1
|
Touz MC, Lujan HD, Hayes SF, Nash TE. Sorting of encystation-specific cysteine protease to lysosome-like peripheral vacuoles in Giardia lamblia requires a conserved tyrosine-based motif. J Biol Chem 2003; 278:6420-6. [PMID: 12466276 DOI: 10.1074/jbc.m208354200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Encystation-specific cysteine protease (ESCP) was the first membrane-associated protein described to be part of the lysosome-like peripheral vacuoles in the intestinal parasite Giardia lamblia. ESCP is homologous to cathepsin C enzymes of higher eukaryotes, but is distinguished from other lysosomal cysteine proteases because it possesses a transmembrane domain and a short cytoplasmic tail. Tyrosine-based motifs within tails of membrane proteins are known to participate in endosomal/lysosomal protein sorting in higher eukaryotes. In this study, we show that a YRPI motif within the ESCP cytoplasmic tail is necessary and sufficient to mediate ESCP sorting to peripheral vacuoles in Giardia. Deletion and point mutation analysis demonstrated that the tyrosine residue is critical for ESCP sorting, whereas amino acids located at the Y+1 (Arg), Y+2 (Pro), and Y+3 (Ile) positions show minimal effect. Loss of the motif resulted in surface localization, whereas addition of the motif to a variant-specific surface protein resulted in lysosomal localization. Although Giardia trophozoites lack a morphologically discernible Golgi apparatus, our findings indicate that this parasite directs proteins to the lysosomes using a conserved sorting signal similar to that used by yeast and mammalian cells. Because Giardia is one of the earliest branching protist, these results demonstrate that sorting motifs for specific protein traffic developed very early during eukaryotic evolution.
Collapse
|
|
22 |
46 |
2
|
Luján HD, Conrad JT, Clark CG, Touz MC, Delbac F, Vivares CP, Nash TE. Detection of microsporidia spore-specific antigens by monoclonal antibodies. Hybridoma (Larchmt) 1998; 17:237-43. [PMID: 9708825 DOI: 10.1089/hyb.1998.17.237] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Microsporidia (phylum Microspora) are unicellular parasites commonly found in invertebrates, fish, and laboratory animals; however, microsporidiosis is an emerging problem in patients with the acquired immunodeficiency syndrome (AIDS). The infective stage of these parasites is the spore, which possesses a rigid cell wall that protects the parasite outside its host. Little is known about their antigenic composition. Sensitive, reliable, and easily performed methods for identification and speciation are generally not available. Here, we report the production of 21 MAbs specific to spore antigens of several species of Microsporidia. MAbs were generated to purified spores of Encephalitozoon intestinalis and Encephalitozoon hellem, and their reactivities were tested against spores and intracellular developing forms of E. intestinalis, E. hellem, Encephalitozoon cuniculi, and Vittaforma corneae. Both species-specific and broad-reactivity MAbs were produced. Five MAbs reacted against the spores of all four species tested: 7 with 3 species, 6 with 2 species, 1 with E. intestinalis, and 4 with the polar tube of all species. Immunoelectron microscopy confirmed the reactivity of specific MAbs to the spore wall or the polar tube. These MAbs reacted to a few antigens as determined by Western blot, and none of the epitopes were periodate-sensitive. These MAbs may be useful in the diagnosis and speciation of Microsporidia as well in the purification, cloning, and detection of these antigens.
Collapse
|
|
27 |
34 |
3
|
Rivero MR, Kulakova L, Touz MC. Long double-stranded RNA produces specific gene downregulation in Giardia lamblia. J Parasitol 2010; 96:815-9. [PMID: 20476805 DOI: 10.1645/ge-2406.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In many eukaryotes, the introduction of double-stranded RNA (dsRNA) into cells triggers the degradation of mRNAs through a post-transcriptional gene-silencing mechanism called RNA interference or RNAi. In the present study, we found that endogenous long-dsRNA was substantially more effective at producing interference than endogenous, or exogenous, short-dsRNA expression in Giardia lamblia . The effects of this interference were not evident in the highly expressed protein tubulin or the stage-specific cyst wall protein 2. However, long-dsRNA caused potent and specific interference in the medium subunits of adaptins, the RNA-dependent RNA polymerase, and the exogenous green fluorescence protein. Our results suggest that the ability of dsRNA antisense to inhibit the expression of these specific types of proteins is indicative of a gene-specific mechanism.
