6.0 +/- 1.6 nM and displaying a competitive inhibition toward the substrate binding site and uncompetitive inhibition toward the S-adenosyl-L-methionine (SAM) binding site. The 2.0-A resolution crystal structure of COMT in complex with its cosubstrate SAM and a novel inhibitor BIA 3-335 shows the atomic interactions between the important residues at the active site and the inhibitor. This is the first report of a three-dimensional structure determination of COMT complexed with a potent, reversible, and tight-binding inhibitor that is expected to have therapeutic applications.
Collapse
|
|
23 |
70 |
18
|
Matias PM, Carrondo MA, Coelho R, Thomaz M, Zhao XY, Wegg A, Crusius K, Egner U, Donner P. Structural basis for the glucocorticoid response in a mutant human androgen receptor (AR(ccr)) derived from an androgen-independent prostate cancer. J Med Chem 2002; 45:1439-46. [PMID: 11906285 DOI: 10.1021/jm011072j] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The crystal structure of a mutant androgen receptor (AR) ligand-binding domain (LBD) in complex with the agonist 9alpha-fluorocortisol has been determined at 1.95 A resolution. This mutant AR contains two mutations (L701H and T877A) and was previously reported as a high-affinity cortisol/cortisone responsive AR (AR(ccr)) isolated from the androgen-independent human prostate cancer cell lines MDA PCa 2a and 2b (Zhao et al. Nature Med. 2000, 6, 703-6). The three-dimensional structure of the AR(ccr) LBD complexed with 9alpha-fluorocortisol shows the typical conformation of an agonist-bound nuclear receptor in which helix 12 is precisely positioned as a "lid" for the ligand-binding pocket. Binding of 9alpha-fluorocortisol to the AR(ccr) involves favorable hydrogen bond patterns on the C17 and C21 substituents of the ligand due to the mutations at 701 and 877 in the AR(ccr). Our studies provide the first structural explanation for the glucocorticoid activation of AR(ccr), which is important for the development of new therapeutic treatments for androgen-independent prostate cancer.
Collapse
MESH Headings
- Algorithms
- Anti-Inflammatory Agents/chemistry
- Anti-Inflammatory Agents/pharmacology
- Crystallography, X-Ray
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Fludrocortisone/chemistry
- Fludrocortisone/pharmacology
- Glucocorticoids/chemistry
- Glucocorticoids/metabolism
- Humans
- Hydrogen Bonding
- Ligands
- Male
- Models, Chemical
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Phenotype
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Tumor Cells, Cultured
Collapse
|
|
23 |
64 |
19
|
Mendes J, Baptista AM, Carrondo MA, Soares CM. Improved modeling of side-chains in proteins with rotamer-based methods: a flexible rotamer model. Proteins 1999; 37:530-43. [PMID: 10651269 DOI: 10.1002/(sici)1097-0134(19991201)37:4<530::aid-prot4>3.0.co;2-h] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Side-chain modeling has a widespread application in many current methods for protein tertiary structure determination, prediction, and design. Of the existing side-chain modeling methods, rotamer-based methods are the fastest and most efficient. Classically, a rotamer is conceived as a single, rigid conformation of an amino acid sidechain. Here, we present a flexible rotamer model in which a rotamer is a continuous ensemble of conformations that cluster around the classic rigid rotamer. We have developed a thermodynamically based method for calculating effective energies for the flexible rotamer. These energies have a one-to-one correspondence with the potential energies of the rigid rotamer. Therefore, the flexible rotamer model is completely general and may be used with any rotamer-based method in substitution of the rigid rotamer model. We have compared the performance of the flexible and rigid rotamer models with one side-chain modeling method in particular (the self-consistent mean field theory method) on a set of 20 high quality crystallographic protein structures. For the flexible rotamer model, we obtained average predictions of 85.8% for chi1, 76.5% for chi1+2 and 1.34 A for root-mean-square deviation (RMSD); the corresponding values for core residues were 93.0%, 87.7% and 0.70 A, respectively. These values represent improvements of 7.3% for chi1, 8.1% for chi1+2 and 0.23 A for RMSD over the predictions obtained with the rigid rotamer model under otherwise identical conditions; the corresponding improvements for core residues were 6.9%, 10.5% and 0.43 A, respectively. We found that the predictions obtained with the flexible rotamer model were also significantly better than those obtained for the same set of proteins with another state-of-the-art side-chain placement method in the literature, especially for core residues. The flexible rotamer model represents a considerable improvement over the classic rigid rotamer model. It can, therefore, be used with considerable advantage in all rotamer-based methods commonly applied to protein tertiary structure determination, prediction, and design and also in predictions of free energies in mutational studies.