Collapse
|
Journal Article |
15 |
21 |
4
|
Abstract
In the relationships between host and parasites, there is a cross-talk that involves diverse mechanisms developed by two different genetic systems during years of evolution. On the one hand, immunocompetent hosts have developed effective innate and acquired immune responses that are used to restrict or avoid parasitism. On the other hand, parasites evade the immune response, expressing different antigens on their surface or by using other specific mechanisms, such as nutrient depletion. In this review, we analyze the survival mechanisms used by the protozoan parasite Giardia lamblia during infection. In particular, we examine the multiple roles played by the enzyme arginine deiminase during colonization of the gut, also involving the parasite's mechanism of antigenic variation. Potential drug targets for the treatment of giardiasis are also discussed.
Collapse
|
Review |
15 |
20 |
5
|
Feliziani C, Zamponi N, Gottig N, Rópolo AS, Lanfredi-Rangel A, Touz MC. The giardial ENTH protein participates in lysosomal protein trafficking and endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:646-59. [PMID: 25576518 DOI: 10.1016/j.bbamcr.2014.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/18/2014] [Accepted: 12/30/2014] [Indexed: 12/01/2022]
Abstract
In the protozoa parasite Giardia lamblia, endocytosis and lysosomal protein trafficking are vital parasite-specific processes that involve the action of the adaptor complexes AP-1 and AP-2 and clathrin. In this work, we have identified a single gene in Giardia encoding a protein containing an ENTH domain that defines monomeric adaptor proteins of the epsin family. This domain is present in the epsin or epsin-related (epsinR) adaptor proteins, which are implicated in endocytosis and Golgi-to-endosome protein trafficking, respectively, in other eukaryotic cells. We found that GlENTHp (for G. lamblia ENTH protein) localized in the cytosol, strongly interacted with PI3,4,5P3, was associated with the alpha subunit of AP-2, clathrin and ubiquitin and was involved in receptor-mediated endocytosis. It also bonded PI4P, the gamma subunit of AP-1 and was implicated in ER-to-PV trafficking. Alteration of the GlENTHp function severely affected trophozoite growth showing an unusual accumulation of dense material in the lysosome-like peripheral vacuoles (PVs), indicating that GlENTHp might be implicated in the maintenance of PV homeostasis. In this study, we showed evidence suggesting that GlENTHp might function as a monomeric adaptor protein supporting the findings of other group indicating that GlENTHp might be placed at the beginning of the ENTH family.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
17 |
6
|
Rivero MR, Miras SL, Quiroga R, Rópolo AS, Touz MC. Giardia lamblia low-density lipoprotein receptor-related protein is involved in selective lipoprotein endocytosis and parasite replication. Mol Microbiol 2011; 79:1204-19. [PMID: 21205007 DOI: 10.1111/j.1365-2958.2010.07512.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As Giardia lamblia is unable to synthesize cholesterol de novo, this steroid might be obtained from the host's intestinal milieu by endocytosis of lipoproteins. In this work, we identified a putative Giardia lamblia low-density lipoprotein receptor-related proteins (GlLRP), a type I membrane protein, which shares the substrate N-terminal binding domain and a FXNPXY-type endocytic motif with human LRPs. Expression of tagged GlLRP showed that it was localized predominantly in the endoplasmic reticulum, lysosomal-like peripheral vacuoles and plasma membrane. However, the FXNPXY-deleted GlLRP was retained at the plasma membrane suggesting that it is abnormally transported and processed. The low-density lipoprotein and chylomicrons interacted with GlLRP, with this interaction being necessary for lipoprotein internalization and cell proliferation. Finally, we show that GlLRP binds directly to the medium subunit of Giardia adaptor protein 2, indicating that receptor-mediated internalization occurs through an adaptin mechanism.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
16 |
7
|
Rivero MR, Miras SL, Feliziani C, Zamponi N, Quiroga R, Hayes SF, Rópolo AS, Touz MC. Vacuolar protein sorting receptor in Giardia lamblia. PLoS One 2012; 7:e43712. [PMID: 22916299 PMCID: PMC3423367 DOI: 10.1371/journal.pone.0043712] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/24/2012] [Indexed: 11/19/2022] Open
Abstract