Collapse
|
Comparative Study |
26 |
63 |
20
|
Matias PM, Coelho R, Pereira IA, Coelho AV, Thompson AW, Sieker LC, Gall JL, Carrondo MA. The primary and three-dimensional structures of a nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveal a new member of the Hmc family. Structure 1999; 7:119-30. [PMID: 10368280 DOI: 10.1016/s0969-2126(99)80019-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Haem-containing proteins are directly involved in electron transfer as well as in enzymatic functions. The nine-haem cytochrome c (9Hcc), previously described as having 12 haem groups, was isolated from cells of Desulfovibrio desulfuricans ATCC 27774, grown under both nitrate- and sulphate-respiring conditions. RESULTS Models for the primary and three-dimensional structures of this cytochrome, containing 292 amino acid residues and nine haem groups, were derived using the multiple wavelength anomalous dispersion phasing method and refined using 1.8 A diffraction data to an R value of 17.0%. The nine haem groups are arranged into two tetrahaem clusters, with Fe-Fe distances and local protein fold similar to tetrahaem cytochromes c3, while the extra haem is located asymmetrically between the two clusters. CONCLUSIONS This is the first known three-dimensional structure in which multiple copies of a tetrahaem cytochrome c3-like fold are present in the same polypeptide chain. Sequence homology was found between this cytochrome and the C-terminal region (residues 229-514) of the high molecular weight cytochrome c from Desulfovibrio vulgaris Hildenborough (DvH Hmc). A new haem arrangement in domains III and IV of DvH Hmc is proposed. Kinetic experiments showed that 9Hcc can be reduced by the [NiFe] hydrogenase from D. desulfuricans ATCC 27774, but that this reduction is faster in the presence of tetrahaem cytochrome c3. As Hmc has never been found in D. desulfuricans ATCC 27774, we propose that 9Hcc replaces it in this organism and is therefore probably involved in electron transfer across the membrane.
Collapse
|
|
26 |
61 |
21
|
Morais J, Palma PN, Frazão C, Caldeira J, LeGall J, Moura I, Moura JJ, Carrondo MA. Structure of the tetraheme cytochrome from Desulfovibrio desulfuricans ATCC 27774: X-ray diffraction and electron paramagnetic resonance studies. Biochemistry 1995; 34:12830-41. [PMID: 7548038 DOI: 10.1021/bi00039a044] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The three-dimensional X-ray structure of cytochrome c3 from a sulfate reducing bacterium, Desulfovibrio desulfuricans ATCC 27774 (107 residues, 4 heme groups), has been determined by the method of molecular replacement [Frazão et al. (1994) Acta Crystallogr. D50, 233-236] and refined at 1.75 A to an R-factor of 17.8%. When compared with the homologous proteins isolated from Desulfovibrio gigas, Desulfovibrio vulgaris Hildenborough, Desulfovibrio vulgaris Miyazaki F, and Desulfomicrobium baculatus, the general outlines of the structure are essentialy kept [heme-heme distances, heme-heme angles, His-His (axial heme ligands) dihedral angles, and the geometry of the conserved aromatic residues]. The three-dimensional structure of D. desulfuricans ATCC 27774 cytochrome c3Dd was modeled on the basis of the crystal structures available and amino acid sequence comparisons within this homologous family of multiheme cytochromes [Palma et al. (1994) Biochemistry 33, 6394-6407]. This model is compared with the refined crystal structure now reported, in order to discuss the validity of structure prediction methods and critically evaluate the steps used to predict protein structures by homology modeling. The four heme midpoint redox potentials were determined by using deconvoluted electron paramagnetic resonance (EPR) redox titrations. Structural criteria (electrostatic potentials, heme ligand orientation, EPR g values, heme exposure, data from protein-protein interaction studies) are invoked to assign the redox potentials corresponding to each specific heme in the three-dimensional structure.
Collapse
|
|
30 |
59 |
22
|
Matias PM, Morais J, Coelho R, Carrondo MA, Wilson K, Dauter Z, Sieker L. Cytochrome c3 from Desulfovibrio gigas: crystal structure at 1.8 A resolution and evidence for a specific calcium-binding site. Protein Sci 1996; 5:1342-54. [PMID: 8819167 PMCID: PMC2143463 DOI: 10.1002/pro.5560050713] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Crystals of the tetraheme cytochrome c3 from sulfate-reducing bacteria Desulfovibrio gigas (Dg) (MW 13 kDa, 111 residues, four heme groups) were obtained and X-ray diffraction data collected to 1.8 A resolution. The structure was solved by the method of molecular replacement and the resulting model refined to a conventional R-factor of 14.9%. The three-dimensional structure shows many similarities to other known crystal structures of tetraheme c3 cytochromes, but it also shows some remarkable differences. In particular, the location of the aromatic residues around the heme groups, which may play a fundamental role in the electron transfer processes of the molecule, are well conserved in the cases of hemes I, III, and IV. However, heme II has an aromatic environment that is completely different to that found in other related cytochromes c3. Another unusual feature is the presence of a Ca2+ ion coordinated by oxygen atoms supplied by the protein within a loop near the N-terminus. It is speculated that this loop may be stabilized by the presence of this Ca2+ ion, may contribute to heme-redox perturbation, and might even be involved in the specificity of recognition with its redox partner.
Collapse
|
research-article |
29 |
59 |
23
|
Matias PM, Coelho AV, Valente FMA, Plácido D, LeGall J, Xavier AV, Pereira IAC, Carrondo MA. Sulfate respiration in Desulfovibrio vulgaris Hildenborough. Structure of the 16-heme cytochrome c HmcA AT 2.5-A resolution and a view of its role in transmembrane electron transfer. J Biol Chem 2002; 277:47907-16. [PMID: 12356749 DOI: 10.1074/jbc.m207465200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the high molecular mass cytochrome c HmcA from Desulfovibrio vulgaris Hildenborough is described. HmcA contains the unprecedented number of sixteen hemes c attached to a single polypeptide chain, is associated with a membrane-bound redox complex, and is involved in electron transfer from the periplasmic oxidation of hydrogen to the cytoplasmic reduction of sulfate. The structure of HmcA is organized into four tetraheme cytochrome c(3)-like domains, of which the first is incomplete and contains only three hemes, and the final two show great similarity to the nine-heme cytochrome c from Desulfovibrio desulfuricans. An isoleucine residue fills the vacant coordination space above the iron atom in the five-coordinated high-spin Heme 15. The characteristics of each of the tetraheme domains of HmcA, as well as its surface charge distribution, indicate this cytochrome has several similarities with the nine-heme cytochrome c and the Type II cytochrome c(3) molecules, in agreement with their similar genetic organization and mode of reactivity and further support an analogous physiological function for the three cytochromes. Based on the present structure, the possible electron transfer sites between HmcA and its redox partners (namely Type I cytochrome c(3) and other proteins of the Hmc complex), as well as its physiological role, are discussed.