In Giardia, lysosome-like peripheral vacuoles (PVs) need to specifically coordinate their endosomal and lysosomal functions to be able to successfully perform endocytosis, protein degradation and protein delivery, but how cargo, ligands and molecular components generate specific routes to the PVs remains poorly understood. Recently, we found that delivering membrane Cathepsin C and the soluble acid phosphatase (AcPh) to the PVs is adaptin (AP1)-dependent. However, the receptor that links AcPh and AP1 was never described. We have studied protein-binding to AcPh by using H6-tagged AcPh, and found that a membrane protein interacted with AcPh. This protein, named GlVps (for Giardia lamblia Vacuolar protein sorting), mainly localized to the ER-nuclear envelope and in some PVs, probably functioning as the sorting receptor for AcPh. The tyrosine-binding motif found in the C-terminal cytoplasmic tail domain of GlVps was essential for its exit from the endoplasmic reticulum and transport to the vacuoles, with this motif being necessary for the interaction with the medium subunit of AP1. Thus, the mechanism by which soluble proteins, such as AcPh, reach the peripheral vacuoles in Giardia appears to be very similar to the mechanism of lysosomal protein-sorting in more evolved eukaryotic cells.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
16 |
8
|
Rivero MR, Jausoro I, Bisbal M, Feliziani C, Lanfredi-Rangel A, Touz MC. Receptor-mediated endocytosis and trafficking between endosomal-lysosomal vacuoles in Giardia lamblia. Parasitol Res 2013; 112:1813-8. [PMID: 23315176 DOI: 10.1007/s00436-012-3253-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
The early branching Giardia lamblia has highly polarized vacuoles, located underneath the plasma membrane, which have at least some of the characteristics of endosomes and of lysosomes. These peripheral vacuoles (PVs) are necessary for nutrient uptake and the maintenance of plasma membrane composition, but whether they carry out sorting and segregation of receptors and ligands is a matter of debate. Here, we showed that the internalization of low-density lipoprotein (LDL) to the PVs is highly dynamic in trophozoites with a rate similar to the internalization of the low-density lipoprotein receptor-related protein 1. Moreover, by analyzing receptor-mediated and fluid-phase endocytosis in living cells, we showed that after endocytosis LDL but not dextran moved laterally between the PVs. We speculate on PV functional heterogeneity and maturation in this parasite.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
9 |
9
|
Touz MC, Zamponi N. Sorting without a Golgi complex. Traffic 2017; 18:637-645. [DOI: 10.1111/tra.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
|
|
8 |
9 |
10
|
Touz MC, Rivero MR, Miras SL, Bonifacino JS. Lysosomal protein trafficking in Giardia lamblia: common and distinct features. Front Biosci (Elite Ed) 2012; 4:1898-909. [PMID: 22202006 DOI: 10.2741/511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Giardia is a flagellated protozoan parasite that has to face different microenvironments during its life cycle in order to survive. All cells exchange materials with the extracellular medium through the reciprocal processes of endocytosis and secretion. Unlike more evolved cells, Giardia lacks a defined endosomal/lysosomal system, but instead possesses peripheral vacuoles that play roles in endocytosis, degradation, recycling, and secretion of proteins during growth and differentiation of the parasite. This review focuses on recent reports defining the role of different molecules involved in protein trafficking to the peripheral vacuoles, and discusses possible mechanisms of receptor recycling. Since Giardia is an early-branching protist, the study of this parasite may lead to a clearer understanding of the minimal machinery required for protein transport in eukaryotic cells.
Collapse
|
Review |
13 |
8 |
11
|
Feliziani C, Valdez Taubas J, Moyano S, Quassollo G, Poprawski JE, Wendland B, Touz MC. Vestiges of Ent3p/Ent5p function in the giardial epsin homolog. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:749-59. [PMID: 26851076 DOI: 10.1016/j.bbamcr.2016.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/12/2016] [Accepted: 02/01/2016] [Indexed: 11/29/2022]
Abstract
An accurate way to characterize the functional potential of a protein is to analyze recognized protein domains encoded by the genes in a given group. The epsin N-terminal homology (ENTH) domain is an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated trafficking. In this work, we investigate the function of the single ENTH-containing protein from the protist Giardia lamblia by testing its function in Saccharomyces cerevisiae. This protein, named GlENTHp (for G. lamblia ENTH protein), is involved in Giardia in endocytosis and in protein trafficking from the ER to the vacuoles, fulfilling the function of the ENTH proteins epsin and epsinR, respectively. There are two orthologs of epsin, Ent1p and Ent2p, and two orthologs of epsinR, Ent3p and Ent5p in S. cerevisiae. Although the expression of GlENTHp neither complemented growth in the ent1Δent2Δ mutant nor restored the GFP-Cps1 vacuolar trafficking defect in ent3Δent5Δ, it interfered with the normal function of Ent3/5 in the wild-type strain. The phenotype observed is linked to a defect in Cps1 localization and α-factor mating pheromone maturation. The finding that GlENTHp acts as dominant negative epsinR in yeast cells reinforces the phylogenetic data showing that GlENTHp belongs to the epsinR subfamily present in eukaryotes prior to their evolution into different taxa.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
2 |