Collapse
|
|
23 |
53 |
24
|
Pereira MM, Santana M, Soares CM, Mendes J, Carita JN, Fernandes AS, Saraste M, Carrondo MA, Teixeira M. The caa3 terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP:oxygen oxidoreductase lacking the key glutamate of the D-channel. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1413:1-13. [PMID: 10524259 DOI: 10.1016/s0005-2728(99)00073-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The respiratory chain of the thermohalophilic bacterium Rhodothermus marinus contains a novel complex III and a high potential iron-sulfur protein (HiPIP) as the main electron shuttle (Pereira et al., Biochemistry 38 (1999) 1268-1275 and 1276-1283). In this paper, one of the terminal oxidases expressed in this bacterium is extensively characterised. It is a caa3-type oxidase, isolated with four subunits (apparent molecular masses of 42, 19 and 15 kDa and a C-haem containing subunit of 35 kDa), which has haems of the A(s) type. This oxidase is capable of using TMPD and horse heart cytochrome c as substrates, but has a higher turnover with HiPIP, being the first example of a HiPIP:oxygen oxidoreductase. The oxidase has unusually low reduction potentials of 260 (haem C), 255 (haem A) and 180 mV (haem A3). Subunit I of R. marinus caa3 oxidase has an overall significant homology with the subunits I of the COX type oxidases, namely the metal binding sites and most residues considered to be functionally important for proton uptake and pumping (K- and D-channels). However, a major difference is present: the putative essential glutamate (E278 in Paraccocus denitrificans) of the D-channel is missing in the R. marinus oxidase. Homology modelling of the R. marinus oxidase shows that the phenol group of a tyrosine residue may occupy a similar spatial position as the glutamate carboxyl, in relation to the binuclear centre. Moreover, sequence comparisons reveal that several enzymes lacking that glutamate have a conserved substitution pattern in helix VI: -YSHPXV- instead of -XGHPEV-. These observations are discussed in terms of the mechanisms for proton uptake and it is suggested that, in these enzymes, tyrosine may play the role of the glutamate in the proton channel.
Collapse
|
|
26 |
47 |
25
|
Costa J, Ashford DA, Nimtz M, Bento I, Frazäo C, Esteves CL, Faro CJ, Kervinen J, Pires E, Veríssimo P, Wlodawer A, Carrondo MA. The glycosylation of the aspartic proteinases from barley (Hordeum vulgare L.) and cardoon (Cynara cardunculus L.). EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:695-700. [PMID: 9057834 DOI: 10.1111/j.1432-1033.1997.t01-1-00695.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Plant aspartic proteinases characterised at the molecular level contain one or more consensus N-glycosylation sites [Runeberg-Roos, P., Tŏrmäkangas, K. & Ostman, A. (1991) Eur. J. Biochem. 202, 1021-1027; Asakura, T., Watanabe, H., Abe, K. & Arai, S. (1995) Eur. J. Biochem, 232, 77-83; Veríssimo, P., Faro, C., Moir, A. J. G., Lin, Y., Tang, J. & Pires, E. (1996) Eur. J. Biochem. 235, 762-768]. We found that the glycosylation sites are occupied for the barley (Hordeum vulgare L.) aspartic proteinase (Asn333) and the cardoon (Cynara cardunculus L.) aspartic proteinase, cardosin A (Asn70 and Asn363). The oligosaccharides from each site were released from peptide pools by enzymatic hydrolysis with peptide-N-glycanase A or by hydrazinolysis and their structures were determined by exoglycosidase sequencing combined with matrix-assisted laser desorption/ionization time of flight mass spectrometry. It was observed that 6% of the oligosaccharides from the first glycosylation site of cardosin A are of the oligomannose type. Modified type glycans with proximal Fuc and without Xyl account for about 82%, 14% and 3% of the total oligosaccharides from the first and the second glycosylation sites of cardosin A and from H. vulgare aspartic proteinase, respectively. Oligosaccharides with Xyl but without proximal Fuc were only detected in the latter proteinase (4%). Glycans with proximal Fuc and Xyl account for 6%, 86% and 92% of total oligosaccharides from the first and second glycosylation sites of cardosin A and from H. vulgare aspartic proteinase, respectively.
Collapse
|
|
28 |
46 |